
Package ‘twig’
January 16, 2025

Version 1.0.0.0

Title For Streamlining Decision and Economic Evaluation Models using
Grammar of Modeling

URL https://www.dashlab.ca/, https://hjalal.github.io/twig/,

https://www.dashlab.ca/projects/decision_twig/

BugReports https://github.com/hjalal/twig/issues

Maintainer Hawre Jalal <hjalal@uottawa.ca>

Description Provides tools for building decision and cost-effectiveness analysis models. It en-
ables users to write these models concisely, simulate outcomes—including probabilistic analy-
ses—efficiently using optimized vectorized processes and parallel computing, and produce re-
sults. The package employs a Grammar of Modeling approach, inspired by the Gram-
mar of Graphics, to streamline model construction. For an interactive graphical user inter-
face, see 'DecisionTwig' at <https://www.dashlab.ca/projects/decision_twig/>. Com-
prehensive tutorials and vignettes are available at <https://hjalal.github.io/twig/>.

License GPL (>= 3)

Encoding UTF-8

RoxygenNote 7.3.2

Imports ggplot2, parallel, foreach, utils, stats, reshape2, abind,
doParallel

Suggests knitr, rmarkdown

VignetteBuilder knitr

NeedsCompilation no

Author Hawre Jalal [aut, cre] (<https://orcid.org/0000-0002-8224-6834>)

Repository CRAN

Date/Publication 2025-01-16 10:50:02 UTC

Contents
+.twig_class . 2
calculate_icers . 3

1

https://www.dashlab.ca/
https://hjalal.github.io/twig/
https://www.dashlab.ca/projects/decision_twig/
https://github.com/hjalal/twig/issues
https://www.dashlab.ca/projects/decision_twig/
https://hjalal.github.io/twig/
https://orcid.org/0000-0002-8224-6834

2 +.twig_class

decisions . 4
event . 4
payoffs . 5
plot_ceac . 6
prob2rate . 7
rate2prob . 7
run_twig . 8
states . 10
twig . 11
%out% . 12

Index 13

+.twig_class Define a method for the + operator for twig objects

Description

Adds layers to the twig object. If a states layer is added, the twig object is treated as a Markov
model.

Usage

S3 method for class 'twig_class'
twig_obj + layer

Arguments

twig_obj A twig object created by the twig function.

layer A layer to be added to the twig object.

Details

This method allows layers to be added to a twig object using the + operator.

Value

The modified twig object with the new layer added.

Examples

twig_obj <- twig() +
decisions(names = c(StandardOfCare, StrategyA, StrategyB, StrategyAB))

calculate_icers 3

calculate_icers Calculate Incremental Cost-Effectiveness Ratios (ICERs)

Description

This function calculates the Incremental Cost-Effectiveness Ratios (ICERs) for a set of strategies
based on their costs and effects.

Usage

calculate_icers(payoffs_summary, col_names = c("cost", "utility"))

Arguments

payoffs_summary

A matrix or data frame containing the summary statistics of the payoffs. It must
have columns for cost and utility.

col_names A character vector specifying the names of the columns for cost and utility.
Default is c("cost", "utility").

Value

A data frame with the following columns:

• decision: The name of the strategy.

• cost: The cost of the strategy.

• utility: The effect (utility) of the strategy.

• inc_cost: The incremental cost compared to the next less effective strategy.

• inc_utility: The incremental effect compared to the next less effective strategy.

• ICER: The Incremental Cost-Effectiveness Ratio.

• status: The dominance status of the strategy (ND = non-dominated, D = dominated, ED =
extendedly dominated).

Examples

payoffs_summary <- matrix(c(100, 200, 0.5, 0.7), ncol = 2,
dimnames = list(c("Strategy A", "Strategy B"),

c("cost", "utility")))
calculate_icers(payoffs_summary)

4 event

decisions Add decisions to a twig

Description

Add decisions to a twig

Usage

decisions(names)

Arguments

names decision names, a character vector of decision names. They don’t need to be
included in quotes.

Value

a twig layer with decision names

Examples

decisions(names = c(A, B, C))
decisions(names = c("A", "B", "C"))

event Add an event layer to a twig object

Description

This function creates an event layer that can be added to a twig object. The event layer defines the
possible outcomes of an event, their probabilities, and the transitions between states.

Usage

event(name, options, probs, transitions)

Arguments

name A character string representing the name of the event. It doesn’t need to be
quoted.

options A character vector of possible outcomes for the event. They don’t need to be
included in quotes. One of these options must be none.

payoffs 5

probs A character vector of probability function names for each outcome. They don’t
need to be included in quotes. One of these can be leftover for the remaining
probability.

transitions A character vector of state transitions corresponding to each outcome. They
don’t need to be included in quotes. These could be event names or states if a
states layer defined. One of these can be stay for the Markov state to remain the
same.

Value

A list representing the event layer.

