Package ‘ver’

March 10, 2025
Title Record 'HTTP' Calls to Disk

Description Record test suite ' HTTP' requests and replays them during
future runs. A port of the Ruby gem of the same name
(<https://github.com/vcr/ver/>). Works by hooking into the 'webmockr'
R package for matching 'HTTP' requests by various rules (‘(HTTP' method,
'URL', query parameters, headers, body, etc.), and then caching
real ' HTTP' responses on disk in 'cassettes'. Subsequent 'HTTP' requests
matching any previous requests in the same 'cassette’ use a cached
'HTTP' response.

Version 1.7.0

URL https://github.com/ropensci/vcr/,
https://books.ropensci.org/http-testing/,

https://docs.ropensci.org/vcr/

BugReports https://github.com/ropensci/vcr/issues
License MIT + file LICENSE

Encoding UTF-8

Language en-US

LazyData true

VignetteBuilder knitr

Imports crul (>= 0.8.4), httr, httr2, webmockr (>= 0.8.0), urltools,
yaml, R6, base64enc, rprojroot

Suggests roxygen2 (>=7.2.1), jsonlite, testthat, knitr, rmarkdown,
desc, crayon, cli, curl, withr, webfakes

X-schema.org-applicationCategory Web

X-schema.org-keywords http, https, API, web-services, curl, mock,
mocking, http-mocking, testing, testing-tools, tdd

X-schema.org-isPartOf https://ropensci.org
RoxygenNote 7.3.2

NeedsCompilation no

https://github.com/vcr/vcr/
https://github.com/ropensci/vcr/
https://books.ropensci.org/http-testing/
https://docs.ropensci.org/vcr/
https://github.com/ropensci/vcr/issues

2 as.cassette
Author Scott Chamberlain [aut, cre] (<https://orcid.org/0000-0003-1444-9135>),
Aaron Wolen [aut] (<https://orcid.org/0000-0003-2542-2202>),
Magélle Salmon [aut] (<https://orcid.org/0000-0002-2815-0399>),
Daniel Possenriede [aut] (<https://orcid.org/0000-0002-6738-9845>),
rOpenSci [fnd] (019jywm96)
Maintainer Scott Chamberlain <myrmecocystus@gmail.com>
Repository CRAN
Date/Publication 2025-03-10 10:10:02 UTC
Contents
AS.CASSELIE e e e e e e 2
CASSELES . . . & v v e e e e e e e e e e e e e e e e 3
check_cassette_names e e e e e e 4
Crul_request e e e e 5
€JECL_CASSELe e e e e e e e e e e e 6
HTTPInteraction i ittt e e e 7
HTTPInteractionlist e e 9
http_interactions e 12
INSEIt_CASSEIE v o o e e e e e e e e 13
lightswitch e 15
real_http_connections_allowed Lo oL 19
recording 19
request-matching 20
RequestHandler e 22
RequestHandlerCrul e 24
RequestHandlerHttr L 25
RequestHandlerHttr2 L 27
RequestMatcherRegistry L 28
skip_if_ver_off 30
S SPlitter e e e e e e e 30
UnhandledHTTPRequestError 31
USE_CASSEILE v v v e e e e e e 36
USE_VCT o v v v o e e e e e e e e 39
VCI_COonfigUIe o e e e 40
ver_test_path L e e e e e 43
Index 44
as.cassette Coerce names, etc. to cassettes
Description

Coerce names, etc. to cassettes

Coerce to a cassette path

https://orcid.org/0000-0003-1444-9135
https://orcid.org/0000-0003-2542-2202
https://orcid.org/0000-0002-2815-0399
https://orcid.org/0000-0002-6738-9845

cassettes 3

Usage

as.cassette(x, ...)

as.cassettepath(x)

Arguments
X Input, a cassette name (character), or something that can be coerced to a cassette
further arguments passed on to cassettes() or [read_cassette_meta()
Value

a cassette of class Cassette

Examples

Not run:

ver_configure(dir = tempfile())
insert_cassette("foobar")

cassettes(on_disk = FALSE)

cassettes(on_disk = TRUE)
as.cassette("foobar”, on_disk = FALSE)
eject_cassette() # eject the current cassette

cleanup
unlink(file.path(tempfile(), "foobar.yml"))

End(Not run)

cassettes List cassettes, get current cassette, etc.

Description

List cassettes, get current cassette, etc.

Usage

cassettes(on_disk = TRUE, verb = FALSE)
current_cassette()

cassette_path()

Arguments

on_disk (logical) Check for cassettes on disk + cassettes in session (TRUE), or check for
only cassettes in session (FALSE). Default: TRUE

verb (logical) verbose messages

4 check_cassette_names

Details

» cassettes(): returns cassettes found in your R session, you can toggle whether we pull from
those on disk or not

* current_cassette(): returns an empty list when no cassettes are in use, while it returns the
current cassette (a Cassette object) when one is in use

* cassette_path(): just gives you the current directory path where cassettes will be stored

Examples
ver_configure(dir = tempdir())

list all cassettes
cassettes()
cassettes(on_disk = FALSE)

list the currently active cassette
insert_cassette("stuffthings"”)
current_cassette()

eject_cassette()

cassettes()
cassettes(on_disk = FALSE)

list the path to cassettes

cassette_path()

ver_configure(dir = file.path(tempdir(), "foo"))
cassette_path()

ver_configure_reset()

check_cassette_names Check cassette names

Description

Check cassette names

Usage

check_cassette_names(
pattern = "test-",
behavior = "stop”,
allowed_duplicates = NULL
)

crul_request 5

Arguments
pattern (character) regex pattern for file paths to check. this is done inside of tests/testthat/.
default: "test-"
behavior (character) "stop" (default) or "warning". if "warning", we use immediate.=TRUE

so the warning happens at the top of your tests rather than you seeing it after tests
have run (as would happen by default)

allowed_duplicates
(character) cassette names that can be duplicated

Details
Cassette names:

* Should be meaningful so that it is obvious to you what test/function they relate to. Meaningful
names are important so that you can quickly determine to what test file or test block a cassette
belongs. Note that ver cannot check that your cassette names are meaningful.

* Should not be duplicated. Duplicated cassette names would lead to a test using the wrong
cassette.

 Should not have spaces. Spaces can lead to problems in using file paths.
* Should not include a file extension. ver handles file extensions for the user.

 Should not have illegal characters that can lead to problems in using file paths: /, ?, <, >, \, :,
%, |, and \"

* Should not have control characters, e.g., \n
 Should not have just dots, e.g., . or ..

* Should not have Windows reserved words, e.g., coml
* Should not have trailing dots

 Should not be longer than 255 characters

ver: :check_cassette_names() is meant to be run during your tests, from a helper-*.R file in-
side the tests/testthat directory. It only checks that cassette names are not duplicated. Note that
if you do need to have duplicated cassette names you can do so by using the allowed_duplicates
parameter in check_cassette_names(). A helper function check_cassette_names() runs inside
insert_cassette() that checks that cassettes do not have: spaces, file extensions, unaccepted
characters (slashes).

crul_request An HTTP request as prepared by the crul package

Description
The object is a list, and is the object that is passed on to webmockr and ver instead of routing
through crul as normal. Used in examples/tests.

