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Combining the results from regression analyses in a meta-analysis often
proves difficult because differences in the statistical methods and in the units
of measurement or the encoding of the variables invalidate a direct compar-
ison of the regression coefficients. In this article, we suggest simple and
straightforward methods to extract unified measures for quantifying effects
on binary dependent variables that are comparable across different studies
even if the studies use different statistical methods, different units of mea-
surement, or different codings of the variables. The suggested effect measures
can be applied to continuous, interval-coded, and categorical covariates. We,
furthermore, suggest methods to obtain valid approximations of the stan-
dard errors of the unified effect measures that can be used, e.g., as weighting
factors in a subsequent meta-analysis. We have implemented all suggested
methods in the R package urbin that we use to demonstrate the application
of our methodology.

Keywords: binary dependent variables, meta-analysis, logit, probit

1. Introduction

Combining the results from different regression analyses in a meta-analysis often proves
difficult because differences in the applied estimation methods and differences in the units
of measurement or the encoding of the variables of interest invalidate a direct comparison
of the regression coefficients. For simple linear regression models, e.g., ordinary least
squares regression models, these problems can to some extent be overcome by calculating
an ‘elasticity’ for each continuous covariate of interest at the sample mean, and a relative
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effect size of each categorical covariate of interest. These measures indicate by how
many percent the dependent variable changes if a continuous covariate increases by one
percent or if a categorical covariate changes from a reference category to the category
of interest. However, for many non-linear regression models, e.g., generalised linear
models, this approach is no longer straightforward and often requires more statistical
information than is usually provided in articles, in particular if the user wishes to obtain
valid standard errors for those measures.
This article introduces simple and straightforward methods to extract comparable

effect measures and their corresponding standard errors from studies with binary and
categorical dependent variables.1 We demonstrate how to derive semi-elasticities for
continuous covariates and effect size measures for categorical or ordered covariates from
the statistical information usually provided in articles. Furthermore, we demonstrate
how to transform and unify differently encoded variables, by showing how to calculate a
semi-elasticity of an interval-coded covariate, how to calculate the effect size by turning
a continuous covariate into an interval-coded covariate, and how to change the reference
category or the grouping of a categorical covariate in order to make effects comparable
across different studies. Finally, we introduce a simple and novel way to calculate valid
approximations of the standard errors for the derived semi-elasticities and effect size
measures in cases where the full variance-covariance matrix of the regression model is
unavailable—which we deem to be the standard for most publications.
We demonstrate the application of our methodology by means of a data set on women’s

labour force participation [1] and the R [2] package urbin [3], in which we have imple-
mented all methods that we suggest in this article.
The article is structured as follows: section two gives a brief introduction to the data

set; section three briefly presents the regression methods that we cover in this article;
sections four to seven discuss the various approaches for calculating semi-elasticities,
effect sizes, and corresponding standard errors; section eight demonstrates how these
approaches can be applied to non-binary categorical dependent variables; finally, section
nine concludes.

2. Data for empirical example

We use an empirical example based on a data set on women’s labour force participation
[1] to demonstrate the application of our methodology using R package urbin [3] and to
test the validity of the approximated standard errors in cases where the full variance-
covariance matrix is unavailable to the user. The data set is available through the R
package sampleSelection [4] under the name Mroz87.

The data set contains 753 observations on married women and their respective labour
force participation in the year 1975, as well as various socio-economic background vari-

1The estimation methods covered here are the linear probability model, logistic regression, probit re-
gression, ordinal probit regression, multivariate probit regression, and multinomial logistic regression.
We refrain for the time being from estimation methods for discrete choice experiments, e.g., condi-
tional logistic regression, or mixed logistic regression.
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ables. In total the data set includes 22 variables. Table 1 provides the summary statistics
of the variables in this data set.2

In our empirical example, we use the women’s labour force participation (lfp) as
dependent (outcome) variable. Variable lfp is a dummy variable, where a ‘1’ represents
labour force participation and a ‘0’ represents no labour force participation. We regress
this variable on a dummy variable for the presence of children in the household (kids),
the woman’s age in years (age), and her years of education (educ):

Pr(lfp = 1|kids, age, educ) = f(kids, age, educ) (1)

Variable age is our primary variable of interest and we use it either as a continuous
covariate or as an interval-coded covariate with four intervals: 30–37, 38–44, 45–62, and
63–70 years.
To demonstrate how to apply our methods to regression models where the dependent

variable has more than two categories, e.g., ordered probit models and multinomial lo-
gistic regressions, and to test approximations of standard errors from estimates derived
from these regressions models, we create an additional variable for labour force par-
ticipation that has three categories: ‘no labour force participation’ (0 working hours),
‘part-time labour force participation’ (1–1,300 working hours), and ‘full-time labour force
participation’ (¿1,300 working hours).
We estimate equation (1) with the estimation methods discussed in this article. The

regression results provide the variance-covariance matrices of the estimated coefficients
so that we can apply the Delta method [5] to calculate approximate standard errors
of the calculated effect size measures. We use these standard errors as benchmarks to
assess the quality of various approximations for cases where all off-diagonal elements of
the variance-covariance matrix are unknown, which is the case for most studies published
in the literature, as usually only the standard errors (or t-values) of the estimates are
reported.

3. Estimation methods

Most estimation methods that can handle binary or categorical dependent variables
can be categorised into two groups: methods where the link function follows a normal
distribution, so-called probit regressions, and methods where the link function follows a
logistic distribution, logistic regressions.3 Another approach that has regained popularity
in recent years because it is based on fewer assumptions than other approaches is the
linear probability model, which uses a simple linear link function, and, thus, can be

2A more detailed description of the variables in this data set is available, e.g., in the documentation of
the sampleSelection package. The R code that loads the data set and prepares it for the examples in
Sections 4 to 8 is available in Appendix Section C.1.

3There exists a multitude of estimation techniques for models with categorical dependent variables,
quasi-categorical dependent variables, like count data, or outcome variables that can be transferred
into a binary or categorical variables, like truncated variables. We consider these regression models
to be outside the scope of this article.
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estimated by ordinary least squares (OLS) and other estimators for linear regression
models.
The linear probability model assumes that a Bernoulli trial can be explained by a

linear combination of covariates:

Pr(Y = 1|X = x) = β0 +

K∑
j=1

βjxj , (2)

where Y ∈ {0, 1} is a binary dependent variable, x = (x1, . . . , xK)⊤ is a vector of K
covariates, and β = (β0, . . . , βK)⊤ is a vector of K + 1 unknown coefficients.
A probit regression model [6, 7] models the same relationship assuming a probit link

function which follows a standard normal distribution:

Pr(Y = 1|X = x) = Φ

β0 +

K∑
j=1

βjxj

 , (3)

where Φ(·) is the cumulative distribution function of the standard normal distribution.
The logistic regression [8] uses a logit link function:

Pr(Y = 1|X = x) =
exp

(
β0 +

∑K
k=1 βkxk

)
1 + exp

(
β0 +

∑K
k=1 βkxk

) , (4)

A bivariate or multivariate probit model generalises the probit regression model (3)
to simultaneously estimate two or more probit equations for different binary dependent
variables Y1, . . . , YN , where a potential correlation between the error terms of the dif-
ferent probit equations is explicitly modelled. As meta-analyses usually focus on one
specific dependent variable, the coefficients of the regression equations for the other de-
pendent variables and the correlation structure of the error terms in the multivariate
probit regression model can be ignored. Hence, the estimation result for the one probit
equation of interest can be treated like an estimation result from a univariate probit
regression, so that equation (3) can be used to calculate the unconditional probabili-
ties P (Yn = 1|x1, . . . , xK) and the marginal effects on the unconditional probabilities in
bivariate and multivariate probit regression models [9].4

If a study reports the marginal effects based on the regression results of a probit model,
a logistic regression, or a multivariate probit model, one can assume a first-order Taylor
series approximation of these models around the point, at which the marginal effects
were calculated. Under this linear approximation, the marginal effects can be treated as
if they were coefficients of a linear probability model (2).
Many extensions of probit and logistic regression models have been developed to ac-

commodate for more complicated data structures. For instance, regression methods for

4We do not take into account the conditional probabilities P (Yn = 1|x1, . . . , xK , Y1, . . . , Yn−1,
Yn+1, . . . , YP ) and the marginal effects on the conditional probabilities, because we focus on one
dependent variable and disregard interrelations between different dependent variables.
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dependent variables with more than two categories estimate the probability that the
dependent variable is equal to a certain category. Studies with this set-up can still be
compared to studies with a binary dependent variable if the categories can be grouped
into two groups that correspond to the two outcomes of the binary dependent variable
in the other studies.
A modification of the probit regression that handles ordered categorical variables, i.e.,

categorical variables where the ordering of the categories is meaningful (think of first
place, second and third place), is the ordered probit regression [10], where the dependent
variable can have P distinct and strictly ordered values (Y ∈ {1, . . . , P}), can be specified
as:

Pr(Y = p|X = x) = Φ

µp −
K∑
j=1

βjxj

− Φ

µp−1 −
K∑
j=1

βjxj

 (5)

∀ p = 1, . . . , P,

where µ0 < µ1 < . . . < µP are the break points, of which µ0 = −∞, µP = ∞, and
µ1, . . . , µP−1 are unknown and, thus, need to be estimated. To make estimates from
an ordered probit model comparable to estimates from models with a binary dependent
variable, we create a new binary dependent variable Y ∗ by dividing the P distinct values
of the dependent variable Y into two categories:

Y ∗ =

{
0 if Y ∈ {1, . . . , p∗ − 1}
1 if Y ∈ {p∗, . . . , P}

(6)

with p∗ ∈ {2, . . . , P}. This reduces the ordered probit model to a binary probit model:5

Pr(Y ∗ = 1|X = x) = Pr(Y ∈ {p∗, . . . , P}|X = x) (7)

= Φ

−µp∗−1 +
K∑
j=1

βjxj

 , (8)

where the intercept of the binary probit model (3) is equal to the negative value of the
break point that separates Y ∗ = 0 from Y ∗ = 1, i.e., β0 = −µp∗−1.

