Package ‘uptimeRobot’

October 12, 2022

Type Package
Version 1.0.0
Title Access the UptimeRobot Ping API

Description Provide a set of wrappers to call all the endpoints of UptimeRobot API
which includes various kind of ping, keep-alive and speed tests.
See <https://uptimerobot.com/> for more information.

Date 2015-10-21
URL https://gabrielebaldassarre.com/r/uptimerobot

BugReports https://github.com/theclue/uptimeRobot/issues
Depends R (>=3.0)

Imports rjson, RCurl, plyr

Suggests testthat

License MIT + file LICENSE

NeedsCompilation no

BuildKeepEmpty TRUE

Author Gabriele Baldassarre [aut, cre]

Maintainer Gabriele Baldassarre <gabriele@gabrielebaldassarre.com>
Repository CRAN

Date/Publication 2015-10-22 15:23:18

R topics documented:

uptimerobot.account.details . . . . . . . ... oL
uptimerobot.contact.delete . . . . . . . ... ..
uptimerobot.CONtACt.NEW . . . . . . . . . o e e e e
Uptimerobot.CONLACES . . . . . . . v v v e i e e e e e e e e e e e e
uptimerobot.fields . . . . . . ... L
uptimerobot.monitor.contacts . . . . . . . . . ...
uptimerobot.monitor.delete . . . . . . ... ..o
uptimerobot.monitor.edit . . . . . .. ...


https://uptimerobot.com/
https://gabrielebaldassarre.com/r/uptimerobot
https://github.com/theclue/uptimeRobot/issues

Index

uptimerobot.account.details

uptimerobot.monitor.logs . . . . . . ... L. e 11
Uptimerobot.MONItOT.NEW . . . . . . v v v vt et e e e e e e e e e 12
uptimerobot.MONItOL.TESEt . . . . . . . . . v v i e e e e e e e 14
uptimerobot.MONItOL.TESPONSES . . . « « . . v v v v e e e e e e 15
uptimerobot.monitors . . . . . ... ..l 16

19

uptimerobot.account.details

Get the account details for who is linked to the given API key

Description

uptimerobot.account.details returns a list or a vector with the account details connected to the
given api key.

Usage

uptimerobot.account.details(api.key, unlist = FALSE)

Arguments
api.key string with a valid key for connecting to Uptimerobot API.
unlist logical. Set to TRUE to unlist the output to a named vector, FALSE to get a named
list.
Value

A list or a vector with the account details.

Author(s)

Gabriele Baldassarre

Examples
## Not run:
# Let's assume the api.key is available into the environment variable KEY
api.key <- Sys.getenv("KEY", "")

# Returns details as a list
details.list <- uptimerobot.account.details(api.key)

# Returns details as a vector
details.num <- uptimerobot.account.details(api.key, unlist = TRUE)

## End(Not run)



uptimerobot.contact.delete 3

uptimerobot.contact.delete
Delete an alert contact

Description

uptimerobot.contact.delete removes an alert contanct, unlinking from all the registered moni-
tors.

Usage

uptimerobot.contact.delete(api.key, id)

Arguments
api.key string with a valid key for connecting to Uptimerobot AP
id numeric or integer with the ID of the contact to delete.
Value

The function returns TRUE in case success. An error is thrown otherwise.

Author(s)

Gabriele Baldassarre

Examples
## Not run:
# Let's assume the api.key is available into the environment variable KEY
api.key <- Sys.getenv("KEY", "")

# Delete the contact with id=12345678
if(uptimerobot.contact.delete(api.key, 12345678){
message("Alert contact successfully deleted!")

}

## End(Not run)



4 uptimerobot.contact.new

uptimerobot.contact.new
Add a new alert contact

Description

uptimerobot.contact.new creates a new alert contact with the given properties.

Usage

uptimerobot.contact.new(api.key, type, value, friendly.name)

Arguments
api.key string with a valid key for connecting to Uptimerobot APIL.
type string or numeric with the type of the contact. You can use both the value (string)
or the index (numeric) here.
value string with the value of the contact (ie. the email address).

friendly.name string the friendly (screen) name of the contact.

Details

The alert contacts are whom to be notified when the monitor goes up/down.