Format

A list

https://testthat.r-lib.org/reference/test_dir.html#special-files

6 eject_cassette

eject_cassette Eject a cassette

Description

Eject a cassette

Usage

eject_cassette(
cassette = NULL,
options = list(),
skip_no_unused_interactions_assertion = NULL

)
Arguments
cassette (character) a single cassette names to eject; see name parameter definition in
insert_cassette() for cassette name rules
options (list) a list of options to apply to the eject process

skip_no_unused_interactions_assertion
(logical) If TRUE, this will skip the "no unused HTTP interactions" assertion
enabled by the allow_unused_http_interactions = FALSE cassette option.
This is intended for use when your test has had an error, but your test frame-
work has already handled it - IGNORED FOR NOW

Value

The ejected cassette if there was one

See Also

use_cassette(), insert_cassette()

Examples

ver_configure(dir = tempdir())
insert_cassette(”hello")
(x <= current_cassette())

by default does current cassette
<- eject_cassette()

can also select by cassette name

#
X
X
#
eject_cassette(cassette = "hello")

HTTPInteraction

HTTPInteraction HTTPInteraction class

Description

object holds request and response objects

Details
Methods

to_hash() Create a hash from the HTTPInteraction object
from_hash(hash) Create a HTTPInteraction object from a hash

Public fields

request A Request class object
response A VcrResponse class object

recorded_at (character) Time http interaction recorded at

Methods

Public methods:

e HTTPInteraction$new()

e HTTPInteraction$to_hash()

* HTTPInteraction$from_hash()
e HTTPInteraction$clone()

Method new(): Create a new HTTPInteraction object

Usage:
HTTPInteraction$new(request, response, recorded_at)

Arguments:

request A Request class object

response A VcrResponse class object

recorded_at (character) Time http interaction recorded at

Returns: A new HTTPInteraction object

Method to_hash(): Create a hash from the HTTPInteraction object

Usage:
HTTPInteraction$to_hash()

Returns: anamed list

Method from_hash(): Create a HTTPInteraction object from a hash
Usage:

8 HTTPInteraction

HTTPInteraction$from_hash(hash)

Arguments:

hash anamed list

Returns: anew HttpInteraction object

Method clone(): The objects of this class are cloneable with this method.

Usage:
HTTPInteraction$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Examples

Not run:

make the request

library(vcer)

url <- "https://hb.opencpu.org/post”
body <- list(foo = "bar")

cli <- crul::HttpClient$new(url = url)
res <- cli$post(body = body)

build a Request object
(request <- Request$new("POST"”, uri = url,
body = body, headers = res$response_headers))
build a VcrResponse object
(response <- VcrResponse$new(
res$status_http(),
res$response_headers,
res$parse("UTF-8"),
res$response_headers$status))

make HTTPInteraction object

(x <= HTTPInteraction$new(request = request, response = response))
x$recorded_at

x$to_hash()

make an HTTPInteraction from a hash with the object already made
x$from_hash(x$to_hash())

Make an HTTPInteraction from a hash alone
my_hash <- x$to_hash()
HTTPInteraction$new()$from_hash(my_hash)

End(Not run)

HTTPInteractionList 9

HTTPInteractionlList HTTPInteractionList class

Description

keeps track of all HTTPInteraction objects

Details

Private Methods

has_unused_interactions() Are there any unused interactions? returns boolean
matching_interaction_index_for() asdfadf
matching_used_interaction_for(request) asdfadfs

interaction_matches_request(request, interaction) Check if a request matches an inter-
action (logical)

from_hash() Get a hash back.
request_summary(z) Get a request summary (character)

response_summary(z) Get a response summary (character)

Public fields

interactions (list) list of interaction class objects
request_matchers (character) vector of request matchers
allow_playback_repeats whether to allow playback repeats
parent_list A list for empty objects, see NulllList

used_interactions (list) Interactions that have been used

Methods

Public methods:

e HTTPInteractionList$new()

e HTTPInteractionList$response_for()

* HTTPInteractionList$has_interaction_matching()

e HTTPInteractionList$has_used_interaction_matching()

* HTTPInteractionList$remaining_unused_interaction_count()
e HTTPInteractionlList$assert_no_unused_interactions()

e HTTPInteractionList$clone()

Method new(): Create a new HTTPInteractionList object
Usage:

10

HTTPInteractionList

HTTPInteractionList$new(
interactions,
request_matchers,
allow_playback_repeats = FALSE,
parent_list = NullList$new(),
used_interactions = list()

)

Arguments:

interactions (list) list of interaction class objects
request_matchers (character) vector of request matchers
allow_playback_repeats whether to allow playback repeats or not
parent_list A list for empty objects, see NulllList

used_interactions (list) Interactions that have been used. That is, interactions that are on
disk in the current cassette, and a request has been made that matches that interaction

Returns: A new HTTPInteractionList object

Method response_for(): Check if there’s a matching interaction, returns a response object

Usage:
HTTPInteractionList$response_for(request)

Arguments:
request The request from an object of class HTTPInteraction

Method has_interaction_matching(): Check if has a matching interaction

Usage:
HTTPInteractionList$has_interaction_matching(request)

Arguments:
request The request from an object of class HTTPInteraction

Returns: logical

Method has_used_interaction_matching(): check if has used interactions matching a given
request

Usage:
HTTPInteractionList$has_used_interaction_matching(request)

Arguments:
request The request from an object of class HTTPInteraction

Returns: logical

Method remaining_unused_interaction_count(): Number of unused interactions

Usage:
HTTPInteractionList$remaining_unused_interaction_count()

Returns: integer

Method assert_no_unused_interactions(): Checks if there are no unused interactions left.

HTTPInteractionList

Usage:
HTTPInteractionList$assert_no_unused_interactions()

Returns: various

Method clone(): The objects of this class are cloneable with this method.

Usage:
HTTPInteractionList$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Examples

Not run:

ver_configure(
dir = tempdir(),
record = "once"

)

make interactions

make the request

turn off mocking

crul: :mock (FALSE)

url <- "https://hb.opencpu.org/post”
cli <- crul::HttpClient$new(url = url)
res <- cli$post(body = list(a = 5))

request
(request <- Request$new("POST"”, url, list(a = 5), res$headers))
response
(response <- VcrResponse$new(
res$status_http(),
res$response_headers,
res$parse("UTF-8"),
res$response_headers$status))
make an interaction
(inter <- HTTPInteraction$new(request = request, response = response))

make an interactionlist
(x <= HTTPInteractionList$new(

interactions = list(inter),

request_matchers = vcr_configuration()$match_requests_on
)
x$interactions
x$request_matchers
x$parent_list
x$parent_list$response_for()
x$parent_list$has_interaction_matching()
x$parent_list$has_used_interaction_matching()
x$parent_list$remaining_unused_interaction_count()
x$used_interactions
x$allow_playback_repeats

12 http_interactions

x$interactions
x$response_for(request)

End(Not run)

http_interactions Get the http interactions of the current cassette

Description

Get the http interactions of the current cassette

Usage

http_interactions()

Value

object of class HTTPInteractionList if there is a current cassette in use, or NullList if no cassette
in use

Examples

Not run:

ver_configure(dir = tempdir())
insert_cassette("foo_bar")

webmockr: :webmockr_allow_net_connect ()
library(crul)

cli <- crul::HttpClient$new("https://hb.opencpu.org/get")
one <- clis$get(query = list(a = 5))

z <- http_interactions()

z

z$interactions

z$used_interactions

on eject, request written to the cassette
eject_cassette("foo_bar")

insert cassette again
insert_cassette("foo_bar")

now interactions will be present

z <- http_interactions()

z$interactions

z$used_interactions
invisible(cli$get(query = list(a = 5)))
z$used_interactions

cleanup
unlink(file.path(tempdir(), "foo_bar.yml"))

End(Not run)

insert_cassette 13

insert_cassette Insert a cassette to record HTTP requests

Description

Insert a cassette to record HTTP requests

Usage

insert_cassette(
name,
record = NULL,
match_requests_on = NULL,
update_content_length_header = FALSE,
allow_playback_repeats = FALSE,
serialize_with = NULL,
persist_with = NULL,
preserve_exact_body_bytes = NULL,
re_record_interval = NULL,
clean_outdated_http_interactions = NULL

