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1 Introduction

The Toolkit for Weighting and Analysis of Nonequivalent Groups, twang, contains a set of functions and pro-
cedures to support causal modeling of observational data through the estimation and evaluation of propensity
scores and associated weights for binary, multinomial, and time-varying treatments. This package was devel-
oped in 2004. The twang package underwent extensive revisions in 2012 and 2020. Starting with version 2.0,
the twang package includes revisions that improve computational efficiency. Code written for prior versions
of twang should still run without modification. However, in certain situations, results from the updated
version of twang will no longer replicate previous results. If a user wishes to reproduce results from a prior
version of twang, a new option (version="legacy") must be specified.

This tutorial provides an introduction to twang and demonstrates its use through illustrative examples.
Interested readers can review the related tutorials for more than two treatment groups and time-varying
treatments at https://www.rand.org/statistics/twang/tutorials.html.

The foundation of the methods supported by twang is the propensity score. The propensity score is the
probability that a particular case would be assigned or exposed to a treatment condition. Rosenbaum &
Rubin (1983) showed that knowing the propensity score is sufficient to separate the effect of a treatment
on an outcome from observed confounding factors that influence both treatment assignment and outcomes,
provided the necessary conditions hold. The propensity score has the balancing property that given the
propensity score the distribution of features for the treatment cases is the same as that for the control cases.
While the treatment selection probabilities are generally not known, good estimates of them can be effective
at diminishing or eliminating confounds between pretreatment group differences and treatment outcomes in
the estimation of treatment effects.

There are now numerous propensity scoring methods in the literature. They differ in how they estimate
the propensity score (e.g. logistic regression, CART), the target estimand (e.g. treatment effect on the
treated, population treatment effect), and how they utilize the resulting estimated propensity scores (e.g.
stratification, matching, weighting, doubly robust estimators). We originally developed the twang package
with a particular process in mind, namely, generalized boosted regression to estimate the propensity scores
and weighting of the comparison cases to estimate the average treatment effect on the treated (ATT). How-
ever, we have updated the package to also meaningfully handle the case where interest lies in using the
population weights (e.g., weighting of comparison and treatment cases to estimate the population average
treatment effect, ATE).

∗The twang package and this tutorial were developed under NIDA grants R01 DA017507, R01 DA015697-03, and R01
DA034065
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The main workhorse of twang is the ps() function, which implements gradient boosted models with either
the gbm package or the xgboost package to estimate the propensity scores. However, the framework of the
package is flexible enough to allow the user to use propensity score estimates from other methods and to
assess the usefulness of those estimates for ensuring equivalence (or “balance”) in the pretreatment covariate
distributions of treatment and control groups using tools from the package. The same set of functions is also
useful for other tasks such as non-response weighting, as discussed in Section 5.

The twang package aims to (i) compute from the data estimates of the propensity scores which yield
accurate causal effect estimates, (ii) check the quality of the resulting propensity score weights by assessing
whether or not they have the balancing properties that we expect in theory, and (iii) use them in computing
treatment effect estimates. Users who are more comfortable with Stata or SAS than R are encouraged to visit
www.rand.org/statistics/twang/ for information on Stata commands and SAS macros that implement
these methods. Additionally, we now have Shiny apps available that are menu-driven and user-friendly
versions of the R tools.

2 Principles of twang

The twang package utilizes gradient boosted models to estimate propensity scores. These models are flexible,
machine learning approaches that can automatically incorporate nonlinearities and interactions among the
covariates. In general, the algorithms implemented in the twang package optimize the similarity between
treatment and comparison observations by selecting the iteration (complexity) of the gradient boosted model
that achieves the best balance. The user simply selects the set of covariates they wish to balance, and the
algorithm automatically incorporates nonlinearity and interactions to achieve the optimal balance. This
vignette focuses on binary treatments using the ps function of the twang package, but many of the functions
and arguements are shared across twang functions developed for other treatment types (e.g., multinomial
treatment using mnps). See www.rand.org/statistics/twang/ for more information.