The index lookup keys and values are available on the Uptimerobot API page on https://uptimerobot.
com/api

Value

The function returns the ID of the newly created contact in case success. An error is thrown other-
wise.

Author(s)

Gabriele Baldassarre

See Also

uptimerobot.contacts, uptimerobot.contact.delete

Examples
## Not run:
# Let's assume the api.key is available into the environment variable KEY
api.key <- Sys.getenv("KEY", "")

# Create a new contact and get the ID
contact.new <- uptimerobot.contact.new(api.key, type = "email”, value = "foo@bar.com”, "John Doe")


https://uptimerobot.com/api
https://uptimerobot.com/api

uptimerobot.contacts 5

# Get informations about this new contact
contact.detail <- uptimerobot.contacts(api.key, contacts = contact.new)

## End(Not run)

uptimerobot.contacts  Get general informations about the alert contacts

Description

uptimerobot.contacts extracts a dataset with general informations for a set of contacts used to
be alert in case of up/down of the given monitors.

Usage

uptimerobot.contacts(api.key, contacts = NULL, limit = 50, offset = 0,
fields = uptimerobot.fields("contact”)$typical)

Arguments
api.key A valid key for connecting to UptimeRobors public AP
contacts vector or comma-delimited string with the IDs of the contacts to get. If the
argument is NULL or missing, all the available contacts will be returned.
limit An integer value used for pagination. Defines the max number of records to
return in each page. Default and max. is 50.
offset An integer value to set the index of the first monitor to get (used for pagination).
fields vector or comma-delimited string with the general informations to include in the
output dataset. You may use the helper function uptimerobot. fields if you
don’t want to manually compile the list of fields.
Details

The alert contacts are whom to be notified when the monitor goes up/down.

If a vector of contact IDs is not given, the function will return data for all the available contacts.
The API uses pagination and returns no more than 50 contacts on each page. Use 1imit and of fset
to set a different number of monitors to get on each page and to move between pages. Leave default
values to get all the data.

Value

A dataset with general informations about the contacts.

Author(s)

Gabriele Baldassarre



6 uptimerobot.fields

See Also

uptimerobot.monitors

Examples
## Not run:
# Let's assume the api.key is available into the environment variable KEY
api.key <- SyS.getenv(”KEY", nn)

# Returns all the contacts with a default set of attributes
contacts.df <- uptimerobot.contacts(api.key)

# Returns all the contacts and all the attributes
contacts.full.df <- uptimerobot.contacts(api.key, fields=uptimerobot.fields("contact”)$full))

# Returns only the two contacts with ID: 1234, 5678
contacts.df <- uptimerobot.contacts(api.key, c("1234", "5678"))

## End(Not run)

uptimerobot.fields Get a list of the available fields for various endpoints

Description

uptimerobots.fields returns a list of vectors of available fields for commodity uses. Use it to
avoid manually typing long list of fields in vectors or comma-delimited strings when used in various
endpoints.

Usage

uptimerobot.fields(type)

Arguments
type string with the type of fields to be reported. Only monitor and contact are
currently supported.
Details

Use the type parameter to choose which set of fields to return in a list of vectors. These endpoints
are currently supported: monitor and contact.



uptimerobot.monitor.contacts 7

Value

The function returns a list of 3 elements which in turn contains a vector of available fields for a
given set each. The returned elements are:

1. typical returns a typical set of fields, used in most situations;

2. full returns the full set of available fields, including passwords and other potentially confi-
dential data;

3. compact return a minimal set of fields.

Author(s)

Gabriele Baldassarre

See Also

uptimerobot.monitors, uptimerobot.contacts

uptimerobot.monitor.contacts
Get contacts informations for one or more monitors

Description
uptimerobot.monitor.contacts return a dataset with all the alert contacts that will be triggered
when a log is collected for the given monitors IDs.

Usage

uptimerobot.monitor.contacts(api.key, monitors, limit = 50, offset = @)

Arguments
api.key A valid key for connecting to UptimeRobors public APL
monitors vector or comma-delimited string with the IDs of the monitors to get.
limit An integer value used for pagination. Defines the max number of records to
return in each page. Default and max. is 50.
offset An integer value to set the index of the first monitor to get (used for pagination).
Details

The API uses pagination and returns no more than 50 monitors on each page. Use 1limit and of fset
to set a different number of monitors to get on each page and to move between pages. Leave default
values to get all the data.

