Package ‘wordpredictor’

October 8, 2024
Title Develop Text Prediction Models Based on N-Grams
Version 0.0.5

URL https://github.com/pakjiddat/word-predictor,

https://pakjiddat.github.io/word-predictor/

BugReports https://github.com/pakjiddat/word-predictor/issues

Description A framework for developing n-gram models for text prediction.
It provides data cleaning, data sampling, extracting tokens from text,
model generation, model evaluation and word prediction. For information on how n-gram models
work we referred to: * * Speech and Language Processing”
<https://web.archive.org/web/20240919222934/https%3A%2F%2Fweb.stanford.edu%
2F~jurafsky%2Fslp3%2F3.pdf>. For optimizing R code and
using R6 classes we referred to * * Advanced R"
<https://adv-r.hadley.nz/r6.html>. For writing R extensions we referred to
"R Packages", <https://r-pkgs.org/index.html>.

License MIT + file LICENSE

Encoding UTF-8

RoxygenNote 7.3.2

Imports digest, ggplot2, patchwork, stringr, dplyr, SnowballC
Suggests testthat, covr, knitr, rmarkdown, markdown
VignetteBuilder knitr

Language en-US

NeedsCompilation no

Author Nadir Latif [aut, cre] (<https://orcid.org/0000-0002-7543-7405>)
Maintainer Nadir Latif <pakjiddat@gmail.com>
Repository CRAN

Date/Publication 2024-10-08 16:20:02 UTC

https://github.com/pakjiddat/word-predictor
https://pakjiddat.github.io/word-predictor/
https://github.com/pakjiddat/word-predictor/issues
https://web.archive.org/web/20240919222934/https%3A%2F%2Fweb.stanford.edu%2F~jurafsky%2Fslp3%2F3.pdf
https://web.archive.org/web/20240919222934/https%3A%2F%2Fweb.stanford.edu%2F~jurafsky%2Fslp3%2F3.pdf
https://adv-r.hadley.nz/r6.html
https://r-pkgs.org/index.html
https://orcid.org/0000-0002-7543-7405

2 Base

Contents
Base e e 2
DataAnalyzer e e e e 3
DataCleaner e e 9
DataSampler L 13
EnvManager oL e 17
Model e e e 19
ModelEvaluator e 21
ModelGenerator e e e 28
ModelPredictor e e e 31
TokenGenerator e e e e e e e 37
TPGenerator e e 39

Index 43

Base Base class for all other classes
Description

Provides a basic structure for processing text files. Also provides methods for reading and writing
files and objects.

Details

It provides pre-processing, processing and post-processing methods, which need to be overridden
by derived classes.

The pre-processing function is called before reading a file. The process function is called for pro-
cessing a given number of lines. The post processing function is called on the processed data.

Also provides methods for reading and writing text files and R objects. All class methods are
private.

Methods

Public methods:

* Base$new()
* Base$clone()

Method new(): Itinitializes the current object. It is used to set the file name and verbose options.

Usage:
Base$new(fn = NULL, 1lc = 100, ve = 2)

Arguments:

fn The path to the file to clean.
1c The number of lines to read and clean at a time.

DataAnalyzer 3

ve The level of detail in the information messages. Reads the given file one line at a time. It
runs the given pre-processing function before reading the file. It runs the given
Method clone(): The objects of this class are cloneable with this method.
Usage:
Base$clone(deep = FALSE)
Arguments:
deep Whether to make a deep clone.

DataAnalyzer Analyzes input text files and n-gram token files

Description

It provides a method that returns information about text files, such as number of lines and number
of words. It also provides a method that displays bar plots of n-gram frequencies. Additionally it
provides a method for searching for n-grams in a n-gram token file. This file is generated using the
TokenGenerator class.

Details

It provides a method that returns text file information. The text file information includes total
number of lines, max, min and mean line length and file size.

It also provides a method that generates a bar plot showing the most common n-gram tokens.

Another method is provided which returns a list of n-grams that match the given regular expression.

Super class

wordpredictor: :Base -> DataAnalyzer

Methods

Public methods:
e DataAnalyzer$new()
e DataAnalyzer$plot_n_gram_stats()
* DataAnalyzer$get_file_info()
* DataAnalyzer$get_ngrams()
* DataAnalyzer$clone()

Method new(): Itinitializes the current object. It is used to set the file name and verbose options.
Usage:
DataAnalyzers$new(fn = NULL, ve = @)
Arguments:
fn The path to the input file.

DataAnalyzer

ve The level of detail in the information messages.

Method plot_n_gram_stats(): It allows generating two type of n-gram plots. It first reads
n-gram token frequencies from an input text file. The n-gram frequencies are displayed in a bar
plot.

The type of plot is specified by the type option. The type options can have the values "top_features’
or ’coverage’. 'top_features’ displays the top n most occurring tokens along with their frequen-
cies. ‘coverage’ displays the number of words along with their frequencies.

The plot stats are returned as a data frame.

Usage:
DataAnalyzer$plot_n_gram_stats(opts)

Arguments:
opts The options for analyzing the data.
* type. The type of plot to display. The options are: 'top_features’, ’coverage’.

* n. For "top_features’, it is the number of top most occurring tokens. For ’coverage’ it is
the first n frequencies.

 save_to. The graphics devices to save the plot to. NULL implies plot is printed.
e dir. The output directory where the plot will be saved.

Returns: A data frame containing the stats.

Examples:

Start of environment setup code

The level of detail in the information messages

ve <- 0

The name of the folder that will contain all the files. It will be
created in the current directory. NULL value implies tempdir will
be used.

fn <- NULL

The required files. They are default files that are part of the
package

rf <- c("n2.RDS")

An object of class EnvManager is created

em <- EnvManager$new(ve = ve, rp = "./")

The required files are downloaded

ed <- em$setup_env(rf, fn)

End of environment setup code

The n-gram file name
nfn <- paste@(ed, "/n2.RDS")
The DataAnalyzer object is created
da <- DataAnalyzer$new(nfn, ve = ve)
The top features plot is checked
df <- da$plot_n_gram_stats(opts = list(
"type" = "top_features”,
"n" =10,
"save_to" = NULL,
"dir" = ed

DataAnalyzer 5

))

N-gram statistics are displayed

print(df)

The test environment is removed. Comment the below line, so the
files generated by the function can be viewed

em$td_env()

Method get_file_info(): It generates information about text files. It takes as input a file or
a directory containing text files. For each file it calculates the total number of lines, maximum,
minimum and mean line lengths and the total file size. The file information is returned as a data
frame.

Usage:
DataAnalyzer$get_file_info(res)

Arguments:

res The name of a directory or a file name.
Returns: A data frame containing the text file statistics.

Examples:

Start of environment setup code

The level of detail in the information messages

ve <- 0

The name of the folder that will contain all the files. It will be
created in the current directory. NULL implies tempdir will be used
fn <- NULL

The required files. They are default files that are part of the

package

rf <- c("test.txt")

An object of class EnvManager is created

em <- EnvManager$new(ve = ve, rp = "./")

The required files are downloaded

ed <- em$setup_env(rf, fn)

End of environment setup code

The test file name

cfn <- paste@(ed, "/test.txt")

The DataAnalyzer object is created
da <- DataAnalyzer$new(ve = ve)

The file info is fetched

fi <- da$get_file_info(cfn)

The file information is printed
print(fi)

The test environment is removed. Comment the below line, so the
files generated by the function can be viewed
em$td_env()

Method get_ngrams(): It extracts a given number of n-grams and their frequencies from a
n-gram token file.