The arguements to the ps can be broken up into three categories: (1) those that specify the model;
(2) those that control the gradient boosting; and (3) those that improve computational efficiency. We will
describe these arguments in detail now, and then highlight their use in the next section.

2.1 Arguements that specify the propensity score model

formula is a symbolic description of the propensity score model using standard R syntax with the treatment
indicator on the left side of the formula and the potential confounding variables on the right side.
In contrast to the lm() function, there is no need to specify interaction terms in the formula as the
gradient boosted model automatically considers interactions. There is also no need — and it can
be counterproductive — to create indicator, or “dummy coded,” variables to represent categorical
covariates, provided the categorical variables are stored as a factor or as ordered (see help(factor)

for more details).

data indicates the dataset to be used, which should include a binary treatment indicator and the covariates
to be balanced.

estimand is the causal effect of interest, which is either “ATE” (average treatment effect) or “ATT” (average
treatment effect on the treated). ATE estimates the change in the outcome if the treatment were applied
to the entire population versus if the control were applied to the entire population. ATT estimates the
analogous effect, averaging only over the treated population. The estimand argument was added to
the 2012 revision of the package which integrated ATE weighting into the package and the ps function
estimate of the propensity score. The default value is “ATE”.

sampw are optional sampling weights. If specified, the sampling weights are automatically incorporated into
the derivation of the propensity score weights.
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2.2 Arguements that control the gradient boosting

stop.method is a method or set of methods for measuring and summarizing balance across pretreatment vari-
ables. The ps function selects the optimal number of gradient boosting iterations to minimize the dif-
ferences between the treatment and control groups as measured by the rules of the given stop.method.
Current options are ks.mean, ks.max, es.mean, and es.max. ks refers to the Kolmogorov-Smirnov statis-
tic and es refers to standardized effect size. These are summarized across the pretreatment variables
by either the maximum (.max) or the mean (.mean). The default value is to utilize both ks.mean and
es.mean.

n.trees is the maximum number of gradient boosting iterations to be considered. The more iterations
allows for more nonlienarity and interactions to be considered. The default value is 10,000.

interaction.depth is a positive integer denoting the tree depth used in gradient boosting. This can be
loosely be interpreted as the maximum number of variables that can be included in an interaction.
Higher values allow for greater model complexity. The default value is 3.

shrinkage is a numeric value between 0 and 1 denoting the learning rate. Smaller values restrict the
complexity that is added at each iteration of the gradient boosting algorithm. A smaller learning rate
requires more iterations (n.trees), but adds some protection against model overfit. The default value
is 0.01.

n.minobsinnode is the minimum number of observations in the terminal nodes of the trees used in the
gradient boosting algorithm. Smaller values allow for more model complexity, while larger values
provide some protection against model overfit. The default value is 10.

2.3 Arguements that improve computational efficiency

n.keep is a positive integer indicating that the algorithm should only consider every n.keep-th iteration of
the propensity score model and optimize balance over this set instead of all iterations. Larger values of
n.keep improve computational efficiency by only assessing balance on a subset of the gradient boosting
iterations, but is likely to achieve worse balance than considering every iteration. The default value is
1, which is to optimize over all iterations.

n.grid is a positive integer that sets the grid size for an initial search of the region most likely to minimize
the stop.method. n.grid corresponds to a grid of points on the kept iterations as defined by n.keep.
For example, n.keep=20 with n.trees=5000 will keep the iterations (20,40,...,5000). The option
n.grid=10 then splits this vector into 10 points. Thus, n.grid*n.keep must be less than or equal to
n.trees. The default grid size is 25.