)
Arguments

name The name of the cassette. vcr will check this to ensure it is a valid file name. Not
allowed: spaces, file extensions, control characters (e.g., \n), illegal characters
Cr,’r,<, >0, e, 0® 0°P and C\'), dots alone (e.g., ., C..), Windows
reserved words (e.g., ‘coml’), trailing dots (can cause problems on Windows),
names longer than 255 characters. See section "Cassette names"

record The record mode (default: "once"). See recording for a complete list of the

different recording modes.

match_requests_on
List of request matchers to use to determine what recorded HTTP interaction to
replay. Defaults to ["method”, "uri”]. The built-in matchers are "method",
"uri", "host", "path", "headers", "body" and "query"
update_content_length_header
(logical) Whether or not to overwrite the Content-Length header of the re-
sponses to match the length of the response body. Default: FALSE

allow_playback_repeats
(logical) Whether or not to allow a single HTTP interaction to be played back
multiple times. Default: FALSE.

serialize_with (character) Which serializer to use. Valid values are "yaml" (default) and "json".
Note that you can have multiple cassettes with the same name as long as they
use different serializers; so if you only want one cassette for a given cassette
name, make sure to not switch serializers, or clean up files you no longer need.

14 insert_cassette

persist_with (character) Which cassette persister to use. Default: "file_system". You can also
register and use a custom persister.

preserve_exact_body_bytes
(logical) Whether or not to base64 encode the bytes of the requests and re-
sponses for this cassette when serializing it. See also preserve_exact_body_bytes
in ver_configure(). Default: FALSE

re_record_interval
(integer) How frequently (in seconds) the cassette should be re-recorded. de-
fault: NULL (not re-recorded)

clean_outdated_http_interactions
(logical) Should outdated interactions be recorded back to file? default: FALSE

Details
Cassette names:

 Should be meaningful so that it is obvious to you what test/function they relate to. Meaningful
names are important so that you can quickly determine to what test file or test block a cassette
belongs. Note that ver cannot check that your cassette names are meaningful.

» Should not be duplicated. Duplicated cassette names would lead to a test using the wrong
cassette.

 Should not have spaces. Spaces can lead to problems in using file paths.
¢ Should not include a file extension. vcr handles file extensions for the user.

» Should not have illegal characters that can lead to problems in using file paths: /, ?,<, >, \, :,
*, |, and \"

 Should not have control characters, e.g., \n

* Should not have just dots, e.g., . or ..

 Should not have Windows reserved words, e.g., coml

* Should not have trailing dots

 Should not be longer than 255 characters
ver: :check_cassette_names() is meant to be run during your tests, from a helper-*.R file in-
side the tests/testthat directory. It only checks that cassette names are not duplicated. Note that
if you do need to have duplicated cassette names you can do so by using the allowed_duplicates
parameter in check_cassette_names(). A helper function check_cassette_names() runs inside

insert_cassette() that checks that cassettes do not have: spaces, file extensions, unaccepted
characters (slashes).

Value

an object of class Cassette

Cassette options

Default values for arguments controlling cassette behavior are inherited from vcr’s global config-
uration. See vcr_configure() for a complete list of options and their default settings. You can
override these options for a specific cassette by changing an argument’s value to something other
than NULL when calling either insert_cassette() or use_cassette().

https://testthat.r-lib.org/reference/test_dir.html#special-files

lightswitch

See Also

use_cassette(), eject_cassette()

Examples

Not run:

library(vcr)

library(crul)

ver_configure(dir = tempdir())
webmockr: :webmockr_allow_net_connect()

(x <- insert_cassette(name = "leo5"))

current_cassette()

x$new_recorded_interactions

x$previously_recorded_interactions()

cli <- crul::HttpClient$new(url = "https://hb.opencpu.org”)
clig$get("get")

x$new_recorded_interactions # 1 interaction
x$previously_recorded_interactions() # empty

webmockr: :stub_registry() # not empty

very important when using inject_cassette: eject when done
x$eject() # same as eject_cassette(”leo5")
x$new_recorded_interactions # same, 1 interaction
x$previously_recorded_interactions() # now not empty

stub_registry now empty, eject() calls webmockr::disable(), which
calls the disable method for each of crul and httr adadapters,
which calls webmockr's remove_stubs() method for each adapter
webmockr: :stub_registry()

cleanup
unlink(file.path(tempdir(), "leo5.yml"))

End(Not run)

lightswitch Turn ver on and off, check on/off status, and turn off for a given http
call

Description

Turn ver on and off, check on/off status, and turn off for a given http call

Usage

turned_off (..., ignore_cassettes = FALSE)
turn_on()

turned_on()

16 lightswitch

turn_off (ignore_cassettes = FALSE)

Arguments

Any block of code to run, presumably an http request

ignore_cassettes

(logical) Controls what happens when a cassette is inserted while vcr is turned
off. If TRUE is passed, the cassette insertion will be ignored; otherwise an error
will be raised. Default: FALSE

Details

Sometimes you may need to turn off vcr, either for individual function calls, individual test blocks,
whole test files, or for the entire package. The following attempts to break down all the options.

vcr has the following four exported functions:

e turned_off () - Turns vcr off for the duration of a code block
e turn_off () - Turns ver off completely, so that it no longer handles every HTTP request
e turn_on() - turns vcr on; the opposite of turn_off ()

e turned_on() - Asks if ver is turned on, returns a boolean

Instead of using the above four functions, you could use environment variables to achieve the same
thing. This way you could enable/disable vcr in non-interactive environments such as continuous
integration, Docker containers, or running R non-interactively from the command line. The full set
of environment variables vcr uses, all of which accept only TRUE or FALSE:

e VCR_TURN_OFF: turn off vcr altogether; set to TRUE to skip any vcr usage; default: FALSE

* VCR_TURNED_OFF: set the turned_off internal package setting; this does not turn off ver com-
pletely as does VCR_TURN_OFF does, but rather is looked at together with VCR_IGNORE _CASSETTES

* VCR_IGNORE_CASSETTES: set the ignore_cassettes internal package setting; this is looked
at together with VCR_TURNED_OFF

turned_off:

turned_off () lets you temporarily make a real HTTP request without completely turning vcr
off, unloading it, etc.

What happens internally is we turn off vcr, run your code block, then on exit turn vcr back on
- such that vcr is only turned off for the duration of your code block. Even if your code block
errors, vcr will be turned back on due to use of on.exit(turn_on())

library(vcr)

library(crul)

turned_of f({
con <- HttpClient$new(url = "https://httpbin.org/get")
con$get()

b))

lightswitch 17

#> <crul response>
#> url: https://httpbin.org/get
#> request_headers:

#> User-Agent: libcurl/7.54.0 r-curl/4.3 crul/e.9.0
#> Accept-Encoding: gzip, deflate

#> Accept: application/json, text/xml, application/xml, */*
#> response_headers:

#> status: HTTP/1.1 200 OK

#> date: Fri, 14 Feb 2020 19:44:46 GMT

#> content-type: application/json

#> content-length: 365

#> connection: keep-alive

#> server: gunicorn/19.9.0

#> access-control-allow-origin: *

#> access-control-allow-credentials: true

#> status: 200

turn_off/turn_on:

turn_off() is different from turned_off() in that turn_off() is not aimed at a single call
block, but rather it turns vcr off for the entire package. turn_off() does check first before
turning ver off that there is not currently a cassette in use. turn_off() is meant to make R
ignore vcr: :insert_cassette() and ver: :use_cassette() blocks in your test suite - letting
the code in the block run as if they were not wrapped in vcr code - so that all you have to do to
run your tests with cached requests/responses AND with real HTTP requests is toggle a single R
function or environment variable.