Value

A dataset with the alert contacts.



8 uptimerobot.monitor.delete

Author(s)

Gabriele Baldassarre

See Also

uptimerobot.monitors, uptimerobot.monitor.logs, uptimerobot.monitor.responses

Examples
## Not run:
# Let's assume the api.key is available into the environment variable KEY
api.key <- SyS.getenv("KEY", nu)

# Returns all the monitors IDs. Since the function always return a data.frame
# (even if you ask only for a column), you have to reference the column to get a character vector.
monitors.id <- uptimerobot.monitors(api.key, fields="id")$id

# Returns all the contacts registered for the given monitors
logs.df <- uptimerobot.monitor.contacts(api.key, monitors=monitors.id)

## End(Not run)

uptimerobot.monitor.delete
Delete a monitor

Description

uptimerobot.monitor.delete remove a monitor and all existing statistics of it.

Usage

uptimerobot.monitor.delete(api.key, id)

Arguments
api.key string with a valid key for connecting to Uptimerobot API.
id numeric or integer with the ID of the monitor to delete.
Value

The function returns TRUE in case success. An error is thrown otherwise.

Author(s)

Gabriele Baldassarre



uptimerobot.monitor.edit

Examples
## Not run:
# Let's assume the api.key is available into the environment variable KEY
api.key <- Sys.getenv("KEY", "")

# Create a monitor and get its monitor.id
monitor.id <- uptimerobot.monitor.new(api.key,
friendly.name="Open Analytics”,
url="https://gabrielebaldassarre.com”, type="http"
)

# Change the friendly name of the monitor
if(uptimerobot.monitor.edit(api.key,
monitor.id,
friendly.name="Open Analytics - gabrielebaldassarre.com”
M
message("Monitor has been successfully edited!")

}

# Delete the just-made monitor
if(uptimerobot.monitor.delete(api.key, monitor.id){
message("Monitor has been successfully deleted!")

}

## End(Not run)

uptimerobot.monitor.edit
Edit a monitor

Description

uptimerobot.monitor.edit edits the properties for an existing monitor.

Usage

uptimerobot.monitor.edit(api.key, id, friendly.name = NULL, url = NULL,
activate = TRUE, subtype = NULL, port = NULL, interval = NULL,
keyword.type = NULL, keyword.value = NULL, HTTP.username = NULL,
HTTP.password = NULL, alert.contacts = NULL)

Arguments
api.key string with a valid key for connecting to Uptimerobot API.
id numeric or integer with the ID of the monitor to edit.

friendly.name string the friendly (screen) name of the monitor.

url string with the URL/IP of the monitor.



10

activate

subtype

port

interval
keyword. type
keyword.value

HTTP.username

HTTP.password

alert.contacts

Details

uptimerobot.monitor.edit

logical to set the status of the monitor. Set to TRUE to start the monitor or FALSE
to put it in paused state.

string used only for "Port monitoring" to set which pre-defined port/service is
monitored or if a custom port is monitored. You can use both the friendly name
(string) or the index (integer) here.

string used only for "Port monitoring" to set the port monitored.

integer with the interval for the monitoring check (in minutes).

required string in Keyword monitoring".

string with the value of the keyword (required for keyword monitoring).

string used for password-protected web pages (HTTP Basic Auth). Set to empty
string to erase the current username. Available for HTTP and keyword monitor-
ing.

string used for password-protected web pages (HTTP Basic Auth). Set to empty
string to erase the current password.Available for HTTP and keyword monitor-
ing.

character vector or data frame with the IDs to alert each with their threshold and
recurrence values.

If a property has not to be updated, just omit it from the parameters or set to NA. To erase the value
of a property, set it to an empty string, ie "", instead (not NA or NULL!).

The type of a monitor can not be edited (like changing a HTTP monitor into a Port monitor).

The alert contacts are whom to be notified when the monitor goes up/down.