DataAnalyzer

The prefix parameter specifies the regular expression for matching n-grams. If this parameter is
not specified then the given number of n-grams are randomly chosen.

Usage:
DataAnalyzer$get_ngrams(fn, c¢ = NULL, pre = NULL)

Arguments:
fn The n-gram file name.
¢ The number of n-grams to return.

pre The n-gram prefix, given as a regular expression.

Examples:

Start of environment setup code

The level of detail in the information messages

ve <- 0

The name of the folder that will contain all the files. It will be
created in the current directory. NULL implies tempdir will be used
fn <- NULL

The required files. They are default files that are part of the

package

rf <- c("n2.RDS")

An object of class EnvManager is created

em <- EnvManager$new(ve = ve, rp = "./")

The required files are downloaded

ed <- em$setup_env(rf, fn)

End of environment setup code

The n-gram file name

nfn <- paste@(ed, "/n2.RDS")

The DataAnalyzer object is created

da <- DataAnalyzer$new(nfn, ve = ve)

Bi-grams starting with "and_" are returned

df <- dasget_ngrams(fn = nfn, ¢ = 10, pre = "*and_*")
The data frame is sorted by frequency

df <- dfforder(df$freq, decreasing = TRUE),]

The data frame is printed

print(df)

The test environment is removed. Comment the below line, so the
files generated by the function can be viewed
em$td_env()

Method clone(): The objects of this class are cloneable with this method.

Usage:
DataAnalyzer$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

DataAnalyzer

Examples

B oo
Method ~DataAnalyzer$plot_n_gram_stats”
HHE mm

Start of environment setup code

The level of detail in the information messages

ve <- 0

The name of the folder that will contain all the files. It will be
created in the current directory. NULL value implies tempdir will
be used.

fn <- NULL

The required files. They are default files that are part of the

package

rf <- c("n2.RDS")

An object of class EnvManager is created

em <- EnvManager$new(ve = ve, rp = "./")

The required files are downloaded

ed <- em$setup_env(rf, fn)

End of environment setup code

The n-gram file name

nfn <- paste@(ed, "/n2.RDS")

The DataAnalyzer object is created

da <- DataAnalyzer$new(nfn, ve = ve)

The top features plot is checked

df <- da$plot_n_gram_stats(opts = list(

"type" = "top_features”,

"n" =10,

"save_to" = NULL,

"dir"” = ed
))
N-gram statistics are displayed
print(df)

The test environment is removed. Comment the below line, so the
files generated by the function can be viewed
em$td_env()

o
Method ~DataAnalyzer$get_file_info~
B o

Start of environment setup code

The level of detail in the information messages

ve <- 0

The name of the folder that will contain all the files. It will be
created in the current directory. NULL implies tempdir will be used
fn <- NULL

The required files. They are default files that are part of the

package

rf <- c("test.txt")

An object of class EnvManager is created

DataAnalyzer

em <- EnvManager$new(ve = ve, rp = "./")
The required files are downloaded

ed <- em$setup_env(rf, fn)

End of environment setup code

The test file name

cfn <- paste@(ed, "/test.txt")

The DataAnalyzer object is created
da <- DataAnalyzer$new(ve = ve)

The file info is fetched

fi <- da$get_file_info(cfn)

The file information is printed
print(fi)

The test environment is removed. Comment the below line, so the
files generated by the function can be viewed
em$td_env()

H m o
Method ~DataAnalyzer$get_ngrams=
H m o

Start of environment setup code

The level of detail in the information messages

ve <- 0

The name of the folder that will contain all the files. It will be
created in the current directory. NULL implies tempdir will be used
fn <- NULL

The required files. They are default files that are part of the

package

rf <- c("n2.RDS")

An object of class EnvManager is created

em <- EnvManager$new(ve = ve, rp = "./")

The required files are downloaded

ed <- em$setup_env(rf, fn)

End of environment setup code

The n-gram file name

nfn <- paste@(ed, "/n2.RDS")

The DataAnalyzer object is created

da <- DataAnalyzer$new(nfn, ve = ve)

Bi-grams starting with "and_" are returned

df <- da$get_ngrams(fn = nfn, c = 10, pre = "*and_*")
The data frame is sorted by frequency

df <- df[order(df$freq, decreasing = TRUE),]

The data frame is printed

print(df)

The test environment is removed. Comment the below line, so the
files generated by the function can be viewed
em$td_env()

DataCleaner 9

DataCleaner Provides data cleaning functionality

Description

It provides a memory efficient method for removing unneeded characters from text files. It is
suitable for cleaning large text files.

Details

It provides a method for cleaning text files. It allows removing bad words, stop words, non dic-
tionary words, extra space, punctuation and non-alphabet characters. It also allows conversion to
lower case. It supports large text files.

Super class

wordpredictor: :Base -> DataCleaner

Methods
Public methods:

¢ DataCleaner$new()

e DataCleaner$clean_file()
* DataCleaner$clean_lines()
¢ DataCleaner$clone()

Method new(): Itinitializes the current object. It is used to set the file name and verbose options.

Usage:
DataCleaner$new(fn = NULL, opts = list(), ve = @)

Arguments:
fn The path to the file to clean.
opts The options for data cleaning.
* min_words. The minimum number of words per sentence.
¢ line_count. The number of lines to read and clean at a time.
* save_data. If the combined processed lines should be saved.
* output_file. Name of the output file used to store the data.
» sw_file. The stop words file path.
o dict_file. The dictionary file path.
* bad_file. The bad words file path.
* to_lower. If the words should be converted to lower case.
* remove_stop. If stop words should be removed.
* remove_punct. If punctuation symbols should be removed.
* remove_non_dict. If non dictionary words should be removed.

10

DataCleaner

* remove_non_alpha. -> If non alphabet symbols should be removed.
* remove_extra_space. -> If leading, trailing and double spaces should be removed.
¢ remove_bad. If bad words should be removed

ve The level of detail in the information messages.

Method clean_file(): It provides an efficient method for cleaning text files. It removes
unneeded characters from the given text file with several options.

It allows removing punctuation, bad words, stop words, non-alphabetical symbols and non-dictionary
words. It reads a certain number of lines from the given text file. It removes unneeded characters
from the lines and then saves the lines to an output text file.

File cleaning progress is displayed if the verbose option was set in the class constructor. It is
suitable for cleaning large text files.

Usage:
DataCleaner$clean_file()

Examples:

Start of environment setup code

The level of detail in the information messages

ve <- 0

The name of the folder that will contain all the files. It will be
created in the current directory. NULL implies tempdir will be used
fn <- NULL

The required files. They are default files that are part of the

package

rf <- c("test.txt")

An object of class EnvManager is created

em <- EnvManager$new(ve = ve, rp = "./")

The required files are downloaded

ed <- em$setup_env(rf, fn)

End of environment setup code

The cleaned test file name

cfn <- paste@(ed, "/test-clean.txt")

The test file name

fn <- paste@(ed, "/test.txt")

The data cleaning options

dc_opts <- list("output_file” = cfn)

The data cleaner object is created

dc <- DataCleaner$new(fn, dc_opts, ve = ve)
The sample file is cleaned
dc$clean_file()

The test environment is removed. Comment the below line, so the
files generated by the function can be viewed
em$td_env()

Method clean_lines(): It cleans the given lines of text using the options passed to the current
object.

DataCleaner

Usage:
DataCleaner$clean_lines(lines)

Arguments:
lines The input sentences.

Returns: The cleaned lines of text.

