## ----setup, include = FALSE---------------------------------------------- library("knitr") opts_chunk$set( collapse = TRUE, eval = !(Sys.getenv("NASS_KEY") == ""), comment = "#>" ) ## ----start, warning=FALSE, message=FALSE--------------------------------- library("usdarnass") library("dplyr") # Helpful package ohio_rent <- nass_data(commodity_desc = "RENT", agg_level_desc = "COUNTY", state_name = "OHIO") glimpse(ohio_rent) ## ----rent_nass_param----------------------------------------------------- nass_param("short_desc", commodity_desc = "RENT", agg_level_desc = "COUNTY", state_name = "OHIO") ## ----rent_nass_param_alt------------------------------------------------- table(ohio_rent$short_desc) ## ----non_irrigated------------------------------------------------------- non_irrigated <- ohio_rent %>% filter(grepl("NON-IRRIGATED", short_desc)) table(non_irrigated$year) # Observation per year ## ----counties------------------------------------------------------------ table(non_irrigated$county_name) # nass_param("county_name", state_name = "OHIO") ## ----asd----------------------------------------------------------------- non_irrigated %>% filter(county_name == "OTHER (COMBINED) COUNTIES") %>% pull(asd_code) %>% table() ## ----ag_census----------------------------------------------------------- farms <- nass_data(source_desc = "CENSUS", year = 2012, state_name = "OHIO", agg_level_desc = "COUNTY", domain_desc = "TOTAL", short_desc = "FARM OPERATIONS - NUMBER OF OPERATIONS") ## ----combined------------------------------------------------------------ library("tidyr") base_rent <- farms %>% select(state_fips_code, county_code, county_name, asd_code, asd_desc) %>% expand(year = unique(non_irrigated$year), nesting(state_fips_code, county_code, county_name, asd_code)) %>% full_join(non_irrigated) # Correct for missing values in the "other" base_rent <- base_rent %>% arrange(year, asd_code, county_code) %>% group_by(year, asd_code) %>% mutate(Value = ifelse(is.na(Value), Value[county_code == "998"], Value)) %>% filter(county_code != "998") # Finally, select only the relevant variables are rename base_rent <- base_rent %>% select(year, state_fips_code, county_code, county_name, asd_code, rent = Value) %>% mutate(rent = as.numeric(rent), fips = as.numeric(paste0(state_fips_code, county_code))) glimpse(base_rent)