
CONTRIBUTED RESEARCH ARTICLE 1

Dot-Pipe: an S3 Extensible Pipe for R
by John Mount and Nina Zumel

Abstract Pipe notation is popular with a large league of R users, with magrittr being the dominant
realization. However, this should not be enough to consider piping in R as a settled topic that is not
subject to further discussion, experimentation, or possibility for improvement. To promote innovation
opportunities, we describe the wrapr R package and “dot-pipe” notation, a well behaved sequencing
operator with S3 extensibility. We include a number of examples of using this pipe to interact with
and extend other R packages.

Introduction

Using pipes to sequence operations has a number of advantages. Piping is analogous to representing
function composition as a left to right flow of values, which is a natural direction for western readers,
and is much more legible than composition represented as nesting.

Pipe notation is a popular topic in the R community. Related work includes:

• data.table: Dowle and Srinivasan (2017) use the open and closed square bracket in data.table
][, which is essentially as an example of piping or method chaining.

• magrittr: Bache and Wickham (2014) popularized pipe used in dplyr (Wickham et al., 2017).

• future: Bengtsson (2017) offers a powerful distributed processing package with pipe notation.

• rmonad: Arendsee (2017) created a monadic operator package, capturing exceptions in addition
to managing composition and values.

• pipeR: Ren (2016) contains a collection of sequencing methods including pipes and method
chaining.

• backpipe: Brown (2016) introduces a right to left pipe operator.

• drake: Landau (2018) contains a work-flow/graph toolkit for reproducible code and high-
performance computing.

This article will discuss using the operator %.>% from the package wrapr (Mount and Zumel,
2018) (colloquially called “dot-pipe” or “dot-arrow”). Dot-pipe is compatible with many other meta-
programming paradigms, and is directly S3 extensible.

Pipe notations

There are a number of important pipe notations in and out of R:

• In mathematical function composition or application, one can write a ◦ b to denote a(b).

• In Unix, process1 | process2 streams results from process1 as input to process2.

• In APL’s reduce/apply slash notations.

• In F#’s forward pipe operator, a |> b means b a, using F#’s partial application feature.

• In magrittr pipes, a %>% b(...) is most commonly used to denote {. <- a; b(., ...)}
(with dot side effects hidden).

• With the dot-pipe %.>% (the topic of this article), where a %.>% b is intended to approximately
mean {. <- a; b}.

Using %.>% to sequence operations

In this section, we demonstrate the use of wrapr “dot-pipe” %.>% and some of its merits. The intended
semantics of %.>% are:

a %.>% b is nearly equivalent to {. <- a; b}

where a and b are taken to be R expressions, presumably with dot occurring as a unbound (or free)
symbol in b. For example:

The R Journal Vol. XX/YY, AAAA 20ZZ ISSN 2073-4859

https://CRAN.R-project.org/package=data.table
https://CRAN.R-project.org/package=magrittr
https://CRAN.R-project.org/package=dplyr
https://CRAN.R-project.org/package=future
https://CRAN.R-project.org/package=rmonad
https://CRAN.R-project.org/package=pipeR
https://CRAN.R-project.org/package=backpipe
https://CRAN.R-project.org/package=drake
https://CRAN.R-project.org/package=wrapr

CONTRIBUTED RESEARCH ARTICLE 2

> library("wrapr")
> 5 %.>% sin(.)
[1] -0.9589243

> print(.)
[1] 5

Notice the wrapr dot-pipe leaves the most recent left-hand side value in the variable named dot.
While this is a visible side-effect of this pipe which can conflict with other uses of dot, we feel these
explicit semantics are sensible, easy to teach, and easy to work with.