Examples:

The level of detail in the information messages
ve <- 0
Test data is read
1 <= c(
"If you think I'm wrong, send me a link to where it's happened”,
"We're about 9@percent done with this room"”,
"This isn't how I wanted it between us."”,
"Almost any cute breed can become ornamental”,
"Once upon a time there was a kingdom with a castle”,
"That's not a thing any of us are granted'”,
"Why are you being so difficult? she asks.”

)
The expected results
res <- c(
"if you think wrong send me a link to where its happened”,
"were about percent done with this room”,
"this how i wanted it between us",
"almost any cute breed can become ornamental”,
"once upon a time there was a kingdom with a castle”,
"thats not a thing any of us are granted”,
"why are you being so difficult she asks”
)

The DataCleaner object is created
dc <- DataCleaner$new(ve = ve)

The line is cleaned

cl <- dc$clean_lines(l)

The cleaned lines are printed
print(cl)

Method clone(): The objects of this class are cloneable with this method.

Usage:

DataCleaner$clone(deep = FALSE)
Arguments:

deep Whether to make a deep clone.

Examples

#it
#it
#it

Method ~DataCleaner$clean_file”

11

12

DataCleaner

Start of environment setup code

The level of detail in the information messages

ve <- 0

The name of the folder that will contain all the files. It will be
created in the current directory. NULL implies tempdir will be used
fn <- NULL

The required files. They are default files that are part of the

package

rf <- c("test.txt")

An object of class EnvManager is created

em <- EnvManager$new(ve = ve, rp = "./")

The required files are downloaded

ed <- em$setup_env(rf, fn)

End of environment setup code

The cleaned test file name

cfn <- paste@(ed, "/test-clean.txt")

The test file name

fn <- paste@d(ed, "/test.txt")

The data cleaning options

dc_opts <- list("output_file” = cfn)

The data cleaner object is created

dc <- DataCleaner$new(fn, dc_opts, ve = ve)
The sample file is cleaned
dc$clean_file()

The test environment is removed. Comment the below line, so the
files generated by the function can be viewed
em$td_env()

H m o
Method ~DataCleaner$clean_lines”
B m o

The level of detail in the information messages
ve <- 0
Test data is read
1 <= c(
"If you think I'm wrong, send me a link to where it's happened”,
"We're about 90percent done with this room”,
"This isn't how I wanted it between us.",
"Almost any cute breed can become ornamental”,
"Once upon a time there was a kingdom with a castle”,
"That's not a thing any of us are granted'”,
"Why are you being so difficult? she asks.”

)
The expected results
res <- c(

"if you think wrong send me a link to where its happened”,
"were about percent done with this room"”,

"this how i wanted it between us”,

"almost any cute breed can become ornamental”,

"once upon a time there was a kingdom with a castle”,

DataSampler 13

"thats not a thing any of us are granted”,
"why are you being so difficult she asks”

)

The DataCleaner object is created

dc <- DataCleaner$new(ve = ve)

The line is cleaned

cl <- dc$clean_lines(1l)

The cleaned lines are printed

print(cl)

DataSampler Generates data samples from text files

Description

It provides a method for generating training, testing and validation data sets from a given input text
file.

It also provides a method for generating a sample file of given size or number of lines from an input
text file. The contents of the sample file may be cleaned or randomized.

Super class

wordpredictor: :Base -> DataSampler

Methods

Public methods:
* DataSampler$new()
* DataSampler$generate_sample()
* DataSamplers$generate_data()
e DataSampler$clone()

Method new(): Itinitializes the current object. It is used to set the verbose option.

Usage:

DataSampler$new(dir = ".", ve = 0)

Arguments:

dir The directory for storing the input and output files.

ve The level of detail in the information messages.

Method generate_sample(): Generates a sample file of given size from the given input file.
The file is saved to the directory given by the dir object attribute. Once the file has been generated,
its contents may be cleaned or randomized.

Usage:
DataSampler$generate_sample(fn, ss, ic, ir, ofn, is, dc_opts = NULL)

Arguments:

14

DataSampler

fn The input file name. It is the short file name relative to the dir attribute.
ss The number of lines or proportion of lines to sample.

ic If the sample file should be cleaned.

ir If the sample file contents should be randomized.

ofn The output file name. It will be saved to the dir.

is If the sampled data should be saved to a file.

dc_opts The options for cleaning the data.

Examples:

Start of environment setup code

The level of detail in the information messages

ve <- 0

The name of the folder that will contain all the files. It will be
created in the current directory. NULL implies tempdir will be used
fn <- NULL

The required files. They are default files that are part of the

package

rf <- c("input.txt")

An object of class EnvManager is created

em <- EnvManager$new(ve = ve, rp = "./")

The required files are downloaded

ed <- em$setup_env(rf, fn)

End of environment setup code

The sample file name
sfn <- paste@(ed, "/sample.txt")
An object of class DataSampler is created
ds <- DataSampler$new(dir = ed, ve = ve)
The sample file is generated
ds$generate_sample(

fn = "input.txt",

ss = 0.5,

ic = FALSE,

ir = FALSE,

ofn = "sample.txt"”,
is = TRUE

)

The test environment is removed. Comment the below line, so the
files generated by the function can be viewed
em$td_env()

Method generate_data(): It generates training, testing and validation data sets from the given
input file. It first reads the file given as a parameter to the current object. It partitions the data into
training, testing and validation sets, according to the perc parameter. The files are named train.txt,
test.txt and va.txt and are saved to the given output folder.

Usage:
DataSamplers$generate_data(fn, percs)

DataSampler

Arguments:
fn The input file name. It should be relative to the dir attribute.
percs The size of the training, testing and validation sets.

Examples:

Start of environment setup code

The level of detail in the information messages

ve <- 0

The name of the folder that will contain all the files. It will be
created in the current directory. NULL implies tempdir will be
used

fn <- NULL

The required files. They are default files that are part of the
package

rf <- c("input.txt")

An object of class EnvManager is created

em <- EnvManager$new(ve = ve)

The required files are downloaded

ed <- em$setup_env(rf, fn)

End of environment setup code

The files to clean
fns <- c("train”, "test"”, "validate")
An object of class DataSampler is created
ds <- DataSampler$new(dir = ed, ve = ve)
The train, test and validation files are generated
ds$generate_data(
fn = "input.txt",
percs = list(
"train” = 0.8,
"test” = 0.1,
"validate" = 0.1

)

The test environment is removed. Comment the below line, so the
files generated by the function can be viewed
em$td_env()

Method clone(): The objects of this class are cloneable with this method.

Usage:
DataSampler$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Examples

15

16

Method ~DataSampler$generate_sample”
B o

Start of environment setup code

The level of detail in the information messages

ve <- 0

The name of the folder that will contain all the files. It will be
created in the current directory. NULL implies tempdir will be used
fn <- NULL

The required files. They are default files that are part of the

package

rf <- c("input.txt")

An object of class EnvManager is created

em <- EnvManager$new(ve = ve, rp = "./")

The required files are downloaded

ed <- em$setup_env(rf, fn)

End of environment setup code

The sample file name
sfn <- paste@(ed, "/sample.txt")
An object of class DataSampler is created
ds <- DataSampler$new(dir = ed, ve = ve)
The sample file is generated
ds$generate_sample(

fn = "input.txt”,

ss = 0.5,

ic = FALSE,

ir = FALSE,

ofn = "sample.txt",
is = TRUE

The test environment is removed. Comment the below line, so the
files generated by the function can be viewed
em$td_env()

e
Method ~DataSampler$generate_data”
H m o

Start of environment setup code

The level of detail in the information messages

ve <- 0

The name of the folder that will contain all the files. It will be
created in the current directory. NULL implies tempdir will be
used

fn <- NULL

The required files. They are default files that are part of the
package

rf <- c("input.txt")

An object of class EnvManager is created

em <- EnvManager$new(ve = ve)

The required files are downloaded

DataSampler

EnvManager 17

ed <- em$setup_env(rf, fn)
End of environment setup code

The files to clean
fns <- c("train”, "test”, "validate")
An object of class DataSampler is created
ds <- DataSampler$new(dir = ed, ve = ve)
The train, test and validation files are generated
ds$generate_data(
fn = "input.txt”,
percs = list(
"train” = 0.8,
"test" = 0.1,
"validate” = 0.1

)

The test environment is removed. Comment the below line, so the
files generated by the function can be viewed
em$td_env()

EnvManager Allows managing the test environment

Description

This class provides a method for creating directories in the tempdir folder for testing purposes. It
also provides a method for reading files from the inst/extdata folder.