Multiple alert contact IDs can be sent in a character vector or in a data frame. If you pass alert con-
tact IDs in a vector, each element must be formatted in the form <id>_<threshold>_<recurrence>
(note the underscores). If you prefer to format it as a data.frame, it must have these three columns:
id, threshold, recurrence, numeric or integer. Order of the columns doesn’t matter.

Please note that thresholds and recurrences can be omitted (default to zero) and, as they are only
available in the Pro Plan, they are always 0 in the Free Plan.

Value

The function returns TRUE in case success. An error is thrown otherwise.

Author(s)

Gabriele Baldassarre

Examples

## Not run:

# Let's assume the api.key is available into the environment variable KEY
aplkey <- Sys'getenv("KEYn’ nn)

# Create a monitor and get its monitor.id



uptimerobot.monitor.logs 11

monitor.id <- uptimerobot.monitor.new(api.key,
friendly.name="Open Analytics”,
url="https://gabrielebaldassarre.com”, type="http"
)

# Change the friendly name of the monitor
if (uptimerobot.monitor.edit(api.key,
monitor.id,
friendly.name="Open Analytics - gabrielebaldassarre.com”
M
message("Monitor has been successfully edited!")

3

# Delete the just-made monitor
if (uptimerobot.monitor.delete(api.key, monitor.id){
message("Monitor has been successfully deleted!"”)

3

## End(Not run)

uptimerobot.monitor.logs
Get log records for one or more monitors

Description

uptimerobot.monitor.logs return a dataset with all logged messages for the given monitors IDs.

Usage

uptimerobot.monitor.logs(api.key, monitors, limit = 50, offset = @)

Arguments
api.key A valid key for connecting to UptimeRobors public APL
monitors vector or comma-delimited string with the IDs of the monitors to get.
limit An integer value used for pagination. Defines the max number of records to
return in each page. Default and max. is 50.
offset An integer value to set the index of the first monitor to get (used for pagination).
Details

The API uses pagination and returns no more than 50 monitors on each page. Use 1imit and of fset
to set a different number of monitors to get on each page and to move between pages. Leave default
values to get all the data.

Value

A dataset with the log events for the given monitors.



12 uptimerobot.monitor.new

Author(s)

Gabriele Baldassarre

See Also

uptimerobot.monitors, uptimerobot.monitor.responses, uptimerobot.monitor.contacts

Examples
## Not run:
# Let's assume the api.key is available into the environment variable KEY
api.key <- Sys.getenv("KEY", "")

# Returns all the monitors IDs. Since the function always return a data.frame
# (even if you ask only for a column), you have to reference the column to get a character vector.
monitors.id <- uptimerobot.monitors(api.key, fields="id")$id

# Returns all the log events for the given monitors
logs.df <- uptimerobot.monitor.logs(api.key, monitors=monitors.id)

## End(Not run)

uptimerobot.monitor.new
Add a new monitor

Description

uptimerobot.monitor.new creates a new monitor with the given properties.

Usage

uptimerobot.monitor.new(api.key, friendly.name, url, type, subtype = NULL,
port = NULL, interval = 5, keyword.type = NULL, keyword.value = NULL,
HTTP.username = NULL, HTTP.password = NULL, alert.contacts = NULL)

Arguments
api.key string with a valid key for connecting to Uptimerobot API.
friendly.name string the friendly (screen) name of the monitor.
url string with the URL/IP of the monitor.
type string or integer with the type of the monitor. You can use both the friendly

name (string) or the index (integer) here.

subtype string used only for "Port monitoring" to set which pre-defined port/service is
monitored or if a custom port is monitored. You can use both the friendly name
(string) or the index (integer) here.

port string used only for "Port monitoring" to set the port monitored.



uptimerobot.monitor.new 13

interval
keyword. type
keyword.value

HTTP.username

HTTP.password

alert.contacts

Details

integer with the interval for the monitoring check (in minutes).
required string in Keyword monitoring".
string with the value of the keyword (required for keyword monitoring).

string used for password-protected web pages (HTTP Basic Auth). Available
for HTTP and keyword monitoring.

string used for password-protected web pages (HTTP Basic Auth). Available
for HTTP and keyword monitoring.

character vector or data frame with the IDs to alert each with their threshold and
recurrence values.

The alert contacts are whom to be notified when the monitor goes up/down.