We can also write 5 %.>% sin, as the dot-pipe looks up functions by name (even for qualified names
such as base::sin) as a user convenience. This function lookup is a non referentially transparent
special case, as names are deliberately treated differently than values. However, it is an important
capability that we will discuss later and greatly expand using S3 object oriented dispatch. Dot-pipe’s
default service does not work with the expression 5 %.>% sin() and throws an informative error
message. Maintaining an explicit distinction between sin (a name), sin() (an expression with no
free-use of dot), and sin(.) (an expression with free-use of dot), has benefits, some of which we will
demonstrate in the Extending the sequencer section. In general, for dot-pipe the explicit expression
sin(.) is preferred to sin under the rubric “dot-pipe has lots of dots.”

Additional dot-pipe examples include:

> 5 %.>% {1 + .}
[1] 6

> 5 %.>% (1 + .)
[1] 6

Notice dot-pipe treated the last two statements similarly. We warn the reader that in R the
expression 5 %.>% 1 + . is read as (5 %.>% 1) + ., as special operators (those using %) have higher
operator precedence than binary arithmetic operators.

The dot-pipe works well with many packages, including dplyr:1

> library("dplyr")
> disp <- 4
> mtcars %.>%
+ filter(., .data$cyl == .env$disp) %.>%
+ nrow(.)
[1] 11

Extending the sequencer

Dot-pipe’s primary dispatch is user extensible, by default it treats a %.>% b as {. <- a; b}.
However, it does this via S3 dispatch through a method of signature apply_left(a,b,--more--). User
or package code can override this method to add custom effects. For example, one can extend dot-pipe
to be a ggplot2 Wickham et al. (2018) layer compositor as we show below.

> library("ggplot2")
> apply_left.gg <- function(pipe_left_arg,
+ pipe_right_arg,
+ pipe_environment,
+ left_arg_name,
+ pipe_string,
+ right_arg_name) {
+ pipe_right_arg <- eval(pipe_right_arg,
+ envir = pipe_environment,
+ enclos = pipe_environment)
+ pipe_left_arg + pipe_right_arg
+ }

We have defined an implementation of apply_left.gg, as this is the class used by ggplot2 to
recognize its own objects (i.e., ggplot2 works by defining `+`.gg). Essentially apply_left.gg(a,b)
is implemented as a + b, the only detail being b is passed as a un-evaluated language argument,

1Example adapted from https://github.com/tidyverse/dplyr/issues/3286.

The R Journal Vol. XX/YY, AAAA 20ZZ ISSN 2073-4859

https://CRAN.R-project.org/package=ggplot2
https://github.com/tidyverse/dplyr/issues/3286

CONTRIBUTED RESEARCH ARTICLE 3

so it must be evaluated before being used as a regular value, a detail discussed in the package
documentation.

We can now easily write a pipeline that combines sequencing dplyr transformation steps and
combining ggplot2 geom objects, producing figure 1.

> data.frame(x = 1:20) %.>%
+ mutate(., y = cos(3*x)) %.>%
+ ggplot(., aes(x = x, y = y)) %.>%
+ geom_point() %.>%
+ geom_line() %.>%
+ ggtitle("piped ggplot2",
+ subtitle = "wrapr")

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●−1.0

−0.5

0.0

0.5

1.0

5 10 15 20

x

y
wrapr

piped ggplot2

Figure 1: Example plot produced by a pipeline.

Notice how we can use the same pipe notation for both the initial dplyr data processing steps and
for the later ggplot2 layer aggregation steps. As before, the data processing steps (e.g., the mutate())
require dot as a free symbol to specify where the piped values go. However, the ggplot2 steps do not
use such a dot argument, as these functions do not expect previous steps as arguments.

Dot-pipe was able to add capabilities to the ggplot2 package without requiring any changes to the
ggplot2 package. This extension capability is important.

Treating names as functions

If an object on the right hand side of a dot-pipe stage is an R language name (or a qualified name such
as base::sin), then that object is retrieved. If the result is a function, the function is applied. If the
result is a more general object then S3 dispatch is used on the class of this second or right hand side
argument. That is: a %.>% b is treated as b(a) or fclass(b)(a,b).

A good example using this capability is extending the rquery package (Mount, 2018) to allow
relational operator trees to be used both as inspectable objects and as functions that can be applied
directly to data. In the following example, we create an operator tree that adds the column y to a data
frame, d.