Super class

wordpredictor: :Base -> EnvManager

Methods
Public methods:

* EnvManager$new()

* EnvManagers$get_data_fn()
e EnvManager$remove_files()
* EnvManager$td_env()

* EnvManager$cp_env()

* EnvManager$setup_env()

* EnvManager$clone()

Method new(): It initializes the current object. It simply calls the base class constructor.

Usage:
EnvManager$new(rp = "../../", ve = @)

EnvManager

Arguments:
rp The prefix for accessing the package root folder.
ve The level of detail in the information messages.

Method get_data_fn(): Checks if the given file exists. If it does not exist, then it tries to load
the file from the inst/extdata data folder of the package. It throws an error if the file was not found.
If the file exists, then the method simply returns the file name.

Usage:
EnvManagers$get_data_fn(fn, dfn)
Arguments:

fn The file name.
dfn The name of the default file in the external data folder of the package.

Returns: The name of the file if it exists, or the full path to the default file.

Method remove_files(): Removes all files in the given directory.
Usage:
EnvManagers$remove_files(dn)

Arguments:
dn The directory name.

Method td_env(): Removes the ed folder created by the setup_env method. Also sets the R
option, "ed" to NULL.

Usage:

EnvManager$td_env(rf = F)

Arguments:
rf If the environment folder should be removed.

Method cp_env(): Copies the ed folder created by the setup_env method to inst/extdata.
Usage:
EnvManager$cp_env ()

Method setup_env(): Copies the given files from test folder to the environment folder.
Usage:
EnvManager$setup_env(fns = c(), cf = NULL)

Arguments:

fns The list of test files to copy

cf A custom environment folder. It is a path relative to the current directory. If not specified,
then the tempdir function is used to generate the environment folder.

Returns: The list of folders that can be used during testing.

Method clone(): The objects of this class are cloneable with this method.
Usage:
EnvManager$clone(deep = FALSE)
Arguments:
deep Whether to make a deep clone.

Model 19

Model Represents n-gram models

Description

The Model class represents n-gram models. An instance of the class is a single n-gram model. The
attributes of this class are used to store n-gram model information. The class provides methods for
loading and saving the model.

Details

The attributes of this class are used to store n-gram model information such as model name,
model description, model file name, n-gram size, transition probabilities data, default probabil-
ity for words, data cleaning and tokenization options, word list, model path, data directory path and
performance stats. The model is saved to a single file as a R object.

A model file contains all the information required by the model. The model object is used as input
by classes that perform operations on the model such as evaluation of model performance, text
predictions and comparison of model performance.

Super class

wordpredictor: :Base -> Model

Public fields

pstats The performance stats for the model.
name The model name.

desc The model description.

Methods

Public methods:

* Model$new()

* Model$load_model()
* Model$get_config()
* Model$get_size()

* Model$clone()

Method new(): It initializes the current object. It is used to set the maximum n-gram num-
ber, sample size, input file name, data cleaner options, tokenization options, combined transition
probabilities file name and verbose.

Usage:

Model

Model$new(
name = NULL,
desc = NULL,
fn = NULL,
df = NULL,

n =4,

ssize = 0.3,
dir = "."
dc_opts
tg_opts
ve = 0

1ist(),
list(),

)

Arguments:

name The model name.

desc The model description.

fn The model file name.

df The name of the file used to generate the model.

n The maximum n-gram number supported by the model.
ssize The sample size as a proportion of the input file.
dir The directory containing the model files.

dc_opts The data cleaner options.

tg_opts The token generator options.

ve The level of detail in the information messages.

Method load_model(): It loads the model using the given information
Usage:
Model$load_model ()

Method get_config(): It returns the given configuration data

Usage:
Model$get_config(cn)

Arguments:
cn The name of the required configuration.

Returns: The configuration value.

Method get_size(): It returns the size of the current object. The object size is calculated as
the sum of sizes of the object attributes.

Usage:
Model$get_size()
Returns: The size of the object in bytes.

Method clone(): The objects of this class are cloneable with this method.
Usage:
Model$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

ModelEvaluator 21

ModelEvaluator Evaluates performance of n-gram models

Description
It provides methods for performing extrinsic and intrinsic evaluation of a n-gram model. It also
provides a method for comparing performance of multiple n-gram models.

Intrinsic evaluation is based on calculation of Perplexity. Extrinsic evaluation involves determining
the percentage of correct next word predictions.

Details
Before performing the intrinsic and extrinsic model evaluation, a validation file must be first gener-
ated. This can be done using the DataSampler class.

Each line in the validation file is evaluated. For intrinsic evaluation Perplexity for the line is calcu-
lated. An overall summary of the Perplexity calculations is returned. It includes the min, max and
mean Perplexity.

For extrinsic evaluation, next word prediction is performed on each line. If the actual next word is
one of the three predicted next words, then the prediction is considered to be accurate. The extrinsic
evaluation returns the percentage of correct and incorrect predictions.

Super class

wordpredictor: :Base -> ModelEvaluator

Methods

Public methods:

¢ ModelEvaluator$new()

* ModelEvaluator$compare_performance()
* ModelEvaluator$plot_stats()

* ModelEvaluator$evaluate_performance()
* ModelEvaluator$intrinsic_evaluation()
* ModelEvaluator$extrinsic_evaluation()
* ModelEvaluator$clone()

Method new(): Itinitializes the current object. It is used to set the model file name and verbose
options.

Usage:

ModelEvaluator$new(mf = NULL, ve = 0)

Arguments:

mf The model file name.

ve The level of detail in the information messages.

22

ModelEvaluator

Method compare_performance(): It compares the performance of the models in the given
folder.

The performance of the model is compared for the 4 metric which are time taken, memory used,
Perplexity and accuracy. The performance comparison is displayed on plots.

4 plots are displayed. One for each performance metric. A fifth plot shows the variation of
Perplexity with accuracy. All 5 plots are plotted on one page.

Usage:
ModelEvaluator$compare_performance(opts)

Arguments:

opts The options for comparing model performance.
 save_to. The graphics device to save the plot to. NULL implies plot is printed.
o dir. The directory containing the model file, plot and stats.

Examples:

Start of environment setup code
The level of detail in the information messages
ve <- 0
The name of the folder that will contain all the files. It will be
created in the current directory. NULL implies tempdir will be
used.
fn <- NULL
The required files. They are default files that are part of the
package
rf <- c("def-model.RDS")
An object of class EnvManager is created
em <- EnvManager$new(ve = ve, rp = "./")
The required files are downloaded
ed <- em$setup_env(rf, fn)
End of environment setup code
ModelEvaluator class object is created
me <- ModelEvaluator$new(ve = ve)
The performance evaluation is performed
me$compare_performance(opts = list(
"save_to" = NULL,
"dir" = ed

))

The test environment is removed. Comment the below line, so the
files generated by the function can be viewed
em$td_env()

Method plot_stats(): It plots the given stats on 5 plots. The plots are displayed on a single
page.
The 4 performance metrics which are time taken, memory, Perplexity and accuracy are plotted
against the model name. Another plot compares Perplexity with accuracy for each model.
Usage:
ModelEvaluator$plot_stats(data)

ModelEvaluator 23

Arguments:
data The data to plot

Returns: The ggplot object is returned.