Examples

#' # Adding the event layer to a twig object
twig_obj <- twig() + event(name = event_progress,

options = c(yes, none),
probs = c(pProgress, leftover),
transitions = c(Severe, stay))

event_layer <- event(name = "event_progress",
options = c("yes", "none"),
probs = c(pProgress, leftover),
transitions = c("Severe", "stay"))

payoffs Add payoffs to a twig object

Description

This function creates a payoffs layer that can be added to a twig object. The payoffs layer defines
the payoffs and their associated discount rates.

Usage

payoffs(names, discount_rates = NULL)

Arguments

names A character vector of payoff function names. They don’t need to be included in
quotes.

discount_rates A numeric vector of discount rates for each payoff. If NULL, a discount rate
of 0 is assumed for each payoff. discount_rates must have the same length as
payoff names.

Value

A list representing the payoffs layer.

6 plot_ceac

Examples

payoffs_layer <- payoffs(names = c(cost, effectiveness), discount_rates = c(0.03, 0.03))

plot_ceac Plot Cost-Effectiveness Acceptability Curve (CEAC)

Description

This function plots the Cost-Effectiveness Acceptability Curve (CEAC) for a set of strategies based
on their costs and utilities.

Usage

plot_ceac(payoffs_sim, wtp_range, col_names = c("cost", "utility"))

Arguments

payoffs_sim A 3D array containing the simulated payoffs. The dimensions should be deci-
sion, payoff (cost and utility), and simulation.

wtp_range A numeric vector specifying the range of willingness to pay (WTP) thresholds.

col_names A character vector specifying the names of the columns for cost and utility.
Default is c("cost", "utility").

Value

A ggplot object representing the CEAC.

Examples

Example payoffs simulation array
payoffs_sim <- array(

data = c(1000, 2000, 1500, 0.8, 0.85, 0.82, 1000, 2000, 1500, 0.8, 0.85, 0.82),
dim = c(3, 2, 2),
dimnames = list(c("StrategyA", "StrategyB", "StrategyC"), c("cost", "utility"), NULL)

)

Define WTP range
wtp_range <- seq(0, 100000, by = 1000)

Plot CEAC
ceac_plot <- plot_ceac(payoffs_sim, wtp_range)
print(ceac_plot)

prob2rate 7

prob2rate Convert Probability to Rate

Description

This function converts a probability to a rate using the formula -log(1 - prob).

Usage

prob2rate(prob)

Arguments

prob A numeric value representing the probability.

Value

A numeric value representing the rate.

Examples

prob <- 0.1
rate <- prob2rate(prob)
print(rate)

rate2prob Convert Rate to Probability

Description

This function converts a rate to a probability using the formula 1 - exp(-rate).

Usage

rate2prob(rate)

Arguments

rate A numeric value representing the rate.

Value

A numeric value representing the probability.

Examples

rate <- 0.1
prob <- rate2prob(rate)
print(prob)

8 run_twig

run_twig Run a twig model

Description

This function runs a twig model, which currently can be either a decision tree or a Markov model.

Usage

run_twig(
twig_obj,
params,
n_cycles = NULL,
verbose = FALSE,
parallel = FALSE,
offset_trace_cycle = 1,
ncore = NULL,
progress_bar = TRUE

)

Arguments

twig_obj A twig object created by the twig function.

params A data frame or list of parameters to be used in the model.

n_cycles An integer specifying the number of cycles for a Markov model. Default is
NULL.

verbose A logical value indicating whether to print detailed output. Default is FALSE.

parallel A logical value indicating whether to run the model in parallel. Default is
FALSE.

offset_trace_cycle

An integer specifying the offset trace cycle. Default is 1. This is used to adjust
the cycle number in the trace output. If set to 0, the initial state distribution will
be used as the first cycle. If set to 1, the initial state distribution will be ignored
in the Markov trace. In both situations, the total number of cycles will be the
same as the input n_cycles.

ncore An integer specifying the number of cores to use for parallel processing. Default
is total number of cores - 1.

progress_bar A logical value indicating whether to display a progress bar. Default is TRUE.

Value

A list containing the results of the model run. The list includes the following elements:

• mean_ev A matrix of size decision x payoff containing the mean expected values (EV)s across
simulations if params is a data.frame with more than 1 row.

run_twig 9

• sim_ev An array of size decision x payoff x simulation containing the simulated expected
values (EV) by simulation.

The following will also be returned if verbose is TRUE for Markov models:

• sim: The simulation ID. If params is a dataset, only the first simulation will be used (sim = 1).

• evaluated_funs: A list of dataframes of evaluated functions. Each function returns a data frame
enumerating the dependencies of the function along with the value returned by that function
for each combination of values.

• evaluated_prob_funs_combined: A data frame containing the evaluated probability function
values for each state, cycle, decision, and event that are merged into a single dataframe.

• path_event_options: A data frame of the event options along each path. Rows = paths,
columns = event_options.