Multiple alert contact IDs can be sent in a character vector or in a data frame. If you pass alert con-
tact IDs in a vector, each element must be formatted in the form <id>_<threshold>_<recurrence>
(note the underscores). If you prefer to format it as a data.frame, it must have these three columns:
id, threshold, recurrence, numeric or integer. Order of the columns doesn’t matter.

Please note that thresholds and recurrences can be omitted (default to zero) and, as they are only
available in the Pro Plan, they are always 0 in the Free Plan.

Value

A numeric with the ID of the newly created monitor in case of success. An error is thrown otherwise.

Author(s)

Gabriele Baldassarre

Examples

## Not run:

# Let's assume the api.key is available into the environment variable KEY
api.key <- SyS.getenv("KEY", ::n)

# Create a monitor and get its monitor.id

monitor.id <- uptimerobot.monitor.new(api.key,
friendly.name="Open Analytics”,
url="https://gabrielebaldassarre.com”, type="http"

)

# Change the friendly name of the monitor
if(uptimerobot.monitor.edit(api.key,

monitor.id,

friendly.name="Open Analytics - gabrielebaldassarre.com”

)

message("Monitor has been successfully edited!"”)

}

# Delete the just-made monitor



14 uptimerobot.monitor.reset

if (uptimerobot.monitor.delete(api.key, monitor.id){
message("Monitor has been successfully deleted!"”)

3

## End(Not run)

uptimerobot.monitor.reset
Reset a monitor

Description

uptimerobot.monitor.reset remove all the statistics and logs associated to a monitor ID.

Usage

uptimerobot.monitor.reset(api.key, id)

Arguments
api.key string with a valid key for connecting to Uptimerobot API.
id numeric or integer with the ID of the monitor to delete.
Value

The function returns TRUE in case success. An error is thrown otherwise.

Author(s)

Gabriele Baldassarre

Examples
## Not run:
# Let's assume the api.key is available into the environment variable KEY
api.key <- Sys.getenv("KEY", "")

# Get a list of all available monitors, and take the first id
monitors.id <- uptimerobot.monitors(api.key, fields="id")[1,1]

# Reset the stats for that monitor
uptimerobot.monitor.reset(api.key, monitor.id)

## End(Not run)



uptimerobot.monitor.responses 15

uptimerobot.monitor.responses
Get response times for one or more monitors

Description
uptimerobot.monitor.responses returns a dataset with all the response times for the given mon-
itors IDs.

Usage

uptimerobot.monitor.responses(api.key, monitors, limit = 50, offset = @)

Arguments
api.key A valid key for connecting to UptimeRobors public APL
monitors vector or comma-delimited string with the IDs of the monitors to get.
limit An integer value used for pagination. Defines the max number of records to
return in each page. Default and max. is 50.
offset An integer value to set the index of the first monitor to get (used for pagination).
Details

The API uses pagination and returns no more than 50 monitors on each page. Use 1imit and of fset
to set a different number of monitors to get on each page and to move between pages. Leave default
values to get all the data.

Value

A dataset with the response times for the given monitors.

Author(s)

Gabriele Baldassarre

See Also

uptimerobot.monitors, uptimerobot.monitor.logs, uptimerobot.monitor.contacts

Examples
## Not run:
# Let's assume the api.key is available into the environment variable KEY
api.key <- SyS.getenv(”KEY“, nu)

# Returns all the monitors IDs. Since the function always return a data.frame
# (even if you ask only for a column), you have to reference the column to get a character vector.
monitors.id <- uptimerobot.monitors(api.key, fields="id")$id



16

uptimerobot.monitors

# Returns all the ping events for the given monitors
logs.df <- uptimerobot.monitor.responses(api.key, monitors=monitors.id)

## End(Not run)

uptimerobot.monitors  Get general informations about monitors

Description

uptimerobots.monitors.responses return a dataset with general informations for a set of moni-

tors.