6

The multinomial logistic regression [11] handles estimation models with multinomial
dependent variables, i.e., categorical variables where the ordering of the categories has

5A proof is given in Appendix Section B.
6If the ordered probit model (5) is estimated with intercept, say, β∗

0 and (for identification) by normal-
ising the first (internal) break point to zero, i.e., µ1 = 0, the ordered probit model can be simplified
to a binary probit model with intercept β0 = β∗

0 − µp∗−1.
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no meaning (think of red cars, green, cars, and blue cars):

Pr(Y = p|X = x) ≡ πp (9)

=
exp

(
β0,p +

∑K
k=1 βk,pxk

)
1 +

∑
o∈{1,...,P}\p∗ exp

(
β0,o +

∑K
k=1 βk,oxk

) (10)

=
exp

(
β0,p +

∑K
k=1 βk,pxk

)
∑P

o=1 exp
(
β0,o +

∑K
k=1 βk,oxk

) (11)

∀ p = 1, . . . , P,

where Y ∈ {1, . . . , P} is a categorical dependent variable with reference category p∗,
β·,p = (β0,p, . . . , βK,p)

⊤; p ∈ {1, . . . , P}\p∗ are P−1 vectors ofK+1 unknown coefficients
each, and βj,p∗ ≡ 0 ∀ j = 0, . . . ,K are the K+1 coefficients of the reference category p∗,
which are all normalized to zero.

4. Semi-elasticities of continuous covariates

4.1. Semi-elasticities

Differences in the units of measurement of the variables of interest often render it
impossible to directly compare coefficient estimates from different studies. In many
cases, this problem can be circumvented by calculating the elasticity of the effect,
ϵk = ∂ ln(Y )/∂ ln(xk) = (∂Y/∂xk) · (xk/Y ), e.g., calculated at the sample mean xk = x̄k
and Y = Ȳ (e.g., see [12]). The elasticity describes the percentage change in the de-
pendent variable Y given a one percent increase in the continuous covariate xk. It is
as such unit-free, which allows the user to compare the effect of a particular covariate
across different studies.
In the case of studies with binary dependent variables, the regression model describes

the probability that the dependent variable has a value of one. As the probability
is already coded between zero and one and unit-free, we suggest to calculate a semi-
elasticity of each continuous covariate of interest:

ϵk ≡ ∂ Pr(Y = 1|X = x)

∂xk
· xk, (12)

which can be interpreted as the percentage point change in the probability of Y being
equal to one given a one percent increase in xk.
Table 2 presents the equations for calculating the semi-elasticities of continuous co-

variates for all six estimation methods covered in this article. If the covariate of interest
enters the estimation equation both as linear term and as quadratic term, the equations
for calculating the semi-elasticities must be extended accordingly. These extensions for
quadratic terms are included in the equations in Table 2.

7



T
ab

le
2:

S
em

i-
el
a
st
ic
it
ie
s
of

co
n
ti
n
u
ou

s
co
va
ri
at
es

fo
r
6
d
iff
er
en
t
re
gr
es
si
on

m
o
d
el
s

R
eg
re
ss
io
n
m
o
d
el

S
em

i-
el
as
ti
ci
ty

L
in
ea
r
p
ro
b
a
b
il
it
y
m
o
d
el

ϵ k
=

(β
k
+
2
β
k
+
1
x
k
)
x
k

B
in
ar
y,

b
iv
ar
ia
te

/
m
u
lt
iv
a
ri
-

a
te
,
a
n
d
or
d
er
ed

p
ro
b
it
re
gr
es
-

si
on

ϵ k
=

ϕ

  β 0
+

K ∑ j=
1

β
j
x
j

  (β
k
+
2
β
k
+
1
x
k
)
x
k

L
o
gi
st
ic

re
g
re
ss
io
n

ϵ k
=

ex
p
(β

0
+
∑ K j=

1
β
j
x
j
)

(1
+
ex
p
(β

0
+
∑ K j=

1
β
j
x
j
))

2
(β

k
+
2
β
k
+
1
x
k
)
x
k

M
u
lt
in
om

ia
l

lo
gi
st
ic

re
g
re
s-

si
o
n

ϵ k
,P

=
∑ p
∈

P

ϵ∗ k
,p

w
it
h
ϵ∗ k

,p
=

π
p

( β
k
,p
+
2
β
k
+
1
,p
x
k
−

P ∑ o
=
1

(β
k
,o
+
2
β
k
+
1
,o
x
k
)
π
o

) x
k

∀
p
=

1,
..
.,
P

N
ot
e:

ϕ
(·)

d
en

o
te
s
th
e
p
ro
b
a
b
il
it
y
d
en

si
ty

fu
n
ct
io
n
of

th
e
st
an

d
ar
d
n
or
m
al

d
is
tr
ib
u
ti
on

.
If

th
e
re
gr
es
si
on

an
al
y
si
s
in
cl
u
d
es

a
q
u
a
d
ra
ti
c
te
rm

of
th
e
co
va
ri
a
te

o
f
in
te
re
st
,
w
e
as
su
m
e
th
at

th
e
m
o
d
el

is
sp
ec
ifi
ed

w
it
h

x
k
+
1
≡

x
2 k
so

th
at

β
k
+
1
an

d
β
k
+
1
,j
;j

=
1,
..
.,
P

in
d
ic
at
e
th
e
co
effi

ci
en
t(
s)

of
th
e
q
u
ad

ra
ti
c
te
rm

of
th
e
co
va
ri
at
e
of

in
te
re
st
.
If
th
e
re
gr
es
si
on

an
al
y
si
s
d
o
es

n
ot

in
cl
u
d
e
a
q
u
a
d
ra
ti
c
te
rm

of
th
e
co
va
ri
at
e
of

in
te
re
st
,
th
e
eq
u
at
io
n
s
in

th
is
ta
b
le

ca
n
b
e
si
m
p
li
fi
ed

b
y
se
tt
in
g
al
l
β
k
+
1
an

d
al
l
β
k
+
1
,j
;j

=
1,
..
.,
P

to
ze
ro
.
F
o
r
m
u
lt
in
om

ia
l
lo
gi
st
ic

re
gr
es
si
on

m
o
d
el
s,

P
in
d
ic
at
es

th
e
se
t
of

ca
te
go

ri
es

of
th
e
d
ep

en
d
en
t

va
ri
a
b
le

th
a
t
co
rr
es
p
o
n
d
to

a
b
in
ar
y
o
u
tc
o
m
e
of

on
e,

w
h
il
e
al
l
ca
te
go

ri
es

th
at

ar
e
n
ot

in
P

co
rr
es
p
on

d
to

a
b
in
ar
y
ou

tc
om

e
of

ze
ro
.

8



As described in Section 3, certain estimates from bivariate, multivariate, and ordered
probit regressions can be extracted so that parts of these models correspond to binary
probit models and the equation for calculating semi-elasticities of binary probit models
can be also applied to bivariate, multivariate, and ordered probit models.
We have implemented the calculation of semi-elasticities for all six estimation methods

covered in this article in the R package urbin. In order to demonstrate how to use this
package, we calculate the semi-elasticity of the variable age with regard to a married
woman’s probability to participate in the labour force based on a probit regression (3)
of equation (1).7

Table 3: Probit regression results with age as linear and quadratic covariate

Dependent variable:

lfp

(1) (2)

Constant 0.09 −3.89∗∗∗

(0.44) (1.39)

kids −0.13∗∗∗ −0.15∗∗∗

(0.04) (0.04)

age −0.02∗∗∗ 0.17∗∗∗

(0.01) (0.06)

I(agê 2) −0.002∗∗∗

(0.001)

educ 0.10∗∗∗ 0.10∗∗∗

(0.02) (0.02)

Observations 753 753
Log Likelihood −493.99 −489.38
Akaike Inf. Crit. 995.98 988.76

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

The results of the probit regression are presented in Table 3, which in combination
with Table 1 represents the standard information that a user usually can obtain from
most publications.
In the following command, function urbinEla calculates the semi-elasticity of variable

age:

7The R code for estimating these models is available in Appendix Section C.2.
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urbinEla( coef(estProbit), xMean, xPos = 3, model = "probit" )

## semEla stdEr

## -0.3608258 NA

This is done based on the vector of coefficients (including intercept) of the probit re-
gression, coef(estProbit), and the vector of sample means for all covariates (including
a one for the intercept), xMean. Argument xPos indicates the position of the covariate(s)
of interest, in our example age, in the vectors coef(estProbit) and xMean. Argument
model is set to "probit", because the coefficients are obtained from a probit regression
and, thus, the semi-elasticity of variable age has to be calculated based on equation (3).
The calculated semi-elasticity indicates that the probability that a woman is in the
labour force decreases, ceteris paribus, by 0.36 percentage points if her age increases by
one percent.
If variable age also enters the regression equation in quadratic form, we can sim-

ply use argument xPos to point out the positions of both age and age2 in vectors
coef(estProbitQ) and xMeanQ:

urbinEla( coef(estProbitQ), xMeanQ, xPos = c( 3, 4 ),

model = "probit" )

## semEla stdEr

## -0.3330041 NA

If argument xPos has two elements, function urbinEla automatically uses the ex-
tended formula to accommodate the quadratic term in the calculation of the semi-
elasticity. The semi-elasticity based on the probit model with both a linear and a
quadratic term of age indicates that the probability that a woman is in the labour
force decreases, ceteris paribus, by 0.33 percentage points if her age increases by one
percent.