> library("rquery")
> optree <- mk_td(table_name = "d", columns = "x") %.>%
+ extend_nse(., y = cos(2*x))

We can treat optree as an object as we show below.

> class(optree)
[1] "relop_extend" "relop"

> print(optree)
[1] "table(d; x) %.>% extend(., y := cos(2 * x))"

> column_names(optree)
[1] "x" "y"

The R Journal Vol. XX/YY, AAAA 20ZZ ISSN 2073-4859

https://CRAN.R-project.org/package=rquery

CONTRIBUTED RESEARCH ARTICLE 4

> columns_used(optree)
$d
[1] "x"

Or we can pipe into it, as we now demonstrate.

> # get a database connection
> db = DBI::dbConnect(RSQLite::SQLite(),
+ ":memory:")
> # make our db connection available to rquery package
> options(list("rquery.rquery_db_executor" = list(db = db)))
> data.frame(x = 1:3) %.>% optree # apply optree to d
x y

1 1 -0.4161468
2 2 -0.6536436
3 3 0.9601703

In this example, the rquery package defined a surrogate S3 method for the right hand side pipe
argument: apply_right.relop. Any user or package can extend the dot-pipe to suit their needs, just
as we have shown here. The rquery package defines apply_right.relop allowing new data to be
applied to existing pipelines as we saw above.

We provide wrapr::apply_right_S4() as an S4 dispatch interface. This flexibility can be used to
define special effects such as “same class to same class” ideas. For example, we can arrange for data
frames to automatically call rbind when piped into each other. Note that it usually does not make
sense to pipe into a non-expression, non-function object.

> d1 <- data.frame(x = 1)
> d2 <- data.frame(x = 2)
> tryCatch(
+ d1 %.>% d2,
+ error = function(e) { invisible(cat(format(e))) })
wrapr::apply_right_S4 default called with classes:
d1 data.frame
d2 data.frame
must have a more specific S4 method defined to dispatch

NULL

If one sets a generic signature for apply_right_S4 this can be made a sensible and useful operation.

> setMethod(
+ "apply_right_S4",
+ signature = c("data.frame", "data.frame"),
+ definition = function(pipe_left_arg,
+ pipe_right_arg,
+ pipe_environment,
+ left_arg_name,
+ pipe_string,
+ right_arg_name) {
+ rbind(pipe_left_arg, pipe_right_arg)
+ })
> d1 %.>% d2
x

1 1
2 2

However, the apply_right execution path is only active when the right pipe argument is a name. The
rbind effect would not work if piped directly into a value. The default apply_right implementation
is an S3 dispatch on the right pipe argument.

> d1 %.>% data.frame(x = 2)
x

1 2

In this case data.frame(x = 2) was evaluated an an expression where dot had the value data.frame(x
= 1), which was in turn ignored.

The R Journal Vol. XX/YY, AAAA 20ZZ ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 5

Dot-pipe semantics

We have been describing dot-pipe semantics by introducing transformed code that we consider
equivalent to the dot-pipe pipeline. Think of that as the specification. Dot-pipe’s implementation is
not by code substitution but through execution rules we outline here.

In R, special operators (those written with %) are left to right associative (meaning a %.>% b %.>% c
is taken to mean (a %.>% b) %.>% c) with fairly high operator precedence (meaning they are applied
earlier than some other operators).

The dot-pipe semantics are realized by the following processing rules. a %.>% b is processed as
follows:

Def. If the second or right hand side argument b is not a R language name or other de-referenceable
entity, encased in ‘.()‘ for early evaluation, or has an attribute of the form dotpipe_eager_eval_*
set. we take the “control on right case” (or “R case”). The “R case” involves de-referencing or
evaluating the right-hand side object before further pipe decisions. When the “R case” does
not apply we use the default “control on the left case” (or “L case”). The “L case” emphasizes
holding the right argument unevaluated, which is typical for left to right computation.