library(vcr)
ver_configure(dir = tempdir())
real HTTP request works - vcr is not engaged here
crul::HttpClient$new(url = "https://eu.httpbin.org/get"”)$get()
wrap HTTP request in use_cassette() - vcr is engaged here
use_cassette("foo_bar"”, {
crul::HttpClient$new(url = "https://eu.httpbin.org/get")$get()
b))
turn off & ignore cassettes - use_cassette is ignored, real HTTP request made
turn_off (ignore_cassettes = TRUE)
use_cassette("foo_bar", {
crul::HttpClient$new(url = "https://eu.httpbin.org/get")$get()
1))
if you turn off and don't ignore cassettes, error thrown
turn_off (ignore_cassettes = FALSE)
use_cassette("foo_bar", {
res2=crul::HttpClient$new(url = "https://eu.httpbin.org/get")$get()

D
vcr back on - now use_cassette behaves as before
turn_on()

use_cassette("foo_bar3”, {
res2=crul::HttpClient$new(url = "https://eu.httpbin.org/get")$get()
b))

18 lightswitch

turned_on:
turned_on() does what it says on the tin - it tells you if vcr is turned on or not.

library(vcr)
turn_on()
turned_on()

[1] TRUE

turn_off ()

vcr turned off; see ?turn_on to turn vcr back on
turned_on()

[1] FALSE

Environment variables:

The VCR_TURN_OFF environment variable can be used within R or on the command line to turn off

vcr. For example, you can run tests for a package that uses ver, butignore any use_cassette/insert_cassette
usage, by running this on the command line in the root of your package:

VCR_TURN_OFF=true Rscript -e "devtools::test()"
Or, similarly within R:

Sys.setenv(VCR_TURN_OFF = TRUE)
devtools::test()

The VCR_TURNED_OFF and VCR_IGNORE_CASSETTES environment variables can be used in combi-
nation to achieve the same thing as VCR_TURN_OFF:

VCR_TURNED_OFF=true VCR_IGNORE_CASSETTES=true Rscript -e "devtools::test()"

Examples

Not run:
ver_configure(dir = tempdir())

turn_on()
turned_on()
turn_off ()

turn off for duration of a block
library(crul)
turned_off ({
res <- HttpClient$new(url = "https://hb.opencpu.org/get")$get()
»

res

turn completely off
turn_off ()
library(webmockr)
crul: :mock()

real_http_connections_allowed 19

HttpClient$new(url = "https://hb.opencpu.org/get")$get(verbose = TRUE)
turn_on()

End(Not run)

real_http_connections_allowed
Are real http connections allowed?

Description

Are real http connections allowed?

Usage

real_http_connections_allowed()

Value

boolean, TRUE if real HTTP requests allowed; FALSE if not

Examples

real_http_connections_allowed()

recording ver recording options

Description

ver recording options

Details

Record modes dictate under what circumstances http requests/responses are recorded to cassettes
(disk). Set the recording mode with the parameter record in the use_cassette() and insert_cassette()
functions.

once:
The once record mode will:
* Replay previously recorded interactions.
* Record new interactions if there is no cassette file.
» Cause an error to be raised for new requests if there is a cassette file.
It is similar to the new_episodes record mode, but will prevent new, unexpected requests from
being made (i.e. because the request URI changed or whatever).
once is the default record mode, used when you do not set one.

20 request-matching

none:
The none record mode will:

* Replay previously recorded interactions.
» Cause an error to be raised for any new requests.

This is useful when your code makes potentially dangerous HTTP requests. The none record
mode guarantees that no new HTTP requests will be made.

new_episodes:
The new_episodes record mode will:

¢ Record new interactions.

* Replay previously recorded interactions.
It is similar to the once record mode, but will always record new interactions, even if you have an
existing recorded one that is similar (but not identical, based on the match_request_on option).

all:
The all record mode will:

* Record new interactions.
* Never replay previously recorded interactions.

This can be temporarily used to force ver to re-record a cassette (i.e. to ensure the responses are
not out of date) or can be used when you simply want to log all HTTP requests.

request-matching ver request matching

Description

There are a number of options, some of which are on by default, some of which can be used together,
and some alone.

Details

To match previously recorded requests, vcr has to try to match new HTTP requests to a previously
recorded one. By default, we match on HTTP method (e.g., GET) and URI (e.g., http://foo.com),
following Ruby’s VCR gem.

You can customize how we match requests with one or more of the following options, some of
which are on by default, some of which can be used together, and some alone.

* method: Use the method request matcher to match requests on the HTTP method (i.e. GET,
POST, PUT, DELETE, etc). You will generally want to use this matcher. The method matcher
is used (along with the uri matcher) by default if you do not specify how requests should
match.

* uri: Use the uri request matcher to match requests on the request URI. The uri matcher is
used (along with the method matcher) by default if you do not specify how requests should
match.

request-matching 21

* host: Use the host request matcher to match requests on the request host. You can use this
(alone, or in combination with path) as an alternative to uri so that non-deterministic portions
of the URI are not considered as part of the request matching.

* path: Use the path request matcher to match requests on the path portion of the request
URI. You can use this (alone, or in combination with host) as an alternative to uri so that
non-deterministic portions of the URI

» query: Use the query request matcher to match requests on the query string portion of the
request URL. You can use this (alone, or in combination with others) as an alternative to uri so
that non-deterministic portions of the URI are not considered as part of the request matching.

* body: Use the body request matcher to match requests on the request body.

* headers: Use the headers request matcher to match requests on the request headers.

You can set your own options by tweaking the match_requests_on parameter in use_cassette():

library(vcr)

use_cassette(name = "foo_bar"”, {
cli$post(”"post”, body = list(a = 5))
3,
match_requests_on = c('method', 'headers', 'body')

)

Matching:
headers:

library(crul)

library(vcr)

cli <- crul::HttpClient$new("https://httpbin.org/get”,
headers = list(foo = "bar"))

use_cassette(name = "nothing_new", {
one <- clis$get()
3,
match_requests_on = 'headers'
)
cli$headers$foo <- "stuff”
use_cassette(name = "nothing_new", {
two <- clis$get()
3,
match_requests_on = 'headers'
)

one$request_headers
two$request_headers

22 RequestHandler

RequestHandler RequestHandler

Description

Base handler for http requests, deciding whether a request is stubbed, to be ignored, recordable, or
unhandled

Details
Private Methods

request_type(request) Get the request type
externally_stubbed() justreturns FALSE

should_ignore() should we ignore the request, depends on request ignorer infrastructure that’s
not working yet

has_response_stub() Check if there is a matching response stub in the http interaction list
get_stubbed_response() Check for a response and get it

request_summary(request) getarequest summary
on_externally_stubbed_request(request) on externally stubbed request do nothing
on_ignored_request(request) on ignored request, do something
on_recordable_request(request) on recordable request, record the request

on_unhandled_request(request) on unhandled request, run UnhandledHTTPRequestError

Public fields

request_original original, before any modification
request the request, after any modification
vcr_response holds VerResponse object
stubbed_response the stubbed response

cassette the cassette holder

Methods

Public methods:

* RequestHandler$new()
* RequestHandler$handle()
* RequestHandler$clone()

Method new(): Create a new RequestHandler object

Usage:
RequestHandler$new(request)

RequestHandler

Arguments:
request The request from an object of class HttpInteraction

Returns: A new RequestHandler object

Method handle(): Handle the request (request given in $initialize())
Usage:
RequestHandlers$handle ()

Returns: handles a request, outcomes vary

Method clone(): The objects of this class are cloneable with this method.