4.2. Approximation of standard errors

An approximate standard error of the semi-elasticity defined in equation (12) can be
obtained by using the Delta method [5]:

se (ϵk) =

√
∂ϵk
∂β

Var (β)
∂ϵk
∂β⊤ , (13)

where se (ϵk) indicates the (approximate) standard error of the semi-elasticity ϵk, ∂ϵk/∂β
indicates the gradient vector of the semi-elasticity ϵk with respect to the coefficients
β0, . . . , βK , and Var (β) indicates the variance-covariance matrix of the estimated coef-
ficients. The gradient vectors for the semi-elasticities, ∂ϵk/∂β, of the various regression
models are presented in Appendix Section A.1.
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The following commands calculate the same semi-elasticities as above, but this time
include their respective standard errors based on the full variance-covariances matrices
of the estimates:

urbinEla( coef(estProbit), xMean, xPos = 3, model = "probit",

allCoefVcov = vcov(estProbit) )

## semEla stdEr

## -0.3608258 0.1145625

urbinEla( coef(estProbitQ), xMeanQ, xPos = c( 3, 4 ),

model = "probit", allCoefVcov = vcov(estProbitQ) )

## semEla stdEr

## -0.3330041 0.1104025

As scientific publications usually do not report covariances between estimated coef-
ficients, but only (at best) standard errors (or t-values, which can be used to calcu-
late the standard errors), the covariances between the estimates of the coefficient are
usually unknown. A simple solution would be to replace the unknown covariances by
zeros. However, in many empirical examples and a few Monte-Carlo trials, we noticed
that ignoring the covariances between the coefficients often gives very imprecise, mostly
upward-biased, standard errors of the semi-elasticities, particularly if the models include
a quadratic term of the covariate of interest:

urbinEla( coef(estProbit), xMean, xPos = 3, model = "probit",

allCoefVcov = sqrt(diag(vcov(estProbit))),

seSimplify = FALSE )

## Warning in urbinEla(coef(estProbit), xMean, xPos = 3, model = "probit",

: the returned standard error is likely very imprecise; you can provide

the full covariance matrix via argument ’allCoefVcov’ or do NOT set

argument ’seSimplify’ to FALSE to obtain a more precise standard error

## semEla stdEr

## -0.3608258 0.1378307

urbinEla( coef(estProbitQ), xMeanQ, xPos = c( 3, 4 ),

model = "probit", allCoefVcov = sqrt(diag(vcov(estProbitQ))),

seSimplify = FALSE )

## Warning in urbinEla(coef(estProbitQ), xMeanQ, xPos = c(3, 4), model =

"probit", : the returned standard error is likely very imprecise; you

can provide the full covariance matrix via argument ’allCoefVcov’ or do

NOT set argument ’seSimplify’ to FALSE to obtain a more precise standard

error
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## Warning: In urbinEla(allCoef = coef(estProbitQ), allXVal = xMeanQ,

xPos = c(3, 4), model = "probit", allCoefVcov = sqrt(diag(vcov(estProbitQ))),

seSimplify = FALSE) :

## the returned standard error is likely largely upward biased and,

thus, in most cases meaningless; you can provide the full covariance

matrix via argument ’allCoefVcov’ to avoid this bias or use argument

’xMeanSd’ to substantially reduce this bias

## semEla stdEr

## -0.3330041 1.7946071

In these empirical examples and Monte Carlo trials, we found that when covariances
are assumed to be zero, simplifying the calculations of the gradients ∂ϵk/∂β by assuming
that the ‘weighting factors’ in the equations for calculating the semi-elasticities8 do not
depend on the coefficients (although they actually do), gives much better approximations
of the standard error than using the correctly calculated gradients. These simplified
gradient vectors are presented in Appendix Section A.2. As several elements of these
simplified gradient vectors are zero, the calculation of the semi-elasticities with the Delta
method ignores many of the unknown covariances so that a lack of covariances causes a
smaller problem when using the simplified gradients than when using the full gradients.
The huge overestimation of the standard errors of the semi-elasticities in the presence

of a quadratic term of the covariate of interest originates from the multicollinearity
between the quadratic term, the linear term, and the intercept. In an OLS regression,
e.g., a linear probability model, with an intercept and a linear and quadratic term of a
covariate, the variance-covariance matrix of the estimates would be equal to σ2(X⊤X)−1,
where σ2 is the variance of the error term and X is an N×3 matrix with N the number of
observations and its three columns being the intercept and the linear and quadratic term
of the covariate, respectively. If we have the values of the covariate, we can calculate the
elements wij ; i, j ∈ {1, 2, 3} of the 3× 3 matrix W ≡ (X⊤X)−1. If we additionally have
the standard errors of the coefficients of the linear and quadratic terms of the covariate,
i.e., se (β1) and se (β2), respectively, we can calculate the variance of the error term as
σ2 = se (β1)

2/w22 or as σ2 = se (β2)
2/w33 and then the covariance between the two

coefficients of the covariate as Cov (β1, β2) = σ2w23 = σ2w32. As one usually does not
have the original data that were used in published studies, but rather the mean value
and corresponding standard deviation of the covariate of interest, one can simulate the
values of the covariate, e.g., with a pseudo-random number generator sampling from a
normal distribution using the actual mean and standard deviation of the covariate. In
cases where the covariate is simulated, the actual model includes further covariates, or
the actual model is not an OLS model (but, e.g., a probit or logit regression), the two
above-described equations for calculating the variance of the error term give two different
values. In these cases, one can calculate the approximate error variance as a geometric

8I.e., ϕ(·) for different types of probit models, exp(·)/(1 + exp(·))2 for logistic regression models, and
πp and πo for multinomial logistic regression models, see Table 2.
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mean: σ2 ≈
√
(se (β1)2/w22) (se (β2)2/w33), which is a more conservative measure than

the arithmetic mean.
If a user of the urbinEla function provides standard errors of the coefficients (rather

than the full covariance matrix), it uses the simplified gradients to calculate the stan-
dard errors unless the user sets argument seSimplify to FALSE. Moreover, if the model
includes a quadratic term of the covariate of interest and the user provides the mean
value and the standard deviation of the covariate of interest through argument xMeanSd,
urbinEla uses a pseudo random number generator to draw 1,000 values from a normal
distribution with the provided mean value and standard deviation of the covariate and
then imputes the covariance between the coefficients of the linear and quadratic term of
the covariate as described in the previous paragraph.
The following command uses the simplified gradient and—for the probit regression

with the quadratic term—additionally an imputed value of the covariance between the
coefficients of the linear and quadratic term of the age variable to calculate approximate
standard errors of the semi-elasticities:

urbinEla( coef(estProbit), xMean, xPos = 3, model = "probit",

allCoefVcov = sqrt(diag(vcov(estProbit))) )

## semEla stdEr

## -0.3608258 0.1145860

urbinEla( coef(estProbitQ), xMeanQ, xPos = c( 3, 4 ),

model = "probit", allCoefVcov = sqrt(diag(vcov(estProbitQ))),

xMeanSd = c( mean(Mroz87$age), sd(Mroz87$age) ) )

## semEla stdEr

## -0.3330041 0.1333182

These standard errors aremuch closer to the standard errors based on the full variance-
covariance matrices than the näıve calculations with the full gradients and replacing the
missing covariances by zeros.

5. Semi-elasticities of interval-coded covariates

5.1. Semi-elasticities

In meta-analyses where the user is interested in comparing the semi-elasticities of a
certain continuous covariate across different studies, studies that code the covariate of
interest in intervals cause a serious problem, as coefficients of interval-coded covariates
cannot be compared to coefficients or semi-elasticities of continuous covariates. To over-
come this problem, we suggest in this section a procedure to derive a semi-elasticity of
an interval-coded covariate.
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A regression model with a binary dependent variable, where the kth covariate is
interval-coded can be specified as:

Pr(Y = 1|X = x) = g

β0 +
∑

j∈{1,...,K}\k

βjxj +
∑

m∈{1,...,M}\m∗

δmDm

 , (14)

Dm =

{
1 if bm−1 < xk ≤ bm

0 otherwise
∀ m = 1, . . . ,M, (15)

where g() is a generic link function that can take any form, x = (x1, . . . , xK)⊤ is a vec-
tor of K continuous covariates, whereas the actual values of one of these covariates, xk,
are unobserved, D = (D1, . . . , DM )⊤ is a vector of M dummy variables that indicates
in which intervals the values of covariate xk fall, b = (b0, . . . , bM )⊤ is a vector of the
M + 1 boundaries of the M intervals of covariate xk with b0 < b1 < . . . < bM−1 < bM ,
m∗ ∈ {1, . . . ,M} is an arbitrary chosen interval that is used as ‘base’ interval in the re-
gression, and β = (β0, . . . , βk−1, βk+1, . . . , βK)⊤ and δ = (δ1, . . . , δm∗−1, δm∗+1, . . . , δM )⊤

are vectors of K and M−1 unknown coefficients, respectively. For convenience of further
calculations, we define the (non-estimated) coefficient for the ‘base’ interval to be zero,
i.e., δm∗ = 0.
To derive the semi-elasticity of the ‘unknown’ continuous kth covariate:

ϵk ≡ ∂ Pr(Y = p|X = x)

∂xk
· xk, (16)

we calculate the effect of an increase of the kth covariate above each inner boundary to
the next higher interval on the probability of Y = 1, i.e.:

ekm = Pr(Y = 1|bm < xk ≤ bm+1)− Pr(Y = 1|bm−1 < xk ≤ bm) (17)

∀ m = 1, . . . ,M − 1

and the approximate proportions of observations at which the kth covariate will increase
above an inner boundary if the kth covariate increases by one percent around each of
these boundaries (i.e., the proportions of observations in the intervals ±0.5% around
each inner boundary assuming a uniform distribution of the values of the kth covariate
within each interval):

pkm ≈ 0.005 · bm
sm

bm − bm−1
+ 0.005 · bm

sm+1

bm+1 − bm
∀ m = 1, . . . ,M − 1, (18)

where sm is the proportion of observations that are in the mth interval, i.e., bm−1 <
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xk ≤ bm. Finally, we can calculate the approximate semi-elasticity by:

ϵk ≈ 100 ·
M−1∑
m=1

ekm · pkm (19)

≈
M−1∑
m=1

ekm · bm
2

(
sm

bm − bm−1
+

sm+1

bm+1 − bm

)
(20)

≈
M−1∑
m=1

ekmwm (21)

with wm ≡ bm
2

(
sm

bm − bm−1
+

sm+1

bm+1 − bm

)
∀ m = 1, . . . ,M (22)

so that this semi-elasticity can be interpreted in the same way as the semi-elasticity
defined in Section 4, i.e., it indicates the approximate increase in the probability of Y = 1
(in percentage points) that is caused by a one percent increase of the covariate xk.
Table 4 presents the equations for calculating the semi-elasticities of interval-coded

covariates for all six estimation methods covered in this article.
To demonstrate how to calculate the semi-elasticity of the interval-coded variable age

with regard to a married woman’s probability to participate in the labour force, we
estimate equation (1) as a logistic regression with age as interval-coded covariate. We
create four intervals, 30–37, 38–44, 45–52, and 53–60 years, and we use the third interval
(45–52 years) as ‘base’ interval in the regression analysis.9 The results of this estimation
are presented in Table 5.
Using the vector of coefficient estimates that can be obtained from Table 5

(coef(estLogitInt)) and a vector with the sample means of the covariates kids and
educ and the proportions of observations in the three age intervals included in the
regression (xMeantInt), one can calculate the semi-elasticity of the covariate age using
function urbinElaInt:

urbinElaInt( coef(estLogitInt), xMeanInt, xPos = c( 3, 4, 0, 5 ),

xBound = c( 30, 37.5, 44.5, 52.5, 60 ), model = "logit" )

## semEla stdEr

## -0.3860892 NA

Argument xPos indicates the positions of the four age intervals (in ascending order) in
the vectors coef(estLogitInt) and xMeantInt, where a zero indicates the position of
the reference interval that was not included in the regression and, thus, is not included
in coef(estLogitInt) or xMeantInt. Argument xBound indicates the five boundaries
of the four intervals. As the coefficients are derived from a logistic regression, we set
argument model equal to "logit". The semi-elasticity based on the logistic regression
with age as interval-coded covariate indicates that the probability that a woman is in

9The R code for estimating this model is available in Appendix Section C.3.
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Table 5: Logistic regression results with age as interval-coded covariate

Dependent variable:

lfp

Constant −1.45∗∗∗

(0.45)

kids −0.22∗∗∗

(0.06)

age30.37 0.32
(0.21)

age38.44 0.26
(0.22)

age53.60 −0.75∗∗∗

(0.25)

educ 0.16∗∗∗

(0.04)

Observations 753
Log Likelihood −491.30
Akaike Inf. Crit. 994.59

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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the labour force decreases, ceteris paribus, by 0.39 percentage points if her age increases
by one percent.

5.2. Approximation of standard errors

An approximate standard error of the semi-elasticity of interval-coded covariates can,
again, be obtained by using the Delta method (equation 13). The gradient vectors
of the semi-elasticities with respect to the coefficients, ∂ϵk/∂(β

⊤δ⊤)⊤, for the various
regression models are presented in Appendix Section A.3. Argument allCoefVcov of
function urbinElaInt can be used to specify the variance-covariance matrix:

urbinElaInt( coef(estLogitInt), xMeanInt, xPos = c( 3, 4, 0, 5 ),

xBound = c( 30, 37.5, 44.5, 52.5, 60 ), model = "logit",

allCoefVcov = vcov(estLogitInt) )

## semEla stdEr

## -0.3860892 0.0972512

As most studies do not report the variance-covariance matrix, we repeat the above cal-
culation with providing only the standard errors so that urbinElaInt sets all covariances
to zero:

urbinElaInt( coef(estLogitInt), xMeanInt, xPos = c( 3, 4, 0, 5 ),

xBound = c( 30, 37.5, 44.5, 52.5, 60 ), model = "logit",

allCoefVcov = sqrt(diag(vcov(estLogitInt))) )

## semEla stdEr

## -0.3860892 0.1124600

In this empirical example—as in most of our other empirical tests—setting the covari-
ances to zero resulted in a slight overestimation of the standard error and we did not
find a way to get better approximations than with just setting the covariances to zero.
As setting the covariances to zero usually results only in a slight overestimation of the
standard errors, we consider this approximation of the standard errors (which are often
anyway only used as weighting factors) as generally suitable for meta-analyses.

6. Effects of continuous covariates when they change between
intervals

6.1. Effect size

In this sections, we consider the case where the user wants to compare effects of an
interval-coded covariate on the probability of Y = 1. We suggest a procedure that uses
the results of studies that use the covariate of interest in its continuous form to calculate
the effect of this covariate when it switches from one reference interval to another interval.
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We start out with a regression equation where the covariate of interest, xk, is included
as a linear term:

Pr(Y = 1|X = x) = g

(
β0 +

K∑
k=1

βkxk

)
(23)

We suggest to derive the (approximate) effects of xk on Y , if this covariate changes
between M ≥ 2 discrete intervals, e.g., from a ‘reference’ interval r to an interval of
interest l, by:

Ek,lr = Pr(Y = 1|bl−1 < xk ≤ bl, x−k) (24)

− Pr(Y = 1|br−1 < xk ≤ br, x−k)

= g

β0 +
∑

j∈{1,...,K}\k

βjxj + βkE[xk|bl−1 < xk ≤ bl]

 (25)

− g

β0 −
∑

j∈{1,...,K}\k

βjxj + βkE[xk|br−1 < xk ≤ br]


= g

β0 +
∑

j∈{1,...,K}\k

βjxj + βkx̄kl

 (26)

− g

β0 −
∑

j∈{1,...,K}\k

βjxj + βkx̄kr

 ,

where x−k = (x1, . . . , xk−1, xk+1, xK)⊤ is a vector of all covariates except for xk, b0 <
b1 < . . . < bM−1 < bM are the boundaries of the intervals of covariate xk, and

x̄km ≡ E[xk|bm−1 < xk ≤ bm] ∀ m = 1, . . . ,M (27)

are the expected values of covariate xk within specific intervals. If the expected values
of covariate xk for specific intervals are unknown, it may be appropriate to approximate
them by the mid-points of the respective interval boundaries (e.g., if the covariate xk
has approximately a uniform distribution between the respective interval boundaries):

x̄km ≈ bm−1 + bm
2

∀ m = 1, . . . ,M. (28)

If the model specification additionally includes a quadratic term of the covariate k,

19



e.g., xk+1 = x2k, equations (24) to (26) change to:

Ek,lr = Pr(Y = 1|bl−1 < xk ≤ bl, x−k,k+1) (29)

− Pr(Y = 1|br−1 < xk ≤ br, x−k,k+1)

= g

(
β0 +

∑
j∈{1,...,K}\{k,k+1}

βjxj (30)

+ βkE[xk|bl−1 < xk ≤ bl] + βk+1E[x2k|bl−1 < xk ≤ bl]

)
− g

(
β0 +

∑
j∈{1,...,K}\{k,k+1}

βjxj

+ βkE[xk|br−1 < xk ≤ br] + βk+1E[x2k|br−1 < xk ≤ br]

)

= g

β0 +
∑

j∈{1,...,K}\{k,k+1}

βjxj + βkx̄kl + βk+1x
2
kl

 (31)

− g

β0 +
∑

j∈{1,...,K}\{k,k+1}

βjxj + βkx̄kr + βk+1x
2
kr

 ,

with
x2km ≡ E[x2k|bm−1 < xk ≤ bm] ∀ m = 1, . . . ,M. (32)

If E[x2k|bm−1 < xk ≤ bm] is unknown, it may be appropriate to approximate it by as-
suming that covariate xk has approximately a uniform distribution between each pair of
subsequent interval boundaries so that its probability density function between bound-
aries bm−1 and bm is 1/(bm − bm−1):

x2km ≈
∫ bm

bm−1

x2k
1

bm − bm−1
d xk (33)

=
1

3
x3k

1

bm − bm−1

∣∣∣∣bm
bm−1

(34)

=
1

3
b3m

1

bm − bm−1
− 1

3
b3m−1

1

bm − bm−1
(35)

=
b3m − b3m−1

3 (bm − bm−1)
∀ m = 1, . . . ,M. (36)

Table 6 presents the equations for calculating the effect sizes of continuous covariates
when they change between intervals for all six estimation methods covered in this article.

The effect of a continuous covariate when it changes between intervals can be calcu-
lated with package urbin by using function urbinEffInt. In our example, we use the
results of the probit regression model with variable age as a linear covariate as well as
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with age as a linear and a quadratic covariate that we already used as example in Sec-
tion 4 with estimation results presented in Table 3. Based on these estimation results,
we calculate the effect of covariate age on the probability of women’s participation in the
labour force as if age was an interval-coded covariate and changes from the 30–44 years
(reference) interval to the 53–60 years interval. We do this both for the model with age

as linear covariate:

urbinEffInt( coef(estProbit), xMean, xPos = 3,

refBound = c( 30, 44 ), intBound = c( 53, 60 ),

model = "probit" )

## effect stdEr

## -0.1662336 NA

and for the model with age as a linear and quadratic covariate:

urbinEffInt( coef(estProbitQ), xMeanQ, xPos = c( 3, 4 ),

refBound = c( 30, 44 ), intBound = c( 53, 60 ),

model = "probit" )

## effect stdEr

## -0.2918354 NA

The results based on the two estimated models indicate that the probability that a
woman is in the labour force is, ceteris paribus, 17 percentage points or 29 percentage
points, respectively, lower for women aged 53–60 years than for women aged 30–44 years.