L case. S3 dispatch is performed on apply_left(a,b,env,nm), with class(a) being the method-
determining argument, and b an un-evaluated R language object. The default imple-
mentation of apply_left(a,b,env,nm) is . <-a ; eval(b) (performed in the calling
environment).

R case. We evaluate the second or right hand side argument b and then branch as follows.

i. If b is now a function, the value b(a) is returned.
ii. Otherwise, S3 dispatch is performed on apply_right(a,b,env,nm) with class(b) as

the method determining argument. If b is an S4 object, apply_right.default(a,b,env,nm)
in turn dispatches to apply_right_S4(a,b,env,nm).

This may seem involved, but it is in fact quite regular with only one exception: a dereference
triggers right-dispatch. Roughly, the rule is: “treat the second or right hand side argument as an
expression, unless it is a name.” The intent is for dot-pipe to have simple semantics that are capable of
being combined many ways to allow rich emergent behavior.

Comparison with magrittr

The magrittr package supplies a very popular R pipe operators, so it is worth a bit of discussion.

The magrittr package works by capturing entire (possibly more than one step) pipelines un-
evaluated and then inspecting the captured code for its own piping symbols. This can be confirmed
by looking at the implementation and also by attempting to re-name the magrittr pipe.

> library("magrittr")
> 5 %>% sin
[1] -0.9589243

> `%userpipe%` <- magrittr::`%>%`
> tryCatch(
+ 5 %userpipe% sin,
+ error = function(e) {e})
<simpleError in pipes[[i]]: subscript out of bounds>

The wrapr pipe executes by looking only at the arguments it is given, holding the right argument
un-evaluated until the left value is available. Multiple stage wrapr pipes are just an effect of running
stages one after the other.

> `%userpipe%` <- wrapr::`%.>%`
> 5 %userpipe% sin
[1] -0.9589243

There are also differences in how magittr and wrapr handle functions and function arguments.
With magittr, one can not reliably pipe into substitute with %>%. Note that the word value below is
the result, not an input.

> library("magrittr")
> 5 %>% substitute
value

The R Journal Vol. XX/YY, AAAA 20ZZ ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 6

Also, %>% does not work with qualified names unless one uses the more general expression notation
base::sin(.).

> tryCatch(
+ 5 %>% base::sin,
+ error = function(e) {e})
<simpleError in .::base: unused argument (sin)>

In contrast, %.>% behaves closer to common user expectations.

> library("wrapr")
> 5 %.>% substitute
[1] 5

> 5 %.>% base::sin
[1] -0.9589243

Note: the magrittr package can in fact trigger S3 dispatch through its exposition pipe operator,
%$% pipe, but this is only because this operator calls the method with(), which is itself S3 overridable.
So this should not be treated as an intended feature of the magrittr.

Example applications

Both R users and package developers can achieve a great number of useful effects by adding S3
implementations for apply_left() or for apply_right(). Some possibilities include:

• Enabling %.>% as a layering function for ggplot2 (as a replacement for +, as we demonstrated).

• Enabling auto-application of rquery operation trees to data frames (as we demonstrated).

• Enabling auto-application of models by mapping apply_right.model_class to the appropriate
predict method.

> d <- data.frame(x = 1:5, y = c(1, 1, 0, 1, 0))
> model <- glm(y~x, family = binomial, data = d)
> apply_right.glm <-
+ function(pipe_left_arg,
+ pipe_right_arg,
+ pipe_environment,
+ left_arg_name,
+ pipe_string,
+ right_arg_name) {
+ predict(pipe_right_arg,
+ newdata = pipe_left_arg,
+ type = 'response')
+ }
> data.frame(x = c(1, 3)) %.>% model

1 2
0.9428669 0.6508301

Notice we can pipe new data directly into the model for prediction. The S3 apply_right
extensions give us a good opportunity to regularize model predictions functions to take the
same arguments and have the desired default behaviors.

• Enabling pipe notation for SQL.