Usage:
RequestHandler$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Examples

Not run:
record mode: once
ver_configure(

dir = tempdir(),
record = "once"

)

data(crul_request)

crul_requesturlhandle <- curl::new_handle()
crul_request

x <- RequestHandler$new(crul_request)

x$handle()

record mode: none
ver_configure(

dir = tempdir(),

record = "none”

)
data(crul_request)
crul_requesturlhandle <- curl::new_handle()
crul_request

insert_cassette("testing_record_mode_none”, record = "none")
#file.path(ver_c$dir, "testing_record_mode_none.yml")
x <- RequestHandlerCrul$new(crul_request)
x$handle()
crul_requesturlurl <- "https://api.crossref.org/works/10.1039/c8sm90002g/"
crul_requesturlhandle <- curl::new_handle()
z <- RequestHandlerCrul$new(crul_request)
z$handle()
eject_cassette("testing_record_mode_none")

End(Not run)

24

RequestHandlerCrul

RequestHandlerCrul RequestHandlerCrul

Description

Methods for the crul package, building on RequestHandler

Super class

vcr: :RequestHandler -> RequestHandlerCrul

Methods

Public methods:
¢ RequestHandlerCrul$clone()

Method clone(): The objects of this class are cloneable with this method.

Usage:
RequestHandlerCrul$clone(deep = FALSE)
Arguments:

deep Whether to make a deep clone.

Examples

Not run:

ver_configure(
dir = tempdir(),
record = "once"

)

data(crul_request)

crul_requesturlhandle <- curl::new_handle()
crul_request

X <- RequestHandlerCrul$new(crul_request)

x$handle()

body matching
library(vcr)
library(crul)
ver_configure(dir = tempdir(), log = TRUE,
log_opts = list(file = file.path(tempdir(), "vcr.log")))
cli <- HttpClient$new(url = "https://hb.opencpu.org”)

testing, same uri and method, changed body in 2nd block
use_cassette(name = "apple7”, {
resp <- cli$post("post”, body = list(foo = "bar"))
}, match_requests_on = c("method”, "uri", "body"))
should error, b/c record="once"

RequestHandlerHttr 25

if (interactive()) {
use_cassette(name = "apple7”, {
resp <- cli$post("post”, body = list(foo = "bar"))
resp2 <- cli$post("post”, body = list(hello = "world"))
}, match_requests_on = c("method”, "uri”, "body"))
3
cas <- insert_cassette(name = "apple7"”,
match_requests_on = c("method”, "uri”, "body"))
resp2 <- cli$post("post”, body = list(foo = "bar"))
eject_cassette("apple7"”)

testing, same body, changed method in 2nd block
if (interactive()) {
use_cassette(name = "apple8”, {

x <= cli$post("post”, body = list(hello = "world"))
}, match_requests_on = c("method”, "body"))
use_cassette(name = "apple8”, {

x <- cli$get("post”, body = list(hello = "world"))
}, match_requests_on = c("method”, "body"))

3

testing, same body, changed uri in 2nd block

use_cassette(name = "apple9”, {

x <- cli$post("post”, body = list(hello = "world"))

w <- cli$post("get”, body = list(hello = "world"))

3}, match_requests_on = c("method”, "body"))

use_cassette(name = "apple9”, {

NOTHING HERE

3}, match_requests_on = c("method”, "body"))

unlink(file.path(vcr_configuration()$dir, "apple9.yml"))

End(Not run)

RequestHandlerHttr RequestHandlerHttr

Description

Methods for the httr package, building on RequestHandler

Super class

vcr: :RequestHandler -> RequestHandlerHttr

Methods

Public methods:

* RequestHandlerHttr$new()
* RequestHandlerHttr$clone()

26

Method new(): Create a new RequestHandlerHttr object

Usage:
RequestHandlerHttr$new(request)

Arguments:

request The request from an object of class HttpInteraction

Returns: A new RequestHandlerHttr object

Method clone(): The objects of this class are cloneable with this method.
Usage:
RequestHandlerHttr$clone(deep = FALSE)
Arguments:

deep Whether to make a deep clone.

Examples

Not run:

ver_configure(
dir = tempdir(),
record = "once"

)

GET request

library(httr)
load("~/httr_req.rda")

req

x <- RequestHandlerHttr$new(req)
x$handle()

POST request
library(httr)
webmockr: :httr_mock()
mydir <- file.path(tempdir(), "testing_httr")
invisible(vcr_configure(dir = mydir))
use_cassette(name = "testing2", {
res <- POST("https://hb.opencpu.org/post”, body = list(foo = "bar"))
}, match_requests_on = c("method”, "uri”, "body"))

load("~/httr_req_post.rda")
insert_cassette("testing3")

httr_reg_post

x <- RequestHandlerHttr$new(httr_reqg_post)
X

x$handle()

self=x

End(Not run)

RequestHandlerHttr

RequestHandlerHttr2 27

RequestHandlerHttr2 RequestHandlerHttr2

Description

Methods for the httr2 package, building on RequestHandler

Super class

vcr: :RequestHandler -> RequestHandlerHttr2

Methods

Public methods:

* RequestHandlerHttr2$new()
e RequestHandlerHttr2$clone()

Method new(): Create a new RequestHandlerHttr2 object

Usage:
RequestHandlerHttr2$new(request)

Arguments:

request The request from an object of class HttpInteraction

Returns: A new RequestHandlerHttr2 object

Method clone(): The objects of this class are cloneable with this method.

Usage:
RequestHandlerHttr2$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Examples

Not run:

GET request

library(httr2)

req <- request("https://hb.opencpu.org/post") %>%
reg_body_json(list(foo = "bar"))

X <- RequestHandlerHttr2$new(req)

x$handle()

POST request

library(httr2)

mydir <- file.path(tempdir(), "testing_httr2")

invisible(vcr_configure(dir = mydir))

req <- request("https://hb.opencpu.org/post") %>%
reg_body_json(list(foo = "bar"))

28 RequestMatcherRegistry

use_cassette(name = "testing3”, {

response <- reqg_perform(req)
}, match_requests_on = c("method”, "uri”, "body"))
use_cassette(name = "testing3”, {

response2 <- req_perform(req)
}, match_requests_on = c("method”,

n

uri”, "body"))

End(Not run)

RequestMatcherRegistry
RequestMatcherRegistry

Description

handles request matchers

Public fields

registry initialze registry list with a request, or leave empty

default_matchers request matchers to use. default: method, uri

Methods

Public methods:
* RequestMatcherRegistry$new()
* RequestMatcherRegistry$register()
* RequestMatcherRegistry$register_built_ins()
* RequestMatcherRegistry$try_to_register_body_as_json()
* RequestMatcherRegistry$clone()

Method new(): Create a new RequestMatcherRegistry object
Usage:
RequestMatcherRegistry$new(
registry = list(),
default_matchers = list("method”, "uri")
)
Arguments:
registry initialze registry list with a request, or leave empty
default_matchers request matchers to use. default: method, uri

Returns: A new RequestMatcherRegistry object

Method register(): Register a custom matcher
Usage:
RequestMatcherRegistry$register(name, func)

RequestMatcherRegistry 29

Note

Arguments:
name matcher name

func function that describes a matcher, should return a single boolean

Returns: no return; registers the matcher

Method register_built_ins(): Register all built in matchers

Usage:
RequestMatcherRegistry$register_built_ins()

Returns: no return; registers all built in matchers

Method try_to_register_body_as_json(): Try to register body as JSON

Usage:
RequestMatcherRegistry$try_to_register_body_as_json(r1, r2)

Arguments:

r1, r2 Request class objects

Returns: no return; registers the matcher

Method clone(): The objects of this class are cloneable with this method.