Method evaluate_performance(): It performs intrinsic and extrinsic evaluation for the given
model and validation text file. The given number of lines in the validation file are used in the
evaluation

It performs two types of evaluations. One is intrinsic evaluation, based on Perplexity, the other is
extrinsic evaluation based on accuracy.

It returns the results of evaluation. 4 evaluation metrics are returned. Perplexity, accuracy, mem-
ory and time taken. Memory is the size of the model object. Time taken is the time needed for
performing both evaluations.

The results of the model evaluation are saved within the model object and also returned.

Usage:
ModelEvaluator$evaluate_performance(lc, fn)

Arguments:
1c The number of lines of text in the validation file to be used for the evaluation.

fn The name of the validation file. If it does not exist, then the default file validation-clean.txt
is checked in the models folder

Returns: The performance stats are returned.

Examples:

Start of environment setup code

The level of detail in the information messages

ve <- 0

The name of the folder that will contain all the files. It will be
created in the current directory. NULL implies tempdir will be used
fn <- NULL

The required files. They are default files that are part of the

package

rf <- c("def-model.RDS", "validate-clean.txt")

An object of class EnvManager is created

em <- EnvManager$new(ve = ve, rp = "./")

The required files are downloaded

ed <- em$setup_env(rf, fn)

End of environment setup code

The model file name

mfn <- paste@(ed, "/def-model.RDS")

The validation file name

vfn <- paste@(ed, "/validate-clean.txt")

ModelEvaluator class object is created

me <- ModelEvaluator$new(mf = mfn, ve = ve)

The performance evaluation is performed

stats <- me$evaluate_performance(lc = 20, fn = vfn)
The evaluation stats are printed

24

ModelEvaluator

print(stats)

The test environment is removed. Comment the below line, so the
files generated by the function can be viewed
em$td_env()

Method intrinsic_evaluation(): Evaluates the model using intrinsic evaluation based on
Perplexity. The given number of sentences are taken from the validation file. For each sentence,
the Perplexity is calculated.

Usage:
ModelEvaluator$intrinsic_evaluation(lc, fn)

Arguments:
1c The number of lines of text in the validation file to be used for the evaluation.

fn The name of the validation file. If it does not exist, then the default file validation-clean.txt
is checked in the models folder

Returns: The min, max and mean Perplexity score.

Examples:

Start of environment setup code

The level of detail in the information messages

ve <- 0

The name of the folder that will contain all the files. It will be
created in the current directory. NULL implies tempdir will be used
fn <- NULL

The required files. They are default files that are part of the

package

rf <- c("def-model.RDS", "validate-clean.txt")

An object of class EnvManager is created

em <- EnvManager$new(ve = ve, rp = "./")

The required files are downloaded

ed <- em$setup_env(rf, fn)

End of environment setup code

The model file name

mfn <- paste@(ed, "/def-model.RDS")

The validation file name

vfn <- paste@(ed, "/validate-clean.txt"”)

ModelEvaluator class object is created

me <- ModelEvaluator$new(mf = mfn, ve = ve)

The intrinsic evaluation is performed

stats <- me$intrinsic_evaluation(lc = 20, fn = vfn)
The evaluation stats are printed

print(stats)

The test environment is removed. Comment the below line, so the
files generated by the function can be viewed
em$td_env()

ModelEvaluator 25

Method extrinsic_evaluation(): Evaluates the model using extrinsic evaluation based on
Accuracy. The given number of sentences are taken from the validation file.

For each sentence, the model is used to predict the next word. The accuracy stats are returned. A
prediction is considered to be correct if one of the predicted words matches the actual word.

Usage:

ModelEvaluator$extrinsic_evaluation(lc, fn)

Arguments:

1c The number of lines of text in the validation file to be used for the evaluation.
fn The name of the validation file.

Returns: The number of correct and incorrect predictions.

Examples:

Start of environment setup code

The level of detail in the information messages

ve <- 0

The name of the folder that will contain all the files. It will be
created in the current directory. NULL implies tempdir will be used
fn <- NULL

The required files. They are default files that are part of the

package

rf <- c("def-model.RDS", "validate-clean.txt")

An object of class EnvManager is created

em <- EnvManager$new(ve = ve, rp = "./")

The required files are downloaded

ed <- em$setup_env(rf, fn)

End of environment setup code

The model file name

mfn <- paste@(ed, "/def-model.RDS")

The validation file name

vfn <- paste@(ed, "/validate-clean.txt")

ModelEvaluator class object is created

me <- ModelEvaluator$new(mf = mfn, ve = ve)

The intrinsic evaluation is performed

stats <- me$extrinsic_evaluation(lc = 100, fn = vfn)
The evaluation stats are printed

print(stats)

The test environment is removed. Comment the below line, so the
files generated by the function can be viewed
em$td_env()

Method clone(): The objects of this class are cloneable with this method.
Usage:
ModelEvaluator$clone(deep = FALSE)
Arguments:
deep Whether to make a deep clone.

26 ModelEvaluator

Examples

B oo
Method “ModelEvaluator$compare_performance”
HHE mm

Start of environment setup code
The level of detail in the information messages
ve <- 0
The name of the folder that will contain all the files. It will be
created in the current directory. NULL implies tempdir will be
used.
fn <- NULL
The required files. They are default files that are part of the
package
rf <- c("def-model.RDS")
An object of class EnvManager is created
em <- EnvManager$new(ve = ve, rp = "./")
The required files are downloaded
ed <- em$setup_env(rf, fn)
End of environment setup code
ModelEvaluator class object is created
me <- ModelEvaluator$new(ve = ve)
The performance evaluation is performed
me$compare_performance(opts = list(
"save_to" = NULL,
"dir" = ed

)

The test environment is removed. Comment the below line, so the
files generated by the function can be viewed
em$td_env()

B m o
Method “ModelEvaluator$evaluate_performance=
B m o

Start of environment setup code

The level of detail in the information messages

ve <- 0

The name of the folder that will contain all the files. It will be
created in the current directory. NULL implies tempdir will be used
fn <- NULL

The required files. They are default files that are part of the

package

rf <- c("def-model.RDS", "validate-clean.txt")

An object of class EnvManager is created

em <- EnvManager$new(ve = ve, rp = "./")

The required files are downloaded

ed <- em$setup_env(rf, fn)

End of environment setup code

The model file name

ModelEvaluator 27

mfn <- paste@(ed, "/def-model.RDS")
The validation file name
vfn <- paste@(ed, "/validate-clean.txt")

ModelEvaluator class object is created

me <- ModelEvaluator$new(mf = mfn, ve = ve)

The performance evaluation is performed

stats <- me$evaluate_performance(lc = 20, fn = vfn)
The evaluation stats are printed

print(stats)

The test environment is removed. Comment the below line, so the
files generated by the function can be viewed
em$td_env()

H m o
Method ~ModelEvaluator$intrinsic_evaluation®
e e e

Start of environment setup code

The level of detail in the information messages

ve <- 0

The name of the folder that will contain all the files. It will be
created in the current directory. NULL implies tempdir will be used
fn <- NULL