6.2. Approximation of standard errors

As for the semi-elasticities, an approximate standard error of the effect of interval-coded
covariates can be obtained by using the Delta method (equation 13). Appendix
Section A.4 presents the gradient vectors of the effects with respect to the coefficients,
∂Ek,lr/∂β, for the various regression models. Argument allCoefVcov of function
urbinEffInt can be used to specify the variance-covariance matrix:

urbinEffInt( coef(estProbit), xMean, xPos = 3,

refBound = c( 30, 44 ), intBound = c( 53, 60 ),

model = "probit", allCoefVcov = vcov(estProbit) )

## effect stdEr

## -0.16623364 0.05243387

urbinEffInt( coef(estProbitQ), xMeanQ, xPos = c( 3, 4 ),

refBound = c( 30, 44 ), intBound = c( 53, 60 ),

model = "probit", allCoefVcov = vcov(estProbitQ) )
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## effect stdEr

## -0.29183541 0.06370879

Given that most studies only report standard errors rather than the (full) variance-
covariance matrix, we repeat the above calculations with providing only the standard
errors so that urbinEffInt sets all covariances to zero:

urbinEffInt( coef(estProbit), xMean, xPos = 3,

refBound = c( 30, 44 ), intBound = c( 53, 60 ),

model = "probit", allCoefVcov = sqrt(diag(vcov(estProbit))) )

## effect stdEr

## -0.16623364 0.05723648

urbinEffInt( coef(estProbitQ), xMeanQ, xPos = c( 3, 4 ),

refBound = c( 30, 44 ), intBound = c( 53, 60 ),

model = "probit", allCoefVcov = sqrt(diag(vcov(estProbitQ))) )

## Warning: In urbinEffInt(allCoef = coef(estProbitQ), allXVal = xMeanQ,

xPos = c(3, 4), refBound = c(30, 44), intBound = c(53, 60), model =

"probit", allCoefVcov = sqrt(diag(vcov(estProbitQ)))) :

## the returned standard error is likely largely upward biased and,

thus, in most cases meaningless; you can provide the full covariance

matrix via argument ’allCoefVcov’ to avoid this bias or use argument

’xMeanSd’ to substantially reduce this bias

## effect stdEr

## -0.2918354 0.6571220

While replacing the (frequently unknown) covariances by zeros usually has only a
minor effect on the standard error when the model has only a linear term of the covariate
of interest, the standard errors based on models with linear and quadratic terms of
the covariate of interest are usually largely upward-biased if the covariances are all set
to zeros. However, approximating the covariance between the coefficient of the linear
term and the coefficient of the quadratic term as explained in Section 4.2 usually gives
sufficiently precise approximations of the standard error. Function urbinEffInt applies
this procedure, if the user provides the mean value and the standard deviation of the
covariate of interest through argument xMeanSd:

urbinEffInt( coef(estProbitQ), xMeanQ, xPos = c( 3, 4 ),

refBound = c( 30, 44 ), intBound = c( 53, 60 ),

model = "probit", allCoefVcov = sqrt(diag(vcov(estProbitQ))),

xMeanSd = c( mean( Mroz87$age ), sd( Mroz87$age ) ) )

## effect stdEr

## -0.29183541 0.07351239
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7. Grouping and re-basing effects of categorical and
interval-coded covariates

7.1. Effect size

In cases where the user is interested in comparing effects of categorical or interval-coded
covariates on a binary dependent variable, the user will frequently encounter studies,
where the encoding of the covariate of interest differs between studies, e.g., the studies
use different reference categories and/or different categorisations.10 In this section, we
suggest an approach to obtain comparable effect sizes by streamlining the categories and
unifying the reference category.
We consider a regression model:

Pr(Y = 1|X = x) = g

β0 +
∑

j∈{1,...,K}\k

βjxj +
∑

m∈{1,...,M}\m∗

δmDm

 , (37)

Dm =

{
1 if xk ∈ cm

0 otherwise
∀ m = 1, . . . ,M, (38)

where g() is again a generic link function and the covariate of interest, xk, is a categorical
variable with M mutually exclusive categories c1, . . . , cM with cm ∩ cl = ∅ ∀ m ̸= l,
category cm∗ is used as reference category, and all other variables and coefficients are
defined as above. For notational simplification of the following derivations, we define
the (non-estimated) coefficient of the reference category to be zero, i.e., δm∗ ≡ 0.
We want to obtain the effect of a change of covariate xk from a reference category c∗r

to a category of interest c∗l :

Ek,lr = Pr(Y = 1|xk ∈ c∗l )− Pr(Y = 1|xk ∈ c∗r), (39)

where categories c∗r and/or c
∗
l may comprise multiple original categories c1, . . . , cM . Vec-

tors vr = (vr1, . . . , vrM )⊤ and vl = (vl1, . . . , vlM )⊤ indicate, which of the original cate-
gories c1, . . . , cM are included in categories c∗r and c∗l , respectively:

vnm =

{
1 if cm ∈ c∗n
0 if cm /∈ c∗n

∀ m = 1, . . . ,M ;n ∈ {r, l} (40)

In the following, we derive the effect of a change of covariate xk from a reference

10In order to simplify the notation, we use the term ‘categorical variables’ throughout this section
although all derivations in this section not only apply to (unordered or ordered) categorical variables
but equally apply to interval-coded variables.
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category c∗r to a category of interest c∗l , Ek,lr as defined in equation (39):

Ek,lr =Pr(Y = 1|xk ∈ c∗l )− Pr(Y = 1|xk ∈ c∗r) (41)

=g

β0 +
∑

j∈{1,...,K}\k

βjxj +
M∑

m=1

δmE[Dm|xk ∈ c∗l ]

 (42)

− g

β0 +
∑

j∈{1,...,K}\k

βjxj +
M∑

m=1

δmE[Dm|xk ∈ c∗r ]


=g

β0 +
∑

j∈{1,...,K}\k

βjxj +
M∑

m=1

δmDml

 (43)

− g

β0 +
∑

j∈{1,...,K}\k

βjxj +
M∑

m=1

δmDmr


with

Dmn ≡ E[Dm|xk ∈ c∗n] (44)

=
P (Dm = 1 ∩ xk ∈ c∗n)

P (xk ∈ c∗n)
(45)

=
E[Dm] vnm
P (xk ∈ c∗n)

(46)

=
smvnm∑M
k=1 skvnk

(47)

∀ m = 1, . . . ,M ;n ∈ {r, l},

where sm = E[Dm] ∀ m = 1, . . . ,M is the share of observations with covariate xk being
in category cm.
Table 7 presents the equations for grouping and re-basing effects of categorical and

interval-coded covariates for all six estimation methods covered in this article.
To demonstrate how to group and re-base a categorical covariate, we use the results of

the logistic regression model with age as interval-coded covariate that we already used
as example in Section 5 with estimation results presented in Table 5. In this estimation,
covariate age is coded as four intervals: 30–37 years, 38–44 years, 45–52 years, and 53–
60 years, where the interval 45–52 years is used as ‘base’ interval. In our example, we
apply function urbinEffCat to group and re-base the categories to calculate the effect
of age changing from the 30–44 years (reference) interval to the 53–60 years interval:

urbinEffCat( coef(estLogitInt), xMeanInt, xPos = c( 3:5 ),

xGroups = c( -1, -1, 1, 0 ), model = "logit" )

## effect stdEr

## -0.2550292 NA
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Argument xPos indicates the positions of the categories of variable age in the coef-
ficient vector and in the vector of mean values, argument xGroups indicates how the
four original categories should be grouped and re-based, and all other arguments are
defined as explained for the other functions of the urbin package. Argument xGroups

must have one element for each category that was used in the estimation, where the
categories are in the same order as indicated by argument xPos and the last element is
the ‘base’ category, i.e., in our case, the elements of argument xGroups must correspond
to the order: 30–37 years (first element of xPos), 38–44 years (second element of xPos),
53–60 years (third element of xPos), and 45–52 years (reference category). Each element
of argument xGroups must be a −1 (indicating that the category should belong to the
new reference category), a 1 (indicating that the category should belong to the new cat-
egory of interest), or a 0 (indicating that the category should neither belong to the new
reference category nor to the new category of interest). As the new reference category
comprises both the 30–37 years interval and the 38–44 years interval, the values of the
first two elements of argument xGroups must be −1. As the new category of interest is
the 53–60 years interval, the value of the third element of argument xGroups must be 1.
As the old reference interval, 45–52 years, is neither in the new reference category nor in
the new category of interest, the value of the fourth element of argument xGroups must
be 0. The calculated effect size indicates that the probability that a woman is in the
labour force is, ceteris paribus, 26 percentage points lower for women aged 53–60 years
than for women aged 30–44 years.

7.2. Approximation of standard errors

An approximate standard error of the effect of a grouped and re-based covariate
can, again, be obtained by using the Delta method (equation 13). Appendix Sec-
tion A.5 presents the gradient vectors of the effects with respect to the coefficients,
∂Ek,lr/∂(β

⊤δ⊤)⊤, for the various regression models. Argument allCoefVcov of
function urbinEffCat can be used to specify the variance-covariance matrix of the
estimated coefficients:

urbinEffCat( coef(estLogitInt), xMeanInt, c( 3:5 ),

c( -1, -1, 1, 0 ), vcov(estLogitInt), model = "logit" )

## effect stdEr

## -0.25502923 0.06231656

As most studies do not report the variance-covariance matrix, we repeat the previ-
ous calculation with providing only the standard errors so that urbinEffCat sets all
covariances to zero:

urbinEffCat( coef(estLogitInt), xMeanInt, c( 3:5 ),

c( -1, -1, 1, 0 ), sqrt(diag(vcov(estLogitInt))),

model = "logit" )
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## effect stdEr

## -0.25502923 0.06958641

Similarly to Section 5, setting the covariances to zero usually results in a slight over-
estimation of the standard errors. As these overestimations are usually small and the
standard errors are often anyway only used as weighting factors, we consider this ap-
proximation of the standard errors to be generally suitable for meta-analyses.