Usage:
RequestMatcherRegistry$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

rl=from new request; r2=from recorded interaction

Examples

Not run:

(x <- RequestMatcherRegistry$new())
x$default_matchers

x$registry

End(Not run)

30 str_splitter

skip_if_vcr_off Skip tests if ver is off

Description

Custom testthat skipper to skip tests if vcr is turned off via the environment variable VCR_TURN_OFF.

Usage
skip_if_vecr_off()

Details

This might be useful if your test will fail with real requests: when the cassette was e.g. edited (a
real request produced a 200 status code but you made it a 502 status code for testing the behavior
of your code when the API errors) or if the tests are very specific (e.g. testing a date was correctly
parsed, but making a real request would produce a different date).

Value

Nothing, skip test.

See Also
turn_off ()

str_splitter split string every N characters

Description

split string every N characters

Usage

str_splitter(str, length)

Arguments

str (character) a string

length (integer) number of characters to split by

UnhandledHTTPRequestError 31

Examples

Not run:

str = "XOVEWVIIEWNIGOIWENVOIWEWVWEW"
str_splitter(str, 5)
str_splitter(str, 5L)

End(Not run)

UnhandledHTTPRequestError
UnhandledHTTPRequestError

Description

Handle http request errors

Usage

ver_last_error()

Details

How this error class is used: If record="once" we trigger this.
Users can use vcr in the context of both use_cassette() and insert_cassette()

For the former, all requests go through the call_block But for the latter, requests go through web-
mockr.

Where is one place where we can put UnhandledHTTPRequestError that will handle both use_cassette
and insert_cassette?

Error situations where this is invoked

* record=once AND there’s a new request that doesn’t match the one in the cassette on disk

— in webmockr: if no stub found and there are recorded interactions on the cassette, and
record = once, then error with UnhandledHTTPRequestError

+ but if record != once, then allow it, unless record == none

e others?

Public fields

request a Request object

cassette a cassette name

32 UnhandledHTTPRequestError

Methods

Public methods:

¢ UnhandledHTTPRequestError$new()

¢ UnhandledHTTPRequestError$run()

* UnhandledHTTPRequestError$construct_message()

¢ UnhandledHTTPRequestError$request_description()

¢ UnhandledHTTPRequestError$current_matchers()

¢ UnhandledHTTPRequestError$match_request_on_headers()
* UnhandledHTTPRequestError$match_request_on_body()

¢ UnhandledHTTPRequestError$formatted_headers()

¢ UnhandledHTTPRequestError$cassettes_description()

¢ UnhandledHTTPRequestError$cassettes_list()

* UnhandledHTTPRequestError$get_help()

¢ UnhandledHTTPRequestError$formatted_suggestions()

¢ UnhandledHTTPRequestError$format_bullet_point()

¢ UnhandledHTTPRequestError$format_foot_note()

¢ UnhandledHTTPRequestError$suggestion_for()

* UnhandledHTTPRequestError$suggestions()

* UnhandledHTTPRequestError$no_cassette_suggestions()
* UnhandledHTTPRequestError$record_mode_suggestion()

* UnhandledHTTPRequestError$has_used_interaction_matching()
* UnhandledHTTPRequestError$match_requests_on_suggestion()
¢ UnhandledHTTPRequestError$clone()

Method new(): Create a new UnhandledHTTPRequestError object

Usage:
UnhandledHTTPRequestError$new(request)

Arguments:

request (Request) a Request object
Returns: A new UnhandledHTTPRequestError object

Method run(): Run unhandled request handling

Usage:
UnhandledHTTPRequestError$run()

Returns: various

Method construct_message(): Construct and execute stop message for why request failed

Usage:
UnhandledHTTPRequestError$construct_message()

Returns: a stop message

Method request_description(): construct request description

UnhandledHTTPRequestError 33

Usage:
UnhandledHTTPRequestError$request_description()

Returns: character

Method current_matchers(): get current request matchers

Usage:
UnhandledHTTPRequestError$current_matchers()

Returns: character

Method match_request_on_headers(): are headers included in current matchers?

Usage:
UnhandledHTTPRequestError$match_request_on_headers()

Returns: logical

Method match_request_on_body(): is body includled in current matchers?

Usage:
UnhandledHTTPRequestError$match_request_on_body()

Returns: logical

Method formatted_headers(): get request headers

Usage:
UnhandledHTTPRequestError$formatted_headers()

Returns: character

Method cassettes_description(): construct description of current or lack thereof cassettes

Usage:
UnhandledHTTPRequestError$cassettes_description()

Returns: character

Method cassettes_list(): cassette details
Usage:
UnhandledHTTPRequestError$cassettes_list()

Returns: character

Method get_help(): get help message for non-verbose error
Usage:
UnhandledHTTPRequestErrors$get_help()

Returns: character

Method formatted_suggestions(): make suggestions for what to do
Usage:
UnhandledHTTPRequestError$formatted_suggestions()

Returns: character

UnhandledHTTPRequestError

Method format_bullet_point(): add bullet point to beginning of a line

Usage:
UnhandledHTTPRequestError$format_bullet_point(lines, index)

Arguments:
lines (character) vector of strings
index (integer) a number

Returns: character

Method format_foot_note(): make a foot note

Usage:
UnhandledHTTPRequestError$format_foot_note(url, index)

Arguments:
url (character) a url
index (integer) a number

Returns: character

Method suggestion_for(): geta suggestion by key

Usage:
UnhandledHTTPRequestError$suggestion_for(key)

Arguments:
key (character) a character string

Returns: character

Method suggestions(): get all suggestions

Usage:
UnhandledHTTPRequestError$suggestions()

Returns: list

Method no_cassette_suggestions(): get all no cassette suggestions

Usage:
UnhandledHTTPRequestError$no_cassette_suggestions()

Returns: list

Method record_mode_suggestion(): get the appropriate record mode suggestion

Usage:
UnhandledHTTPRequestError$record_mode_suggestion()

Returns: character

Method has_used_interaction_matching(): are there any used interactions

Usage:
UnhandledHTTPRequestError$has_used_interaction_matching()

Returns: logical

UnhandledHTTPRequestError 35

Method match_requests_on_suggestion(): match requests on suggestion

Usage:
UnhandledHTTPRequestError$match_requests_on_suggestion()

Returns: list

Method clone(): The objects of this class are cloneable with this method.

Usage:
UnhandledHTTPRequestError$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Examples

Not run:

ver_configure(dir = tempdir())

cassettes()

insert_cassette("turtle”)

request <- Request$new("post”, 'https://hb.opencpu.org/post?a=5",
"", list(foo = "bar"))

err <- UnhandledHTTPRequestError$new(request)
err$request_description()
err$current_matchers()
err$match_request_on_headers()
err$match_request_on_body()
err$formatted_headers()
cat(err$formatted_headers(), "\n")
cat(err$cassettes_description(), "\n")
cat(err$cassettes_list(), "\n")
err$formatted_suggestions()
cat(err$format_bullet_point('foo bar', 1), "\n")
err$suggestion_for("use_new_episodes”)
err$suggestions()
err$no_cassette_suggestions()
err$record_mode_suggestion()
err$has_used_interaction_matching()
err$match_requests_on_suggestion()

err$construct_message()
cleanup
eject_cassette("turtle")
unlink(tempdir())

End(Not run)

Not run:

ver_last_error()

End(Not run)