The required files. They are default files that are part of the

package

rf <- c("def-model.RDS", "validate-clean.txt")

An object of class EnvManager is created

em <- EnvManager$new(ve = ve, rp = "./")

The required files are downloaded

ed <- em$setup_env(rf, fn)

End of environment setup code

The model file name

mfn <- paste@(ed, "/def-model.RDS")

The validation file name

vfn <- paste@(ed, "/validate-clean.txt")

ModelEvaluator class object is created

me <- ModelEvaluator$new(mf = mfn, ve = ve)

The intrinsic evaluation is performed

stats <- me$intrinsic_evaluation(lc = 20, fn = vfn)
The evaluation stats are printed

print(stats)

The test environment is removed. Comment the below line, so the
files generated by the function can be viewed
em$td_env()

B m o
Method ~ModelEvaluator$extrinsic_evaluation”
B m o

28 ModelGenerator

Start of environment setup code

The level of detail in the information messages

ve <- 0

The name of the folder that will contain all the files. It will be
created in the current directory. NULL implies tempdir will be used
fn <- NULL

The required files. They are default files that are part of the

package

rf <- c("def-model.RDS", "validate-clean.txt")

An object of class EnvManager is created

em <- EnvManager$new(ve = ve, rp = "./")

The required files are downloaded

ed <- em$setup_env(rf, fn)

End of environment setup code

The model file name

mfn <- paste@(ed, "/def-model.RDS")

The validation file name

vfn <- paste@(ed, "/validate-clean.txt")

ModelEvaluator class object is created

me <- ModelEvaluator$new(mf = mfn, ve = ve)

The intrinsic evaluation is performed

stats <- me$extrinsic_evaluation(lc = 100, fn = vfn)
The evaluation stats are printed

print(stats)

The test environment is removed. Comment the below line, so the
files generated by the function can be viewed
em$td_env()

ModelGenerator Generates n-gram models from a text file

Description
It provides a method for generating n-gram models. The n-gram models may be customized by
specifying data cleaning and tokenization options.

Details

It provides a method that generates a n-gram model. The n-gram model may be customized by
specifying the data cleaning and tokenization options.

The data cleaning options include removal of punctuation, stop words, extra space, non-dictionary
words and bad words. The tokenization options include n-gram number and word stemming.

Super class

wordpredictor: :Base -> ModelGenerator

ModelGenerator

Methods

Public methods:
* ModelGenerator$new()
* ModelGenerator$generate_model()
* ModelGenerator$clone()

29

Method new(): It initializes the current object. It is used to set the maximum n-gram number,

sample size, input file name, data cleaner options, tokenization options and verbose option.

Usage:
ModelGenerator$new(

name = NULL,

desc = NULL,

fn = NULL,

df = NULL,

n =4,

ssize = 0.3,

dir = "."

dc_opts = list(),
tg_opts = list(),
ve = 0@
)
Arguments:
name The model name.
desc The model description.
fn The model file name.

df The path of the input text file. It should be the short file name and should be present in the

data directory.
n The n-gram size of the model.
ssize The sample size as a proportion of the input file.
dir The directory containing the input and output files.
dc_opts The data cleaner options.
tg_opts The token generator options.
ve The level of detail in the information messages.

Method generate_model(): It generates the model using the parameters passed to the object’s

constructor. It generates a n-gram model file and saves it to the model directory.

Usage:
ModelGenerator$generate_model ()

Examples:

Start of environment setup code

The level of detail in the information messages

ve <- 0

The name of the folder that will contain all the files. It will be
created in the current directory. NULL implies tempdir will be used

ModelGenerator

Comment the below line, so the

30
fn <- NULL
The required files. They are default files that are part of the
package
rf <- c("input.txt")
An object of class EnvManager is created
em <- EnvManager$new(ve = ve, rp = "./")
The required files are downloaded
ed <- em$setup_env(rf, fn)
End of environment setup code
ModelGenerator class object is created
mg <- ModelGenerator$new(
name = "default-model”,
desc = "1 MB size and default options”,
fn = "def-model.RDS",
df = "input.txt",
n =4,
ssize = 0.99,
dir = ed,
dc_opts = list(),
tg_opts = list(),
ve = ve
)
The n-gram model is generated
mg$generate_model ()
The test environment is removed.
files generated by the function can be viewed
em$td_env()
Method clone(): The objects of this class are cloneable with this method.
Usage:
ModelGenerator$clone(deep = FALSE)
Arguments:
deep Whether to make a deep clone.
Examples
e L e

Method ~ModelGenerator$generate_model~

e

Start of environment setup code

The level of detail in the information messages

ve <- 0

The name of the folder that will contain all the files.
created in the current directory. NULL implies tempdir will be used

fn <- NULL

It will be

The required files. They are default files that are part of the

ModelPredictor

package

rf <- c("input.txt")
An object of class EnvManager is created
em <- EnvManager$new(ve = ve, rp = "./")

The required files are downloaded

ed <- em$setup_env(rf, fn)
End of environment setup code

31

ModelGenerator class object is created
mg <- ModelGenerator$new(

)

name = "default-model”,

desc = "1 MB size and default options”,

fn = "def-model.RDS",
df = "input.txt",

n =4,

ssize = 0.99,

dir = ed,

dc_opts = list(),
tg_opts = list(),

ve = ve

The n-gram model is generated
mg$generate_model ()

The test environment is removed.

Comment the below line, so the

files generated by the function can be viewed
em$td_env()

ModelPredictor

Allows predicting text, calculating word probabilities and Perplexity

Description

It provides a method for predicting the new word given a set of previous words. It also provides a
method for calculating the Perplexity score for a set of words. Furthermore it provides a method for
calculating the probability of a given word and set of previous words.

Super class

wordpredictor: :Base ->ModelPredictor

Methods

Public methods:

¢ ModelPredictor$new()

¢ ModelPredictor$get_model ()

* ModelPredictor$calc_perplexity()

* ModelPredictor$predict_word()

32

ModelPredictor

* ModelPredictor$get_word_prob()
¢ ModelPredictor$clone()

Method new(): It initializes the current object. It is used to set the model file name and verbose
options.

Usage:

ModelPredictor$new(mf, ve = @)

Arguments:
mf The model file name.
ve The level of detail in the information messages.

Method get_model(): Returns the Model class object.

Usage:
ModelPredictor$get_model ()

Returns: The Model class object is returned.

Method calc_perplexity(): The Perplexity for the given sentence is calculated. For each
word, the probability of the word given the previous words is calculated. The probabilities are
multiplied and then inverted. The nth root of the result is the perplexity, where n is the number
of words in the sentence. If the stem_words tokenization option was specified when creating the
given model file, then the previous words are converted to their stems.

Usage:
ModelPredictor$calc_perplexity(words)

Arguments:

words The list of words.
Returns: The perplexity of the given list of words.