8. Non-binary categorical dependent variables

As explained in Section 3, it can be possible to make results of studies with non-binary
categorical dependent variables comparable to results of studies with binary dependent
variables, if the categories of the (non-binary) dependent variable can be grouped into
two groups that correspond to the two outcomes of the binary dependent variable in the
other studies.
In order to demonstrate this, we use an ordered probit regression with age as linear

and quadratic covariate and a multinomial logistic regression with age as interval-coded
covariate as examples.11 The estimation results of these two models are presented in
Tables 8 and 9, respectively.
We combine the two outcomes ‘part-time labour force participation’ and ‘full-time

labour force participation’ to one joint outcome category so that we obtain a binary
outcome: ‘no labour force participation’ and (part-time or full-time) ’labour force par-
ticipation’. For ordered probit models, the negative value of the break point that sepa-
rates the two groups of categories corresponds to the intercept of a binary probit model
(see Section 3). Hence, in our example, the relevant break point is the one between the
‘no labour force participation’ category and the ‘part-time labour force participation’
category, which has an estimated value of 3.13 (see Table 8). When applying one of the
functions of the urbin package to ordered probit models, argument iPos must indicate
the position of this break point in the vector of coefficients, while all other break points
must be ignored. The element in the vector of the values of the covariates that corre-
sponds to the relevant break point (as indicated by argument iPos) must be minus one,
in order to take into account that the intercept of a corresponding binary probit model
must be replaced by the negative value of the relevant break point of an ordered probit
model. We set argument model to "oprobit" to indicate an ordered probit model, while
all other arguments are used as explained above:

urbinEla( coef(summary(estOProbitQ))[-6,1], c( xMeanQ[-1], -1 ),

xPos = c( 2, 3 ), iPos = 5, model = "oprobit",

vcov(estOProbitQ)[-6,-6] )

## semEla stdEr

## -0.3467696 0.1201219

11The R code for estimating these two models is available in Appendix Sections C.4 and C.5, respectively.
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Table 8: Ordered probit regression results with age as linear and quadratic covariate

Dependent variable:

lfp3

kids −0.18∗∗∗

(0.04)

age 0.16∗∗∗

(0.02)

I(agê 2) −0.002∗∗∗

(0.0003)

educ 0.07∗∗∗

(0.02)

no|part 3.13∗∗∗

(0.001)

part|full 3.87∗∗∗

(0.05)

Observations 753

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 9: Multinomial logistic regression results with age as interval-coded covariate

Dependent variable:

lfp3

(Intercept):full −1.73∗∗∗

(0.53)

(Intercept):part −2.62∗∗∗

(0.55)

kids:full −0.42∗∗∗

(0.08)

kids:part −0.06
(0.07)

age30.37TRUE:full 0.57∗∗

(0.25)

age30.37TRUE:part 0.09
(0.25)

age38.44TRUE:full 0.49∗

(0.26)

age38.44TRUE:part 0.04
(0.27)

age53.60TRUE:full −0.75∗∗

(0.30)

age53.60TRUE:part −0.76∗∗

(0.33)

educ:full 0.15∗∗∗

(0.04)

educ:part 0.19∗∗∗

(0.04)

Observations 753
R2 0.04
Log Likelihood −778.06
LR Test 66.03∗∗∗ (df = 12)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.0130



The calculated semi-elasticity indicates that the probability that a woman is at least
part-time in the labour force decreases, ceteris paribus, by 0.35 percentage points if her
age increases by one percent.
In the multivariate logistic regression, ‘no labour force participation’ is used as the

reference category of the dependent variables, while ‘full-time labour force participation’
and ‘part-time labour force participation’ are used as first alternative category and sec-
ond alternative category, respectively (see Table 9). When applying one of the functions
of the urbin package to a multinomial logistic regression, argument yCat must indicate
the categories of the dependent variable P that correspond to a binary outcome of one.
All other categories are considered to correspond to a binary outcome of zero. In ar-
gument yCat, a zero indicates the reference category, while a one, two, or three, etc.
indicates the first, second, or third, etc. alternative category, respectively. As the first
and second alternative categories comprise the binary outcome of one in our example,
i.e., P = {1, 2}, argument yCat must be a vector with two values: one and two. We
set argument model to "mlogit" to indicate a multinomial logistic regression, while all
other arguments are used as explained above:

coefPermuteInt <- c( seq( 1, 11, 2 ), seq( 2, 12, 2 ) )

urbinElaInt( coef(estMLogitInt)[coefPermuteInt], xMeanInt,

c( 3, 4, 0, 5 ), c( 30, 37.5, 44.5, 52.5, 60 ), model = "mlogit",

vcov(estMLogitInt)[coefPermuteInt,coefPermuteInt],

yCat = c( 1, 2 ) )

## semEla stdEr

## -0.39395280 0.09774856

As the functions in package urbin expect that the coefficients of multinomial
logistic regressions are grouped for each category of the dependent variable (i.e.,
β0,1, . . . , βK,1, β0,2, . . . , βK,2, . . . , β0,P , . . . , βK,P ), while the coefficients of models esti-
mated by mlogit are grouped for each covariate (i.e., β0,1, . . . , β0,P , β1,1, . . . , β1,P , . . . , βK,1, . . . , βK,P ),
we created a vector coefPermuteInt that reorders the coefficients and their variances
and covariances so that they are ordered as expected by package urbin. The semi-
elasticity indicates that the probability that a woman is either part-time or full-time in
the labour force decreases, ceteris paribus, by 0.39 percentage points if her age increases
by one percent.

9. Conclusion

The direct comparison of coefficients from regression analyses from different studies is
often meaningless because the studies use different estimation methods or different units
of measurements or different encodings of the variables of interest. In this article, we
propose straightforward and easy-to-implement approaches to unify results from regres-
sion analyses with binary dependent variables or categorical dependent variables that
can be transformed to binary variables.
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We have implemented all suggested approaches in the R package urbin. This article uses
this package to demonstrate how regression results from differently specified regression
analyses can be unified by calculating semi-elasticities of continuous and interval-coded
covariates, by calculating effects of continuous covariates when they change between
intervals, and by grouping and re-basing effects of categorical and interval-coded covari-
ates. We show how to obtain valid approximations for the calculated standard errors of
the semi-elasticities and effect sizes without information about the variance-covariance
matrix of the coefficients, e.g., for cases where the user wants to use the standard errors
as weighting factors in a meta-analysis.
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A. Gradients for calculating approximate standard errors

A.1. Gradients of semi-elasticities of continuous covariates

A.1.1. Linear probability model

If the regression equation includes only a linear term of the covariate of interest, the
gradients are:

∂ϵk
∂βj

= 0 ∀ j ∈ {0, . . . ,K} \ k (48)

∂ϵk
∂βk

= xk. (49)

If the regression equation additionally includes a quadratic term of the covariate of
interest, there is one additional gradient:

∂ϵk
∂βk+1

= 2 x2k. (50)

A.1.2. Probit regression

If the regression equation includes only a linear term of the covariate of interest, the
gradients are:

∂ϵk
∂βj

= −X ′β ϵk xj ∀ j ∈ {0, . . . ,K} \ k (51)

∂ϵk
∂βk

= −X ′β ϵk xk + ϕ(X ′β) xk (52)

with x0 ≡ 1.
If the regression equation additionally includes a quadratic term of the covariate of

interest, there is one additional gradient:

∂ϵk
∂βk+1

= −X ′β ϵk x2k + 2 ϕ(X ′β) x2k. (53)

A.1.3. Logistic regression

If the regression equation includes only a linear term of the covariate of interest, the
gradients are:

∂ϵk
∂βj

=

(
1− 2 exp (X ′β)

1 + exp (X ′β)

)
ϵk xj ∀ j ∈ {0, . . . ,K} \ k (54)

∂ϵk
∂βk

=

(
1− 2 exp (X ′β)

1 + exp (X ′β)

)
ϵk xk +

exp (X ′β)

(1 + exp (X ′β))2
xk (55)

with x0 ≡ 1 (see also [13]).
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If the regression equation additionally includes a quadratic term of the covariate of
interest, there is one additional gradient:

∂ϵk
∂βk+1

=

(
1− 2 exp (X ′β)

1 + exp (X ′β)

)
ϵk x2k + 2

exp (X ′β)

(1 + exp (X ′β))2
x2k. (56)

A.1.4. Multinomial logistic regression

If the regression equation includes only a linear term of the covariate of interest, the
gradients are:

∂ϵk,P
∂βj,o

=
∑
p∈P

∂ϵ∗k,p
∂βj,o

∀ j = 0, . . . ,K; o ∈ {1, . . . , P} \ p∗ (57)

with
∂ϵ∗k,p
∂βj,o

=
(
−πpϵ

∗
k,o − πoϵ

∗
k,p +∆o,pϵ

∗
k,p

)
xj (58)

∀ j ∈ {0, . . . ,K} \ k; p = 1, . . . , P ; o ∈ {1, . . . , P} \ p∗,
∂ϵ∗k,p
∂βk,o

=
(
−πpϵ

∗
k,o − πoϵ

∗
k,p − πpπo +∆o,p

(
πp + ϵ∗k,p

))
xk (59)

∀ p = 1, . . . , P ; o ∈ {1, . . . , P} \ p∗,

x0 ≡ 1, and ∆o,p denoting Kronecker’s Delta with ∆o,p = 1 ∀ o = p and ∆o,p = 0 ∀ o ̸= p.
If the regression equation additionally includes a quadratic term of the covariate of

interest, there are P − 1 additional gradients:

∂ϵk,P
∂βk+1,o

=
∑
p∈P

∂ϵ∗k,p
∂βk+1,o

∀ o ∈ {1, . . . , P} \ p∗ (60)

with
∂ϵ∗k,p

∂βk+1,o
=
(
−πpϵ

∗
k,o − πoϵ

∗
k,p − 2πpπo +∆o,p

(
2πp + ϵ∗k,p

))
x2k (61)

∀ p = 1, . . . , P ; o ∈ {1, . . . , P} \ p∗.