Usage

uptimerobot.monitors(api.key, monitors = NULL, types = NULL,
statuses = NULL, search = NULL, summary = list(), limit = 50,
offset = @, fields = uptimerobot.fields("monitor”)$typical)

Arguments
api.key

monitors

types

statuses

search

summary

limit

offset
fields

A valid key for connecting to UptimeRobors public AP

vector or comma-delimited string with the IDs of the monitors to get. If not used
or set to NULL, will return all monitors in an account.

vector or comma-delimited string of monitor types. If not used or set to NULL, the
function will return all monitors types (HTTP, keyword, ping..) in an account.
Else, it is possible to define any number of monitor types. You can use both the
friendly name (string) or the index (integer) here.

vector or comma-delimited string of monitor statuses. If not used or set to NULL,
the function will return all monitors statuses (up, down, paused) in an account.
Else, it is possible to define any number of monitor statuses. You can use both
the friendly name (string) or the index (integer) here.

An optional keyword of to search within monitor URL or friendly name to get
filtered results.

list of logical values to flag summary indicators to add to the output dataset.

An integer value used for pagination. Defines the max number of records to
return in each page. Default and max. is 50.

An integer value to set the index of the first monitor to get (used for pagination).

vector or comma-delimited string with the general informations to include in the
output dataset. You may want to use the helper function uptimerobot.fields
if you don’t want to manually compile the list of fields.



uptimerobot.monitors 17

Details

If a vector of monitor is not given, the function will return data for all the available monitors.

summary parameter expect a lists of three named logic values that set which columns of additional
statistics for each monitor must be added to output dataset for each available monitor. These are
summary values only, as the instances are obtained using a set of dedicated functions.

1. response.times set to TRUE to add a column with the number of pings with response times
available for the monitor to the output. These values can be queried using uptimerobot.monitor.responses
function.

2. log.records set to TRUE to add a column with the number of log entries recorded for the mon-
itor to the output. These records can be queried using uptimerobot.monitor.logs function.

3. alert.contacts set to TRUE to add a column with the number of alert contacts binded to
the monitor to the output. Detailed informations about these contacts can be queried using
uptimerobot.monitor.contacts function.

You may just add the elements you want to include into the list, as they default to FALSE if missing.
Set an empty list to exclude all the summary statistics from the output.

The API uses pagination and returns no more than 50 monitors on each page. Use 1imit and of fset
to set a different number of monitors to get on each page and to move between pages. Leave default
values to get all the data.

Value

A dataset with general informations about the given monitors

Author(s)

Gabriele Baldassarre

See Also

uptimerobot.monitor.responses, uptimerobot.monitor.logs, uptimerobot.monitor.contacts

Examples
## Not run:
# Let's assume the api.key is available into the environment variable KEY
api.key <- Sys.getenv("KEY", "")

# Returns all the monitors with a default set of attributes
monitors.df <- uptimerobot.monitors(api.key)

#' # Returns all the monitors of 'keyword' type
monitors.kwd. .df <- uptimerobot.monitors(api.key, type="keyword")

# Returns all the monitors and all the attributes
monitors.full.df <- uptimerobot.monitors(api.key, fields=uptimerobot.fields("monitor")$full))

# Returns only the two monitors with ID: 1234, 5678



18

monitors.df <- uptimerobot.monitors(api.key, c("1234", "5678"))

## End(Not run)

uptimerobot.monitors



Index

uptimerobot.
uptimerobot.
uptimerobot.
uptimerobot.
uptimerobot.
uptimerobot.

17

uptimerobot.
uptimerobot.
uptimerobot.
uptimerobot.
uptimerobot.
uptimerobot.

17

uptimerobot.

account.details, 2
contact.delete, 3, 4
contact.new, 4

contacts, 4,5,7

fields, 5,6, 16
monitor.contacts, 7, 12, 15,

monitor.delete, 8
monitor.edit, 9
monitor.logs, 8, 11, 15,17
monitor.new, 12
monitor.reset, 14
monitor.responses, 8, 12, 15,

monitors, 6-8, 12, 15, 16

19



	uptimerobot.account.details
	uptimerobot.contact.delete
	uptimerobot.contact.new
	uptimerobot.contacts
	uptimerobot.fields
	uptimerobot.monitor.contacts
	uptimerobot.monitor.delete
	uptimerobot.monitor.edit
	uptimerobot.monitor.logs
	uptimerobot.monitor.new
	uptimerobot.monitor.reset
	uptimerobot.monitor.responses
	uptimerobot.monitors
	Index