Examples:

Start of environment setup code

The level of detail in the information messages

ve <- 0

The name of the folder that will contain all the files. It will be
created in the current directory. NULL implies tempdir will be used
fn <- NULL

The required files. They are default files that are part of the

package

rf <- c("def-model.RDS")

An object of class EnvManager is created

em <- EnvManager$new(ve = ve, rp = "./")

The required files are downloaded

ed <- em$setup_env(rf, fn)

End of environment setup code

The model file name
mfn <- paste@(ed, "/def-model.RDS")
ModelPredictor class object is created

ModelPredictor 33

mp <- ModelPredictor$new(mf = mfn, ve = ve)

The sentence whoose Perplexity is to be calculated

<- "last year at this time i was preparing for a trip to rome”
The line is split in to words

<- strsplit(l, " ")L[1]]

The Perplexity of the sentence is calculated

<- mp$calc_perplexity(w)

The sentence Perplexity is printed

print(p)

The test environment is removed. Comment the below line, so the
files generated by the function can be viewed

em$td_env()

H T & = &+ HF

Method predict_word(): Predicts the next word given a list of previous words. It checks the
last n previous words in the transition probabilities data, where n is equal to 1 - n-gram size of
model. If there is a match, the top 3 next words with highest probabilities are returned. If there
is no match, then the last n-1 previous words are checked. This process is continued until the
last word is checked. If there is no match, then empty result is returned. The given words may
optionally be stemmed.

Usage:
ModelPredictor$predict_word(words, count = 3, dc = NULL)

Arguments:

words A character vector of previous words or a single vector containing the previous word
text.

count The number of results to return.
dc A DataCleaner object. If it is given, then the given words

Returns: The top 3 predicted words along with their probabilities.

Examples:

Start of environment setup code

The level of detail in the information messages

ve <- 0

The name of the folder that will contain all the files. It will be
created in the current directory. NULL implies tempdir will be used
fn <- NULL

The required files. They are default files that are part of the

package

rf <- c("def-model.RDS")

An object of class EnvManager is created

em <- EnvManager$new(ve = ve, "rp” = "./")

The required files are downloaded

ed <- em$setup_env(rf, fn)

End of environment setup code

The model file name
mfn <- paste@(ed, "/def-model.RDS")
ModelPredictor class object is created

34

mp <- ModelPredictor$new(mf = mfn, ve = ve)
The next word is predicted

nws <- mp$predict_word("today is"”, count =
The predicted next words are printed
print(nws)

10)

ModelPredictor

The test environment is removed. Comment the below line, so the

files generated by the function can be viewed

em$td_env()

Method get_word_prob(): Calculates the probability of the given word given the previous
words. The last n words are converted to numeric hash using digest2int function. All other words
are ignored. n is equal to 1 - size of the n-gram model. The hash is looked up in a data frame
of transition probabilities. The last word is converted to a number by checking its position in a
list of unique words. If the hash and the word position were found, then the probability of the
previous word and hash is returned. If it was not found, then the hash of the n-1 previous words
is taken and the processed is repeated. If the data was not found in the data frame, then the word
probability is returned. This is known as back-off. If the word probability could not be found then
the default probability is returned. The default probability is calculated as 1/(N+V), Where N =

number of words in corpus and V is the number of dictionary words.

Usage:

ModelPredictor$get_word_prob(word, pw)
Arguments:

word The word whose probability is to be calculated.
pw The previous words.

Returns: The probability of the word given the previous words.

Examples:

Start of environment setup code

The level of detail in the information messages

ve <- 0

The name of the folder that will contain all the files.

It will be

created in the current directory. NULL implies tempdir will be used

fn <- NULL

The required files. They are default files that are part of the

package

rf <- c("def-model.RDS")

An object of class EnvManager is created
em <- EnvManager$new(ve = ve, "rp” = "./")
The required files are downloaded

ed <- em$setup_env(rf, fn)

End of environment setup code

The model file name

mfn <- paste@(ed, "/def-model.RDS")

ModelPredictor class object is created
mp <- ModelPredictor$new(mf = mfn, ve = ve)

The probability that the next word is "you" given the prev words

ModelPredictor

"how" and "are"

prob <- mp$get_word_prob(word = "you", pw = c("how", "are"))
The probability is printed

print(prob)

The test environment is removed. Comment the below line, so the
files generated by the function can be viewed
em$td_env()

Method clone(): The objects of this class are cloneable with this method.

Usage:
ModelPredictor$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Examples

B m oo
Method “ModelPredictor$calc_perplexity”
Y m o m

Start of environment setup code

The level of detail in the information messages

ve <- 0

The name of the folder that will contain all the files. It will be
created in the current directory. NULL implies tempdir will be used
fn <- NULL

The required files. They are default files that are part of the

package

rf <- c("def-model.RDS")

An object of class EnvManager is created

em <- EnvManager$new(ve = ve, rp = "./")

The required files are downloaded

ed <- em$setup_env(rf, fn)

End of environment setup code

The model file name

mfn <- paste@(ed, "/def-model.RDS")

ModelPredictor class object is created

mp <- ModelPredictor$new(mf = mfn, ve = ve)

The sentence whoose Perplexity is to be calculated

<- "last year at this time i was preparing for a trip to rome”
The line is split in to words

<- strsplit(l, " ")C[1]]

The Perplexity of the sentence is calculated

<- mp$calc_perplexity(w)

The sentence Perplexity is printed

print(p)

The test environment is removed. Comment the below line, so the
files generated by the function can be viewed

em$td_env()

* T s o

35

36

et
Method ~ModelPredictor$predict_word™
B m o

Start of environment setup code

The level of detail in the information messages

ve <- 0@

The name of the folder that will contain all the files. It will be
created in the current directory. NULL implies tempdir will be used
fn <- NULL

The required files. They are default files that are part of the

package

rf <- c("def-model.RDS")

An object of class EnvManager is created

em <- EnvManager$new(ve = ve, "rp" = "./")

The required files are downloaded

ed <- em$setup_env(rf, fn)

End of environment setup code

The model file name

mfn <- paste@(ed, "/def-model.RDS")

ModelPredictor class object is created

mp <- ModelPredictor$new(mf = mfn, ve = ve)

The next word is predicted

nws <- mp$predict_word("today is"”, count = 10)
The predicted next words are printed
print(nws)

The test environment is removed. Comment the below line, so the
files generated by the function can be viewed
em$td_env()

oo
Method ~ModelPredictor$get_word_prob”
B oo

Start of environment setup code

The level of detail in the information messages

ve <- 0

The name of the folder that will contain all the files. It will be
created in the current directory. NULL implies tempdir will be used
fn <- NULL

The required files. They are default files that are part of the

package

rf <- c("def-model.RDS")

An object of class EnvManager is created

em <- EnvManager$new(ve = ve, "rp” = "./")

The required files are downloaded

ed <- em$setup_env(rf, fn)

End of environment setup code

The model file name

ModelPredictor

TokenGenerator 37

mfn <- paste@(ed, "/def-model.RDS")

ModelPredictor class object is created

mp <- ModelPredictor$new(mf = mfn, ve = ve)

The probability that the next word is "you"” given the prev words
"how" and "are”

prob <- mp$get_word_prob(word = "you", pw = c("how", "are"))

The probability is printed

print(prob)

The test environment is removed. Comment the below line, so the
files generated by the function can be viewed
em$td_env()

TokenGenerator Generates n-grams from text files

Description

It generates n-gram tokens along with their frequencies. The data may be saved to a file in plain
text format or as a R object.

Super class

wordpredictor: :Base -> TokenGenerator

Methods
Public methods:

* TokenGenerator$new()
* TokenGenerators$generate_tokens()
¢ TokenGenerator$clone()

Method new(): It initializes the current obj. It is used to set the file name, tokenization options
and verbose option.

Usage:

TokenGenerator$new(fn = NULL, opts = list(), ve = 0)

Arguments:
fn The path to the input file.
opts The options for generating the n-gram tokens.
* n. The n-gram size.
» save_ngrams. If the n-gram data should be saved.
* min_freq. All n-grams with frequency less than min_freq are ignored.
* line_count. The number of lines to process at a time.
» stem_words. If words should be transformed to their stems.
e dir. The dir where the output file should be saved.