A.2. Simplified gradients of semi-elasticities of continuous covariates

A.2.1. Linear probability model

As almost all elements of the gradient vector are zero (see section A.1.1), almost all
off-diagonal elements of the variance-covariance matrix of the estimated coefficients are
anyway ignored when the Delta method is applied to calculate the approximate standard
error of the semi-elasticity. Therefore, we do not need to obtain ‘simplified’ gradients in
order to avoid biases due to missing information about the off-diagonal elements of the
variance-covariance matrix.

A.2.2. Probit regression

In order to improve the approximation of the standard errors when the off-diagonal
elements of the variance-covariance matrix of the estimated coefficients are unknown, we
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simplify the derivation of the gradients by ignoring that the ‘weighting factor’ ϕ(·) in the
equation for calculating the semi-elasticities (see Table 2) depends on the coefficients.
If the regression equation includes only a linear term of the covariate of interest, the
‘simplified’ gradients are:

∂ϵk
∂βj

= 0 ∀ j ∈ {0, . . . ,K} \ k (62)

∂ϵk
∂βk

= ϕ(X ′β) xk. (63)

If the regression equation additionally includes a quadratic term of the covariate of
interest, there is one additional ‘simplified’ gradient:

∂ϵk
∂βk+1

= 2 ϕ(X ′β) x2k. (64)

A.2.3. Logistic regression

In order to improve the approximation of the standard errors when the off-diagonal
elements of the variance-covariance matrix of the estimated coefficients are unknown, we
simplify the derivation of the gradients by ignoring that the ‘weighting factor’ exp(·)/(1−
exp(·))2 in the equation for calculating the semi-elasticities (see Table 2) depends on the
coefficients. If the regression equation includes only a linear term of the covariate of
interest, the ‘simplified’ gradients are:

∂ϵk
∂βj

= 0 ∀ j ∈ {0, . . . ,K} \ k (65)

∂ϵk
∂βk

=
exp (X ′β)

(1 + exp (X ′β))2
xk (66)

If the regression equation additionally includes a quadratic term of the covariate of
interest, there is one additional ‘simplified’ gradient:

∂ϵk
∂βk+1

= 2
exp (X ′β)

(1 + exp (X ′β))2
x2k. (67)

A.2.4. Multinomial logistic regression

In order to improve the approximation of the standard errors when the off-diagonal
elements of the variance-covariance matrix of the estimated coefficients are unknown, we
simplify the derivation of the gradients by ignoring that the ‘weighting factors’ πp; p =
{1, . . . , P} and πo; o = {1, . . . , P} in the equation for calculating the semi-elasticities
(see Table 2) depend on the coefficients. If the regression equation includes only a linear
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term of the covariate of interest, the ‘simplified’ gradients are:

∂ϵk,P
∂βj,o

=
∑
p∈P

∂ϵ∗k,p
∂βj,o

∀ j = 0, . . . ,K; o ∈ {1, . . . , P} \ p∗ (68)

with
∂ϵ∗k,p
∂βj,o

= 0 ∀ j ∈ {0, . . . ,K} \ k; p = 1, . . . , P ; o ∈ {1, . . . , P} \ p∗, (69)

∂ϵ∗k,p
∂βk,o

= (−πpπo +∆o,pπp)xk ∀ p = 1, . . . , P ; o ∈ {1, . . . , P} \ p∗, (70)

and ∆o,p denoting Kronecker’s Delta with ∆o,p = 1 ∀ o = p and ∆o,p = 0 ∀ o ̸= p.
If the regression equation additionally includes a quadratic term of the covariate of

interest, there are P − 1 additional gradients:

∂ϵk,P
∂βk+1,o

=
∑
p∈P

∂ϵ∗k,p
∂βk+1,o

∀ o ∈ {1, . . . , P} \ p∗ (71)

with
∂ϵ∗k,p

∂βk+1,o
= (−2πpπo + 2∆o,pπp)x

2
k (72)

∀ p = 1, . . . , P ; o ∈ {1, . . . , P} \ p∗.

A.3. Gradients of semi-elasticities of interval-coded covariates

A.3.1. Linear probability model

The gradients are:

∂ϵk
∂βj

= 0 ∀ j ∈ {0, . . . ,K} \ k (73)

∂ϵk
∂δ1

= − w1 (74)

∂ϵk
∂δm

= wm−1 − wm ∀ m ∈ {2, . . . ,M − 1} \m∗ (75)

∂ϵk
∂δM

= wM−1 (76)
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A.3.2. Probit regression

The gradients are:

∂ϵk
∂βj

= xj

M−1∑
m=1

(ϕm+1(·)− ϕm(·))wm ∀ j ∈ {0, . . . ,K} \ k (77)

∂ϵk
∂δ1

= − ϕ1(·) w1 (78)

∂ϵk
∂δm

= ϕm(·) (wm−1 − wm) ∀ m ∈ {2, . . . ,M − 1} \m∗ (79)

∂ϵk
∂δM

= ϕM (·) wM−1 (80)

with ϕm ≡ ϕ

β0 +
∑

j∈{1,...,K}\k

βjxj + δm

 ∀ m = 1, . . . ,M (81)

and x0 ≡ 1.

A.3.3. Logistic regression

The gradients are:

∂ϵk
∂βj

= xj

M−1∑
m=1

(
expm+1(·)

(1 + expm+1(·))2
− expm(·)

(1 + expm(·))2

)
wm (82)

∀ j ∈ {0, . . . ,K} \ k
∂ϵk
∂δ1

= − exp1(·)
(1 + exp1(·))2

w1 (83)

∂ϵk
∂δm

=
expm(·)

(1 + expm(·))2
(wm−1 − wm) ∀ m ∈ {2, . . . ,M − 1} \m∗ (84)

∂ϵk
∂δM

=
expM (·)

(1 + expM (·))2
wM−1 (85)

with x0 ≡ 1 and expm;m = 1, . . . ,M as defined in Table 4.
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A.3.4. Multinomial logistic regression

The gradients are:

∂ϵk,P
∂βj,o

=
∑
p∈P

∂ϵ∗k,p
∂βj,o

∀ j ∈ {0, . . . ,K} \ k; o ∈ {1, . . . , P} \ p∗ (86)

∂ϵk,P
∂δm,o

=
∑
p∈P

∂ϵ∗k,p
∂δm,o

∀ m ∈ {1, . . . ,M} \m∗; o ∈ {1, . . . , P} \ p∗ (87)

with
∂ϵ∗k,p
∂βj,o

= xj

M−1∑
m=1

(
πp,mπo,m − πp,m+1πo,m+1 (88)

−∆op (πp,m − πp,m+1)
)
wm

∀ j ∈ {0, . . . ,K} \ k; p = 1, . . . , P ; o ∈ {1, . . . , P} \ p∗,
∂ϵ∗k,p
∂δ1,o

= (πp,1πo,1 −∆o,p πp,1)w1 (89)

∀ p = 1, . . . , P ; o ∈ {1, . . . , P} \ p∗,
∂ϵ∗k,p
∂δm,o

= (πp,mπo,m −∆o,p πp,m) (wm − wm−1) (90)

∀ m ∈ {2, . . . ,M − 1} \m∗; p = 1, . . . , P ; o ∈ {1, . . . , P} \ p∗,
∂ϵ∗k,p
∂δM,o

= − (πp,Mπo,M −∆o,p πp,M )wM−1 (91)

∀ p = 1, . . . , P ; o ∈ {1, . . . , P} \ p∗,

πp,m ≡
expm,p∑P
o=1 expm,o

∀ p = 1, . . . , P ;m = 1, . . . ,M, (92)

x0 ≡ 1, and expm,p;m = 1, . . . ,M ; p = 1, . . . , P as defined in Table 4.

A.4. Gradients of effects of continuous covariates when they change
between intervals

A.4.1. Linear probability model

If the regression equation includes only a linear term of the covariate of interest, the
gradients are:

∂Ek,lr

∂βj
= 0 ∀ j ∈ {0, . . . ,K} \ k (93)

∂Ek,lr

∂βk
= x̄kl − x̄kr. (94)

If the regression equation additionally includes a quadratic term of the covariate of
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interest, there is one additional gradient:

∂Ek,lr

∂βk+1
= x2kl − x2kr. (95)

A.4.2. Probit regression

If the regression equation includes only a linear term of the covariate of interest, the
gradients are:

∂Ek,lr

∂βj
= (ϕl − ϕr)xj ∀ j ∈ {0, . . . ,K} \ k (96)

∂Ek,lr

∂βk
= ϕl x̄kl − ϕr x̄kr (97)

with ϕn ≡ ϕ

β0 +
∑

j∈{1,...,K}\k

βjxj + βkx̄kn

 ∀ n ∈ {l, r} (98)

and x0 ≡ 1.
If the regression equation additionally includes a quadratic term of the covariate of

interest, we have:

ϕn ≡ ϕ

β0 +
∑

j∈{1,...,K}\{k,k+1}

βjxj + βkx̄kn + βk+1x2kn

 (99)

∀ n ∈ {l, r}

and there is one additional gradient:

∂Ek,lr

∂βk+1
= ϕl x2kl − ϕr x2kr. (100)

A.4.3. Logistic regression

If the regression equation includes only a linear term of the covariate of interest, the
gradients are:

∂Ek,lr

∂βj
=

(
expl(·)

(1 + expl(·))2
− expr(·)

(1 + expr(·))2

)
xj ∀ j ∈ {0, . . . ,K} \ k (101)

∂Ek,lr

∂βk
=

expl(·)
(1 + expl(·))2

x̄kl −
expr(·)