> # get a database connection
> db = DBI::dbConnect(RSQLite::SQLite(),
+ ":memory:")
> apply_right.SQLiteConnection <-
+ function(pipe_left_arg,
+ pipe_right_arg,
+ pipe_environment,
+ left_arg_name,
+ pipe_string,
+ right_arg_name) {
+ DBI::dbGetQuery(pipe_right_arg, pipe_left_arg)
+ }

The R Journal Vol. XX/YY, AAAA 20ZZ ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 7

> "SELECT * FROM sqlite_temp_master" %.>% db
[1] type name tbl_name rootpage sql
<0 rows> (or 0-length row.names)

Here we piped SQL code directly into the database connection.

• A string concatenation operator.

> apply_left.character <- function(pipe_left_arg,
+ pipe_right_arg,
+ pipe_environment,
+ left_arg_name,
+ pipe_string,
+ right_arg_name) {
+ pipe_right_arg <- eval(pipe_right_arg,
+ envir = pipe_environment,
+ enclos = pipe_environment)
+ paste0(pipe_left_arg, pipe_right_arg)
+ }
> "a" %.>% "b" %.>% "c"
[1] "abc"

One can, of course, define a string concatenation operator directly, but this is a good example of
the use of the dot-pipe as a sort of compound constructor.

• A formula term collector.

> apply_left.formula <- function(pipe_left_arg,
+ pipe_right_arg,
+ pipe_environment,
+ left_arg_name,
+ pipe_string,
+ right_arg_name) {
+ pipe_right_arg <- eval(pipe_right_arg,
+ envir = pipe_environment,
+ enclos = pipe_environment)
+ pipe_right_arg <- paste(pipe_right_arg, collapse = " + ")
+ update(pipe_left_arg, paste(" ~ . +", pipe_right_arg))
+ }
> (y~a) %.>% c("b", "c", "d") %.>% "e"
y ~ a + b + c + d + e

We anticipate motivated package authors can find many special cases that the dot-pipe can
streamline for their users. The value will be when many packages add effects on the same pipe, so
users know by using that pipe they will simultaneously have many powerful features made available.

We have found it profitable to roughly think of apply_left() as a “programmable comma”2 and
apply_right() as “automatic execution” (usually achieved by overriding print()).3

Limitations

There are limitations to the class-driven pipe dispatch approach. The class of the left item (driving
apply_left()) is often uninformative, as in R it will very often be a data frame. The class of the right
item (used by apply_right()) is not available until the right item has been evaluated, which is too late
for the most common pipe effect (evaluating the right item with the left available as dot). However,
the authors feel this system is “more R like” as it leaves more of the execution to the R interpreter and
tries to minimize the pipe operator itself being a type of replacement interpreter implementation.

Conclusion

We have demonstrated a predictable, well-behaved, S3-extensible tool for sequencing or pipe-lining
operations in R. The left-dispatch of apply_left() method is useful in assembling composite structures
such as building a ggplot2 plot up from pieces. The right-dispatch apply_right() is unusual, but a

2In the oft-stated “monads are programmable semicolons” sense, see https://en.wikipedia.org/wiki/Monad_
(functional_programming).

3Obviously these are vague terms, but they convey a usable lesson.

The R Journal Vol. XX/YY, AAAA 20ZZ ISSN 2073-4859

https://en.wikipedia.org/wiki/Monad_(functional_programming)
https://en.wikipedia.org/wiki/Monad_(functional_programming)

CONTRIBUTED RESEARCH ARTICLE 8

natural extension of the “pipes write functions on the right” idea. The goal of dot-pipe is to supply
simple semantics that can be composed into powerful specific applications. The dot-pipe can be used
to extend packages, or to add user desired effects. We would like wrapr dot-pipe to be a testing ground
both for pipe-aware package extensions and for experimenting with the nature of piping in R itself.

Acknowledgments

The authors would like to thank the wrapr users for their feedback. In particular we would like to
thank the R Journal editors and reviewers who contributed a number of important points, including
the idea that S4 evaluation was a good possibility (and the natural way to discuss dispatching on a
right argument).