TokenGenerator

» format. The format for the output. There are two options.
— plain. The data is stored in plain text.
— obj. The data is stored as a R obj.
ve The level of detail in the information messages.

Method generate_tokens(): It generates n-gram tokens and their frequencies from the given
file name. The tokens may be saved to a text file as plain text or a R object.

Usage:
TokenGenerator$generate_tokens()

Returns: The data frame containing n-gram tokens along with their frequencies.

Examples:

Start of environment setup code

The level of detail in the information messages

ve <- 0

The name of the folder that will contain all the files. It will be
created in the current directory. NULL implies tempdir will be used
fn <- NULL

The required files. They are default files that are part of the

package

rf <- c("test-clean.txt")

An object of class EnvManager is created

em <- EnvManager$new(ve = ve, rp = "./")

The required files are downloaded

ed <- em$setup_env(rf, fn)

End of environment setup code

The n-gram size

n <-4

The test file name

tfn <- paste@(ed, "/test-clean.txt")

The n-gram number is set

tg_opts <- list("n” = n, "save_ngrams” = TRUE, "dir" = ed)
The TokenGenerator object is created

tg <- TokenGenerator$new(tfn, tg_opts, ve = ve)

The n-gram tokens are generated

tg$generate_tokens()

The test environment is removed. Comment the below line, so the
files generated by the function can be viewed
em$td_env()

Method clone(): The objects of this class are cloneable with this method.
Usage:
TokenGenerator$clone(deep = FALSE)
Arguments:

deep Whether to make a deep clone.

TPGenerator 39

Examples

H m o
Method ~TokenGenerator$generate_tokens”
B m o

Start of environment setup code

The level of detail in the information messages

ve <- 0

The name of the folder that will contain all the files. It will be
created in the current directory. NULL implies tempdir will be used
fn <- NULL

The required files. They are default files that are part of the

package

rf <- c("test-clean.txt")

An object of class EnvManager is created

em <- EnvManager$new(ve = ve, rp = "./")

The required files are downloaded

ed <- em$setup_env(rf, fn)

End of environment setup code

The n-gram size

n <-4

The test file name

tfn <- paste@(ed, "/test-clean.txt")

The n-gram number is set

tg_opts <- list("n” = n, "save_ngrams" = TRUE, "dir" = ed)
The TokenGenerator object is created

tg <- TokenGenerator$new(tfn, tg_opts, ve = ve)

The n-gram tokens are generated

tg$generate_tokens()

The test environment is removed. Comment the below line, so the
files generated by the function can be viewed
em$td_env()

TPGenerator Generates transition probabilities for n-grams

Description

It provides a method for generating transition probabilities for the given n-gram size. It also provides
a method for generating the combined transition probabilities data for n-gram sizes from 1 to the
given size. The combined transition probabilities data can be used to implement back-off.

Details

It provides a method for generating n-gram transition probabilities. It reads n-gram frequencies
from an input text file that is generated by the TokenGenerator class.

40

TPGenerator

It parses each n-gram into a prefix, a next word, the next word frequency and the next word proba-
bility. Maximum Likelihood count is used to generate the next word probabilities.

Each n-gram prefix is converted to a numeric hash using the digest2int function. The next word is
replaced with the position of the next word in the list of all words. The transition probabilities data
is stored as a dataframe in a file.

Another method is provided that combines the transition probabilities for n-grams of size 1 to the
given size. The combined transition probabilities can be saved to a file as a data frame. This file may
be regarded as a completed self contained n-gram model. By combining the transition probabilities
of n-grams, back-off may be used to evaluate word probabilities or predict the next word.

Super class

wordpredictor: :Base -> TPGenerator

Methods

Public methods:

e TPGenerator$new()

* TPGenerators$generate_tp()

* TPGenerator$generate_tp_for_n()
* TPGenerator$clone()

Method new(): It initializes the current obj. It is used to set the transition probabilities options
and verbose option.

Usage:

TPGenerator$new(opts = list(), ve = 0)

Arguments:
opts The options for generating the transition probabilities.
 save_tp. If the data should be saved.
* n. The n-gram size.
¢ dir. The directory containing the input and output files.
 format. The format for the output. There are two options.
— plain. The data is stored in plain text.
— obj. The data is stored as a R obj.
ve The level of detail in the information messages.

Method generate_tp(): It first generates the transition probabilities for each n-gram of size
from 1 to the given size. The transition probabilities are then combined into a single data frame
and saved to the output folder that is given as parameter to the current object.

By combining the transition probabilities for all n-gram sizes from 1 to n, back-off can be used to
calculate next word probabilities or predict the next word.

Usage:
TPGenerators$generate_tp()

Examples:

TPGenerator 41

Start of environment setup code

The level of detail in the information messages

ve <- 0

The name of the folder that will contain all the files. It will be
created in the current directory. NULL implies tempdir will be used
fn <- NULL

The required files. They are default files that are part of the

package

rf <- ¢("n1.RDS”, "n2.RDS”, "n3.RDS”", "n4.RDS")

An object of class EnvManager is created

em <- EnvManager$new(ve = ve, rp = "./")

The required files are downloaded

ed <- em$setup_env(rf, fn)

End of environment setup code

The list of output files
fns <- c("words”, "model-4", "tp2", "tp3", "tp4")

The TPGenerator object is created

tp <- TPGenerator$new(opts = list(n = 4, dir = ed), ve = ve)
The combined transition probabilities are generated
tp$generate_tp()

The test environment is removed. Comment the below line, so the
files generated by the function can be viewed
em$td_env()

Method generate_tp_for_n(): It generates the transition probabilities table for the given n-
gram size. It first reads n-gram token frequencies from an input text file.

It then generates a data frame whose columns are the n-gram prefix, next word and next word
frequency. The data frame may be saved to a file as plain text or as a R obj. If n = 1, then the list
of words is saved.

Usage:
TPGenerator$generate_tp_for_n(n)

Arguments:

n The n-gram size for which the tp data is generated.

Method clone(): The objects of this class are cloneable with this method.

Usage:
TPGenerator$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Examples

et et e
Method ~TPGenerator$generate_tp~

42

TPGenerator

Start of environment setup code

The level of detail in the information messages

ve <- 0@

The name of the folder that will contain all the files. It will be
created in the current directory. NULL implies tempdir will be used
fn <- NULL

The required files. They are default files that are part of the

package

rf <- ¢("n1.RDS", "n2.RDS”, "n3.RDS", "n4.RDS")

An object of class EnvManager is created

em <- EnvManager$new(ve = ve, rp = "./")

The required files are downloaded

ed <- em$setup_env(rf, fn)

End of environment setup code

The list of output files
fns <- c("words"”, "model-4", "tp2", "tp3", "tp4")

The TPGenerator object is created

tp <- TPGenerator$new(opts = list(n = 4, dir = ed), ve = ve)
The combined transition probabilities are generated
tp$generate_tp()

The test environment is removed. Comment the below line, so the
files generated by the function can be viewed
em$td_env()

Index

Base, 2

DataAnalyzer, 3
DataCleaner, 9
DataSampler, 13

EnvManager, 17

Model, 19

ModelEvaluator, 21
ModelGenerator, 28
ModelPredictor, 31

TokenGenerator, 37
TPGenerator, 39

wordpredictor::Base, 3,9, 13,17, 19, 21,
28,31, 37,40

43

	Base
	DataAnalyzer
	DataCleaner
	DataSampler
	EnvManager
	Model
	ModelEvaluator
	ModelGenerator
	ModelPredictor
	TokenGenerator
	TPGenerator
	Index