• path_probs: A data frame containing the path probabilities for each state, cycle, and decision.

• event_probs: A data frame containing the event options along each path and the destination.

• markov_trans_probs: An array containing the transition probabilities for each origin state,
destination state, cycle, and decision.

• markov_trace: An array containing the Markov trace for each cycle, state, and decision.

• cycle_payoffs: An array containing the payoffs for each cycle, state, decision, and payoff.

• cycle_ev: An array containing the Expected Value (EV) for each cycle, state, decision and
payoff. cycle_ev = markov_trace * cycle_payoffs.

• sim_ev: A matrix of total expected values (EV) of size decision x payoffs.

• mean_ev: A matrix of mean expected values (EV) across simulations. Since this is for a single
simulation, mean_ev = sim_ev.

The following will also be returned if verbose is TRUE for decision trees:

• sim: The simulation ID. If params is a dataset, only the first simulation will be used (sim = 1).

• evaluated_funs: A list of dataframes of evaluated functions. Each function returns a data frame
enumerating the dependencies of the function along with the value returned by that function
for each combination of values.

• evaluated_prob_funs_combined: A data frame of the probability function values evaluated by
decision and events harmonized to the same combinations of decisions and events across all
probability functions.

• event_probs: A data frame containing the probability of event options by decision.

• outcome_probs: A matrix of outcome probabilities. Outcomes are the terminal event transi-
tions of size decision x outcomes.

• path_event_options: A data frame of the event options along each path. Rows = paths,
columns = events.

• path_probs: A matrix containing the path probabilities of size decision x paths.

• path_payoffs: An array containing the path payoffs of size decision x paths x payoffs. Paths
are indexed by their final outcomes in the twig and a key to event options is provided in
path_event_options.

10 states

• path_ev: An array containing the path expected values (EV) = path_probs x path_payoffs.
This is also of size decision x paths x payoffs.

• sim_ev: A matrix of total expected values (EV) of size decision x payoffs.

• mean_ev: A matrix of mean expected values (EV) across simulations. Since this is for a single
simulation, mean_ev = sim_ev.

See Also

Getting started guide and vignettes

Examples

library(twig)

define a Markov model twig
mytwig <- twig() +

decisions(names = c(A,B)) +
states(names = c(H,D),

init_probs = c(1,0)) +
event(name = death_event,

options = c(yes, none),
probs = c(pDie, leftover),
transitions = c(D, stay)) +

payoffs(names = c(utility))

define the parameters
params <- list(prob_die = 0.1, rrA = 0.9)

define vectorized functions
pDie <- function(decision, state, prob_die, rrA){

prob death is 0.1 if healthy and 0 otherwise
prob_die * (state=="H") *

multiplied by a relative risk of 0.9 if the decision is A, and 1 otherwise
rrA ^ (decision=="A")

}

utility <- function(state){
1 * (state=="H") # utility is 1 if healthy and 0 otherwise

}

run the model for 10 cycles
run_twig(mytwig, params = params, n_cycles = 10)

see the vignettes for more examples

states Add Markov states to a twig

https://hjalal.github.io/twig/index.html

twig 11

Description

Add Markov states to a twig

Usage

states(names, init_probs, max_cycles = NULL)

Arguments

names ... a character vector of Markov state names. They don’t need to be included in
quotes.

init_probs ... a vector of initial probs, these could be numeric or function names. The func-
tions can depend on the decision and variables in the params list of dataframe.
One of these can be leftover for the remaining probability in that event. init_probs
must have the same length as state names.

max_cycles ... optional max tunnel lenghts (tunnel length). This defines the duration allow-
able in each state. If ignored a length of 1 is assumed. #’ max_cycles if provided
must have the same length as state names.

Value

a twig layer with Markov state names

Examples

states(names = c(H,S,D),
init_probs = c(0.5, prob_fun, leftover),
max_cycles = c(1, 2, 1))

twig Create a new twig object

Description

This function initializes a new twig object, which can be used to build Markov models and decision
trees.

Usage

twig()

Value

A new twig object of class decision_twig and twig_class by default.

Examples

twig_obj <- twig()
see vignettes for more

12 %out%

%out% Negation of %in% operator

Description

This function checks if elements of a vector are not in another vector.

Usage

x %out% table

Arguments

x A vector of values to be checked.

table A vector of values to be compared against.

Value

A logical vector indicating if the elements of x are not in table.

Examples

x <- c("A", "B", "C")
table <- c("B", "C", "D")
x %out% table

Index

+.twig_class, 2
%out%, 12

calculate_icers, 3

decisions, 4

event, 4

payoffs, 5
plot_ceac, 6
prob2rate, 7

rate2prob, 7
run_twig, 8

states, 10

twig, 11

13

	+.twig_class
	calculate_icers
	decisions
	event
	payoffs
	plot_ceac
	prob2rate
	rate2prob
	run_twig
	states
	twig
	out
	Index