36 use_cassette

use_cassette Use a cassette to record HTTP requests

Description

Use a cassette to record HTTP requests

Usage

use_cassette(
name,
record = NULL,
match_requests_on = NULL,
update_content_length_header = FALSE,
allow_playback_repeats = FALSE,
serialize_with = NULL,
persist_with = NULL,
preserve_exact_body_bytes = NULL,
re_record_interval = NULL,
clean_outdated_http_interactions = NULL

Arguments

name The name of the cassette. ver will check this to ensure it is a valid file name. Not
allowed: spaces, file extensions, control characters (e.g., \n), illegal characters
Cr,’r, <, >, 0N, e, ® 0P and *\"), dots alone (e.g., 7, L), Windows
reserved words (e.g., ‘coml’), trailing dots (can cause problems on Windows),
names longer than 255 characters. See section "Cassette names"

a block of code containing one or more requests (required). Use curly braces to
encapsulate multi-line code blocks. If you can’t pass a code block use insert_cassette()
instead.

record The record mode (default: "once”). See recording for a complete list of the
different recording modes.
match_requests_on
List of request matchers to use to determine what recorded HTTP interaction to
replay. Defaults to ["method”, "uri"]. The built-in matchers are "method",
"uri", "host", "path", "headers", "body" and "query"
update_content_length_header
(logical) Whether or not to overwrite the Content-Length header of the re-
sponses to match the length of the response body. Default: FALSE
allow_playback_repeats
(logical) Whether or not to allow a single HTTP interaction to be played back
multiple times. Default: FALSE.

use_cassette 37

serialize_with (character) Which serializer to use. Valid values are "yaml" (default) and "json".
Note that you can have multiple cassettes with the same name as long as they
use different serializers; so if you only want one cassette for a given cassette
name, make sure to not switch serializers, or clean up files you no longer need.

persist_with (character) Which cassette persister to use. Default: "file_system". You can also
register and use a custom persister.

preserve_exact_body_bytes
(logical) Whether or not to base64 encode the bytes of the requests and re-
sponses for this cassette when serializing it. See also preserve_exact_body_bytes
in ver_configure(). Default: FALSE

re_record_interval

(integer) How frequently (in seconds) the cassette should be re-recorded. de-
fault: NULL (not re-recorded)

clean_outdated_http_interactions
(logical) Should outdated interactions be recorded back to file? default: FALSE

Details

A run down of the family of top level ver functions

e use_cassette Initializes a cassette. Returns the inserted cassette.
* insert_cassette Internally used within use_cassette

* eject_cassette ejects the current cassette. The cassette will no longer be used. In addition,
any newly recorded HTTP interactions will be written to disk.

Value

an object of class Cassette

Cassette options

Default values for arguments controlling cassette behavior are inherited from vcr’s global config-
uration. See vcr_configure() for a complete list of options and their default settings. You can
override these options for a specific cassette by changing an argument’s value to something other
than NULL when calling either insert_cassette() or use_cassette().

Behavior

This function handles a few different scenarios:

* when everything runs smoothly, and we return a Cassette class object so you can inspect the
cassette, and the cassette is ejected

* when there is an invalid parameter input on cassette creation, we fail with a useful message,
we don’t return a cassette, and the cassette is ejected

* when there is an error in calling your passed in code block, we return with a useful message,
and since we use on.exit() the cassette is still ejected even though there was an error, but
you don’t get an object back

38 use_cassette

* whenever an empty cassette (a yml/json file) is found, we delete it before returning from the
use_cassette() function call. we achieve this via use of on.exit() so an empty cassette is
deleted even if there was an error in the code block you passed in

Cassettes on disk

Note that "eject” only means that the R session cassette is no longer in use. If any interactions were
recorded to disk, then there is a file on disk with those interactions.

Using with tests (specifically testthat)

There’s a few ways to get correct line numbers for failed tests and one way to not get correct line
numbers:

Correct. Either wrap your test_that() block inside your use_cassette() block, OR if you
put your use_cassette() block inside your test_that() block put your testthat expectations
outside of the use_cassette() block.

Incorrect: By wrapping the use_cassette() block inside your test_that() block with your
testthat expectations inside the use_cassette() block, you’ll only get the line number that the
use_cassette() block starts on.

See Also

insert_cassette(), eject_cassette()

Examples

Not run:

library(vcr)

library(crul)
ver_configure(dir = tempdir())

use_cassette(name = "apple7”, {
cli <- HttpClient$new(url = "https://hb.opencpu.org”)
resp <- clisget("get")

1)

readLines(file.path(tempdir(), "apple7.yml"))

preserve exact body bytes - records in base64 encoding
use_cassette("things4”, {
cli <- crul::HttpClient$new(url = "https://hb.opencpu.org”)
bbb <- cli$get("get")
}, preserve_exact_body_bytes = TRUE)
see the body string value in the output here
readLines(file.path(tempdir(), "things4.yml"))

cleanup

unlink(file.path(tempdir(), c("things4.yml", "apple7.yml")))

with httr
library(vcr)

use_ver 39

library(httr)
ver_configure(dir = tempdir(), log = TRUE, log_opts = list(file = file.path(tempdir(), "vcr.log")))

use_cassette(name = "stuff350", {
res <- GET("https://hb.opencpu.org/get")

»
readLines(file.path(tempdir(), "stuff350.yml"))

use_cassette(name = "catfact456"”, {
res <- GET("https://catfact.ninja/fact")
»

record mode: none
library(crul)
ver_configure(dir = tempdir())

make a connection first
conn <- crul::HttpClient$new("https://eu.httpbin.org")
this errors because 'none' disallows any new requests

use_cassette("none_eg", (res2 <- conn$get("get")), record = "none”)

first use record mode 'once' to record to a cassette

one <- use_cassette("none_eg", (res <- conn$get("get”)), record = "once")
one; res

then use record mode 'none' to see it's behavior

two <- use_cassette("none_eg"”, (res2 <- conn$get("get")), record = "none")
two; res2

End(Not run)

use_vcr Setup vcr for a package

Description

Setup vcr for a package

Usage
use_vcr(dir = ".", verbose = TRUE)

Arguments
dir (character) path to package root. default’s to current directory
verbose (logical) print progress messages. default: TRUE

Details

Sets a mimimum vcr version, which is usually the latest (stable) version on CRAN. You can of
course easily remove or change the version requirement yourself after running this function.

40 ver_configure

Value

only messages about progress, returns invisible()

vcr_configure Global Configuration Options

Description

Configurable options that define ver’s default behavior.

Usage

ver_configure(...)
ver_configure_reset()
ver_configuration()

ver_config_defaults()

Arguments

configuration settings used to override defaults. See below for a complete list of
valid arguments.

Configurable settings

vcer options:
File locations:
* dir Cassette directory

* write_disk_path (character) path to write files to for any requests that write responses to
disk. by default this parameter is NULL. For testing a package, you’ll probably want this
path to be in your tests/ directory, perhaps next to your cassettes directory, e.g., where
your cassettes are in tests/fixtures, your files from requests that write to disk are in
tests/files. If you want to ignore these files in your installed package, add them to
.Rinstignore. If you want these files ignored on build then add them to .Rbuildignore
(though if you do, tests that depend on these files probably will not work because they won’t
be found; so you’ll likely have to skip the associated tests as well).