Bibliography

Z. Arendsee. rmonad: A Monadic Pipeline System, 2017. URL https://CRAN.R-project.org/package=
rmonad. R package version 0.4.0. [p1]

S. M. Bache and H. Wickham. magrittr: A Forward-Pipe Operator for R, 2014. URL https://CRAN.R-
project.org/package=magrittr. R package version 1.5. [p1]

H. Bengtsson. future: Unified Parallel and Distributed Processing in R for Everyone, 2017. URL https:
//CRAN.R-project.org/package=future. R package version 1.6.2. [p1]

C. Brown. backpipe: Backward Pipe Operator, 2016. URL https://CRAN.R-project.org/package=
backpipe. R package version 0.1.8.1. [p1]

M. Dowle and A. Srinivasan. data.table: Extension of ‘data.frame‘, 2017. URL https://CRAN.R-project.
org/package=data.table. R package version 1.10.4-3. [p1]

W. M. Landau. drake: Data Frames in R for Make, 2018. URL https://CRAN.R-project.org/package=
drake. R package version 5.0.0. [p1]

J. Mount. rquery: Relational Query Generator for Data Manipulation, 2018. URL https://CRAN.R-
project.org/package=rquery. R package version 0.3.0. [p3]

J. Mount and N. Zumel. wrapr: Wrap R Functions for Debugging and Parametric Programming, 2018. URL
https://CRAN.R-project.org/package=wrapr. [p1]

K. Ren. pipeR: Multi-Paradigm Pipeline Implementation, 2016. URL https://CRAN.R-project.org/
package=pipeR. R package version 0.6.1.3. [p1]

H. Wickham, R. Francois, L. Henry, and K. Müller. dplyr: A Grammar of Data Manipulation, 2017. URL
https://CRAN.R-project.org/package=dplyr. R package version 0.7.4. [p1]

H. Wickham, W. Chang, L. Henry, T. L. Pedersen, K. Takahashi, C. Wilke, and K. Woo. ggplot2: Create
Elegant Data Visualisations Using the Grammar of Graphics, 2018. URL https://CRAN.R-project.org/
package=ggplot2. R package version 3.0.0. [p2]

John Mount
Win-Vector LLC
552 Melrose Ave., San Francisco CA, 94127
USA
jmount@win-vector.com

Nina Zumel
Win-Vector LLC
552 Melrose Ave., San Francisco CA, 94127
USA
nzumel@win-vector.com

The R Journal Vol. XX/YY, AAAA 20ZZ ISSN 2073-4859

https://CRAN.R-project.org/package=rmonad
https://CRAN.R-project.org/package=rmonad
https://CRAN.R-project.org/package=magrittr
https://CRAN.R-project.org/package=magrittr
https://CRAN.R-project.org/package=future
https://CRAN.R-project.org/package=future
https://CRAN.R-project.org/package=backpipe
https://CRAN.R-project.org/package=backpipe
https://CRAN.R-project.org/package=data.table
https://CRAN.R-project.org/package=data.table
https://CRAN.R-project.org/package=drake
https://CRAN.R-project.org/package=drake
https://CRAN.R-project.org/package=rquery
https://CRAN.R-project.org/package=rquery
https://CRAN.R-project.org/package=wrapr
https://CRAN.R-project.org/package=pipeR
https://CRAN.R-project.org/package=pipeR
https://CRAN.R-project.org/package=dplyr
https://CRAN.R-project.org/package=ggplot2
https://CRAN.R-project.org/package=ggplot2
mailto:jmount@win-vector.com
mailto:nzumel@win-vector.com

	Dot-Pipe: an S3 Extensible Pipe for R
	Introduction
	Pipe notations
	Using ````%.>% to sequence operations
	Extending the sequencer
	Treating names as functions
	Dot-pipe semantics
	Comparison with magrittr
	Example applications
	Limitations
	Conclusion
	Acknowledgments