(1 + expr(·))2
x̄kr (102)

with expn ≡ exp

β0 +
∑

j∈{1,...,K}\k

βjxj + βkx̄kn

 ∀ n ∈ {l, r} (103)

and x0 ≡ 1.
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If the regression equation additionally includes a quadratic term of the covariate of
interest, we have:

expn ≡ exp

β0 +
∑

j∈{1,...,K}\{k,k+1}

βjxj + βkx̄kn + βk+1x2kn

 (104)

∀ n ∈ {l, r}

and there is one additional gradient:

∂Ek,lr

∂βk+1
=

expl(·)
(1 + expl(·))2

x2kl −
expr(·)

(1 + expr(·))2
x2kr. (105)

A.4.4. Multinomial logistic regression

If the regression equation includes only a linear term of the covariate of interest, the
gradients are:

∂Ek,lr,P

∂βj,o
=
∑
p∈P

∂E∗
k,lr,p

∂βj,o
∀ j = 0, . . . ,K; o ∈ {1, . . . , P} \ p∗ (106)

∂E∗
k,lr,p

∂βj,o
=
(
πp,r πo,r − πp,l πo,l −∆o,p (πp,r − πp,l)

)
xj (107)

∀ j ∈ {0, . . . ,K} \ k; p = 1, . . . , P ; o ∈ {1, . . . , P} \ p∗

∂E∗
k,lr,p

∂βk,o
= (πp,r πo,r −∆o,p πp,r) x̄kr − (πp,l πo,l −∆o,p πp,l) x̄kl (108)

∀ p = 1, . . . , P ; o ∈ {1, . . . , P} \ p∗

with πp,n ≡
exp

(
β0,p +

∑
j∈{1,...,K}\k βj,pxj + βk,px̄k,n

)
∑P

o=1 exp
(
β0,o +

∑
j∈{1,...,K}\k βj,oxj + βk,ox̄k,n

) (109)

∀ p = 1, . . . , P ;n ∈ {l, r},

x0 ≡ 1, and ∆o,p denoting Kronecker’s Delta with ∆o,p = 1 ∀ o = p and ∆o,p = 0 ∀ o ̸= p.
If the regression equation additionally includes a quadratic term of the covariate of

interest, we have:

πp,n ≡
exp

(
β0,p +

∑
j∈{1,...,K}\{k,k+1} βj,pxj + βk,px̄k,n + βk+1,px2k,n

)
∑P

o=1 exp(β0,o +
∑

j∈{1,...,K}\{k,k+1} βj,oxj + βk,ox̄k,n + βk+1,ox2k,n)
(110)

∀ p = 1, . . . , P ;n ∈ {l, r}

and there are P (P − 1) additional gradients:

∂Ek,lr,p

∂βk+1,o
= (πp,r πo,r −∆o,p πp,r) x̄

2
kr − (πp,l πo,l −∆o,p πp,l) x̄

2
kl (111)

∀ p = 1, . . . , P ; o ∈ {1, . . . , P} \ p∗.
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A.5. Gradients of grouped and re-based effects of categorical and
interval-coded covariates

A.5.1. Linear probability model

The gradients are:

∂Ek,lr

∂βj
= 0 ∀ j ∈ {0, . . . ,K} \ k (112)

∂Ek,lr

∂δm
= Dml −Dmr ∀ m ∈ {1, . . . ,M} \m∗ (113)

A.5.2. Probit regression

The gradients are:

∂Ek,lr

∂βj
= (ϕl(·)− ϕr(·))xj ∀ j ∈ {0, . . . ,K} \ k (114)

∂Ek,lr

∂δm
= ϕl(·) Dml − ϕr(·) Dmr ∀ m ∈ {1, . . . ,M} \m∗ (115)

with ϕn(·) ≡ ϕ

β0 +
∑

j∈{1,...,K}\k

βjxj +

M∑
m=1

δmDmn

 (116)

∀ n ∈ {r, l}

and x0 ≡ 1.

A.5.3. Logistic regression

The gradients are:

∂Ek,lr

∂βj
=

(
expl(·)

(1 + expl(·))
2 − expr(·)

(1 + expr(·))
2

)
xj (117)

∀ j ∈ {0, . . . ,K} \ k
∂Ek,lr

∂δm
=

expl(·)
(1 + expl(·))

2 Dml −
expr(·)

(1 + expr(·))
2 Dmr (118)

∀ m ∈ {1, . . . ,M} \m∗

with expn(·) ≡ exp

β0 +
∑

j∈{1,...,K}\k

βjxj +

M∑
m=1

δmDmn

 (119)

∀ n ∈ {r, l}

and x0 ≡ 1.
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A.5.4. Multinomial logistic regression

The gradients are:

∂Ek,lr,P

∂βj,o
=
∑
p∈P

∂E∗
k,lr,p

∂βj,o
∀ j ∈ {0, . . . ,K} \ k; o ∈ {1, . . . , P} \ p∗ (120)

∂Ek,lr,P

∂βj,o
=
∑
p∈P

∂E∗
k,lr,p

∂δm,o
∀ m ∈ {1, . . . ,M} \m∗; o ∈ {1, . . . , P} \ p∗ (121)

with
∂E∗

k,lr,p

∂βj,o
= (πp,r πo,r − πp,l πo,l −∆o,p (πp,r − πp,l))xj (122)

∀ j ∈ {0, . . . ,K} \ k; p = 1, . . . , P,

∂E∗
k,lr,p

∂δm,o
= (πp,r πo,r −∆o,p πp,r)Dmr − (πp,l πo,l −∆o,p πp,l)Dml (123)

∀ m ∈ {1, . . . ,M} \m∗; p = 1, . . . , P,

πp,n ≡
exp

(
β0,p +

∑
j∈{1,...,K}\k βj,pxj +

∑M
m=1 δm,pDm,n

)
∑P

o=1 exp
(
β0,o +

∑
j∈{1,...,K}\k βj,oxj +

∑M
m=1 δm,oDm,n

) (124)

∀ p = 1, . . . , P ;n ∈ {l, r},

and x0 ≡ 1.
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B. Derivation of a binary probit model from an ordered probit
model

Pr(Y ∗ = 1|X = x) = Pr(Y ∈ {p∗, . . . , P}|X = x) (125)

=
P∑

p=p∗

Pr(Y = p|X = x) (126)

=

P∑
p=p∗

Φ

µp −
K∑
j=1

βjxj

− Φ

µp−1 −
K∑
j=1

βjxj

 (127)

=

P∑
p=p∗

Φ

µp −
K∑
j=1

βjxj

−
P∑

p=p∗

Φ

µP−1 −
K∑
j=1

βjxj

 (128)

=
P∑

p=p∗

Φ

µp −
K∑
j=1

βjxj

−
P−1∑

p=p∗−1

Φ

µp −
K∑
j=1

βjxj

 (129)

= Φ

µP −
K∑
j=1

βjxj

− Φ

µp∗−1 −
K∑
j=1

βjxj

 (130)

= Φ (∞)− Φ

µp∗−1 −
K∑
j=1

βjxj

 (131)

= 1− Φ

µp∗−1 −
K∑
j=1

βjxj

 (132)

= Φ

−µp∗−1 +
K∑
j=1

βjxj

 (133)
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C. Additional R code

C.1. Loading and preparing data

Loading the data set:

data( "Mroz87", package = "sampleSelection" )

Creating a dummy variable for the presence of children in the household:

Mroz87$kids <- Mroz87$kids5 + Mroz87$kids618

Creating dummy variables for interval-coding variable age:

Mroz87$age30.37 <- Mroz87$age >= 30 & Mroz87$age <= 37

Mroz87$age38.44 <- Mroz87$age >= 38 & Mroz87$age <= 44

Mroz87$age45.52 <- Mroz87$age >= 45 & Mroz87$age <= 52

Mroz87$age53.60 <- Mroz87$age >= 53 & Mroz87$age <= 60

all.equal(

Mroz87$age30.37 + Mroz87$age38.44 + Mroz87$age45.52 + Mroz87$age53.60,

rep( 1, nrow( Mroz87 ) ) )

Creating an ordered categorical variable that indicates three levels of labour force par-
ticipation:

Mroz87$lfp3 <- factor( ifelse( Mroz87$hours == 0, "no",

ifelse( Mroz87$hours <= 1300, "part", "full" ) ),

ordered = TRUE, levels = c( "no", "part", "full" ) )

C.2. Probit regressions with age as linear covariate and with age as linear
and quadratic covariate

Estimations and creating vectors with mean values of covariates:

estProbit <- glm( lfp ~ kids + age + educ,

family = binomial(link = "probit"), data = Mroz87 )

xMean <- c( 1, colMeans( Mroz87[ , c( "kids", "age", "educ" ) ] ) )

estProbitQ <- glm( lfp ~ kids + age + I(age^2) + educ,

family = binomial(link = "probit"), data = Mroz87 )

xMeanQ <- c( xMean[ 1:3], xMean[3]^2, xMean[4] )
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C.3. Logistic regressions with age as interval-coded covariate

Estimation and creating a vector with mean values of covariates:

estLogitInt <- glm( lfp ~ kids + age30.37 + age38.44 + age53.60 + educ,

family = binomial(link = "logit"), data = Mroz87 )

xMeanInt <- c( xMean[1:2], mean( Mroz87$age30.37 ),

mean( Mroz87$age38.44 ), mean( Mroz87$age53.60 ), xMean[4] )

C.4. Ordered probit regression with age as linear and quadratic covariate

Estimation:

library( "MASS" )

estOProbitQ <- polr( lfp3 ~ kids + age + I(age^2) + educ,

data = Mroz87, method = "probit", Hess = TRUE )

xMeanOProbit <- c( xMeanQ, -1 )

C.5. Multinomial logistic regressions with age as interval-coded covariate

Estimation:

library( "mlogit" )

estMLogitInt <- mlogit(

lfp3 ~ 0 | kids + age30.37 + age38.44 + age53.60 + educ,

data = Mroz87, reflevel = "no", shape = "wide" )
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