Contexts:
e turned_off (logical) VCR is turned on by default. Default: FALSE
e allow_unused_http_interactions (logical) Default: TRUE

e allow_http_connections_when_no_cassette (logical) Determines how vcr treats HTTP
requests that are made when no vcr cassette is in use. When TRUE, requests made when there
is no ver cassette in use will be allowed. When FALSE (default), an UnhandledHTTPRe-
questError error will be raised for any HTTP request made when there is no cassette in
use

ver_configure 41

Filtering:
* ignore_hosts (character) Vector of hosts to ignore. e.g., localhost, or google.com. These
hosts are ignored and real HTTP requests allowed to go through

* ignore_localhost (logical) Default: FALSE

* ignore_request List of requests to ignore. NOT USED RIGHT NOW, sorry

e filter_sensitive_data named list of values to replace. Format is:
list(thing_to_replace_it_with = thing_to_replace)

We replace all instances of thing_to_replace with thing_to_replace_it_with. Uses
gsub () internally, with fixed=TRUE; so does exact matches. Before recording (writing to a
cassette) we do the replacement and then when reading from the cassette we do the reverse
replacement to get back to the real data. Before record replacement happens in internal
function write_interactions(), while before playback replacement happens in internal
function YAML$deserialize()

e filter_sensitive_data_regex named list of values to replace. Follows filter_sensitive_data
format, except uses fixed=FALSE in the gsub() function call; this means that the value in
thing_to_replace is a regex pattern.

e filter_request_headers (character/list) request headers to filter. A character vector of
request headers to remove - the headers will not be recorded to disk. Alternatively, a named
list similar to filter_sensitive_data instructing ver with what value to replace the real
value of the request header.

e filter_response_headers (named list) response headers to filter. A character vector of
response headers to remove - the headers will not be recorded to disk. Alternatively, a
named list similar to filter_sensitive_data instructing ver with what value to replace
the real value of the response header.

e filter_query_parameters (named list) query parameters to filter. A character vector of
query parameters to remove - the query parameters will not be recorded to disk. Alterna-
tively, a named list similar to filter_sensitive_data instructing vcr with what value to
replace the real value of the query parameter.

Errors:

* verbose_errors Do you want more verbose errors or less verbose errors when cassette
recording/usage fails? Default is FALSE, that is, less verbose errors. If TRUE, error messages
will include more details about what went wrong and suggest possible solutions. For testing
in an interactive R session, if verbose_errors=FALSE, you can run vcr_last_error() to
get the full error. If in non-interactive mode, which most users will be in when running the
entire test suite for a package, you can set an environment variable (VCR_VERBOSE _ERRORS) to
toggle this setting (e.g., Sys.setenv(VCR_VERBOSE_ERRORS=TRUE); devtools::test())

Internals:

e cassettes (list) don’t use

e linked_context (logical) linked context

e uri_parser the uri parser, default: crul::url_parse()
Logging:

* log (logical) should we log important ver things? Default: FALSE

* log_opts (list) Additional logging options:

— ’file’ either "console” or a file path to log to

42 ver_configure

— ’log_prefix’ default: "Cassette". We insert the cassette name after that prefix, then the
rest of the message.

— More to come...

Cassette Options:

These settings can be configured globally, using ver_configure(), or locally, using either use_cassette()
or insert_cassette(). Global settings are applied to all cassettes but are overridden by settings
defined locally for individual cassettes.

* record (character) One of ’all’, 'none’, 'new_episodes’, or "once’. See recording

* match_requests_on vector of matchers. Default: (method, uri) See request-matching for
details.

* serialize_with: (character) "yaml" or "json". Note that you can have multiple cassettes
with the same name as long as they use different serializers; so if you only want one cassette
for a given cassette name, make sure to not switch serializers, or clean up files you no longer
need.

* json_pretty: (logical) want JSON to be newline separated to be easier to read? Or remove
newlines to save disk space? default: FALSE

* persist_with (character) only option is "FileSystem"
* preserve_exact_body_bytes (logical) preserve exact body bytes for

e re_record_interval (numeric) When given, the cassette will be re-recorded at the given
interval, in seconds.

e clean_outdated_http_interactions (logical) Should outdated interactions be recorded
back to file. Default: FALSE

e quiet (logical) Suppress any messages from both ver and webmockr. Default: TRUE

e warn_on_empty_cassette (logical) Should a warning be thrown when an empty cassette is
detected? Empty cassettes are cleaned up (deleted) either way. This option only determines
whether a warning is thrown or not. Default: FALSE

Examples

ver_configure(dir = tempdir())

ver_configure(dir = tempdir(), record = "all")
ver_configuration()

ver_config_defaults()

ver_configure(dir = tempdir(), ignore_hosts = "google.com")
ver_configure(dir = tempdir(), ignore_localhost = TRUE)

logging
ver_configure(dir = tempdir(), log = TRUE,
log_opts = list(file = file.path(tempdir(), "vcr.log")))
ver_configure(dir = tempdir(), log = TRUE, log_opts = list(file = "console"))
ver_configure(dir = tempdir(), log = TRUE,
log_opts = list(
file = file.path(tempdir(), "vcr.log"),
log_prefix = "foobar”

))
ver_configure(dir = tempdir(), log = FALSE)

ver_test_path

filter sensitive data
ver_configure(dir = tempdir(),

43

filter_sensitive_data = list(foo = "<bar>")
)
ver_configure(dir = tempdir(),
filter_sensitive_data = list(foo = "<bar>", hello = "<world>")
)
vcr_test_path Locate file in tests directory
Description

This function, similar to testthat::test_path(), is designed to work both interactively and dur-

ing tests, locating files in the tests/ directory.

Usage

ver_test_path(...)

Arguments
Character vectors giving path component. each character string gets added on to
the path, e.g., ver_test_path("a"”, "b") becomes tests/a/b relative to the
root of the package.

Value

A character vector giving the path

Note

vcr_test_path() assumes you are using testthat for your unit tests.

Examples

if (interactive()) {
ver_test_path(”"fixtures"”)

3

Index

x data
crul_request, 5

as.cassette, 2
as.cassettepath (as.cassette), 2

cassette_path (cassettes), 3
cassettes, 3

cassettes(), 3
check_cassette_names, 4
crul_request, 5
current_cassette (cassettes), 3

eject_cassette, 6
eject_cassette(), 15, 38

gsub(), 41

http_interactions, 12
HTTPInteraction, 7, 9
HTTPInteractionList, 9

insert_cassette, 13
insert_cassette(), 5, 6, 14, 31, 36, 38

lightswitch, 15

real_http_connections_allowed, 19
recording, 13,19, 36, 42
Request, 29, 31, 32
request-matching, 20, 42
RequestHandler, 22, 24, 25, 27
RequestHandlerCrul, 24
RequestHandlerHttr, 25
RequestHandlerHttr2, 27
RequestMatcherRegistry, 28

skip_if_vcr_off, 30
str_splitter, 30

turn_off (lightswitch), 15

44

turn_off (), 30

turn_on (lightswitch), 15
turned_off (lightswitch), 15
turned_on (lightswitch), 15

UnhandledHTTPRequestError, 31, 40
use_cassette, 36
use_cassette(), 6, 15, 31
use_vcr, 39

vcr: :RequestHandler, 24, 25, 27
ver_config_defaults (ver_configure), 40
ver_configuration (vcr_configure), 40
vcr_configure, 40
ver_configure(), 14, 37
ver_configure_reset (ver_configure), 40
vcr_last_error
(UnhandledHTTPRequestError), 31
ver_test_path, 43
VcrResponse, 22

	as.cassette
	cassettes
	check_cassette_names
	crul_request
	eject_cassette
	HTTPInteraction
	HTTPInteractionList
	http_interactions
	insert_cassette
	lightswitch
	real_http_connections_allowed
	recording
	request-matching
	RequestHandler
	RequestHandlerCrul
	RequestHandlerHttr
	RequestHandlerHttr2
	RequestMatcherRegistry
	skip_if_vcr_off
	str_splitter
	UnhandledHTTPRequestError
	use_cassette
	use_vcr
	vcr_configure
	vcr_test_path
	Index