ks.exact improves the speed when calculating the p-value for the weighted two-sample Kolmogorov–Smirnov
(KS) statistic. The default behavior when calculating the weighted two-sample KS p-value differs from
implementations of twang prior to Version 2.0. Specifically, if ks.exact=NULL and the product of the
effective sample sizes is less than 10,000, then an approximation based on the exact distribution of the
unweighted KS statistic is used. This approximation via the exact distribution can also be requested
directly by ks.exact=TRUE. Otherwise, an approximation based on the asymptotic distribution of
the unweighted KS statistic is used. The default is ks.exact=NULL. We note that ks.exact=TRUE

replicates the calculation of KS p-values from version of twang prior to Version 2.0 but adds substantial
computation time for larger datasets. We recommend using the default value.

version allows the user to specify which gradient boosting package to use for the propensity score model.
Current options are "gbm", "xgboost", and "legacy". The default value is version="gbm" which
uses gradient boosting from the gbm package and provides a faster implementation of key compo-
nents of the twang package to improve speed when calculating and optimizing the balance statistics.
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version="xgboost" uses gradient boosting from the xgboost package. This provides users with access
to a cutting-edge implementation of gradient boosting, while potentially providing speed improve-
ments in larger datasets. The behavior of xgboost can be controlled using the the boosting param-
eters of gbm discussed earlier, but can also be controlled directly using the options of xgboost. See
https://xgboost.readthedocs.io/en/latest/parameter.html for a description of the different op-
tions. version="legacy" uses the implementation of the ps function prior to Version 2.0. To replicate
results from analyses utilizing twang prior to Version 2.0, specify the version="legacy" option.

2.4 Typical workflow with twang

Here, we outline the usual steps for a propensity score analysis using twang. While meant to be illustra-
tive, these steps should not be considered comprehensive. Every analysis is unique and requires careful
consideration. These steps will be expanded upon in the subsequent examples.

1. Determine the estimand of interest, either ATE or ATT.

2. Determine the observed confounding factors to be balanced.

3. Fit the propensity score model using the ps() function.

• Evaluate the convergence of the algorithm.

• Assess the balance of the confounding factors before and after applying the propensity score
weights.

• If needed, rerun the algorithm adjusting the gradient boosting parameters to achieve convergence
or improve balance.

4. Extract the propensity score weights and fit a weighted model to estimate the treatment effect.

3 An ATT example

3.1 Installing twang for first time users

The package is installed by typing install.packages("twang", dependencies=TRUE) into the R console.
You will only need to do this step once. In the future, running update.packages() regularly will ensure
that you have the latest versions of the packages, including bug fixes and new features.

3.2 Load the data

To start using twang, first load the package using library(twang). This is required at the beginning of each R
session. We will highlight features of twang using data from Lalonde’s National Supported Work Demonstra-
tion analysis (Lalonde 1986, Dehejia & Wahba 1999, http://users.nber.org/~rdehejia/nswdata2.html).
This dataset is provided with the twang package and can be loaded using data(lalonde).

> library(twang)

> data(lalonde)

R can read data from many other sources. The manual “R Data Import/Export,” available at http:

//cran.r-project.org/doc/manuals/R-data.pdf, describes that process in detail.
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3.3 Fit a gradient boosted model with ps

For the lalonde dataset, the variable treat is the treatment indicator, where 1 indicates being part of
the National Supported Work Demonstration (“treatment”) and 0 indicates cases drawn from the Current
Population Survey (“comparison”). In order to estimate a treatment effect for this demonstration program
that is unbiased by pretreatment group differences on other observed covariates, we include the following
covariates in a propensity score model of treatment: age, education, black, Hispanic, having no degree,
married, earnings in 1974 (pretreatment), and earnings in 1975 (pretreatment). Note that we specify no
outcome variables at this time. The ps() function is the primary method in twang for estimating propensity
scores for binary treatments.

> ps.lalonde.gbm = ps(treat ~ age + educ + black + hispan + nodegree +

+ married + re74 + re75,

+ data = lalonde,

+ n.trees=5000,

+ interaction.depth=2,

+ shrinkage=0.01,

+ estimand = "ATT",

+ stop.method=c("es.mean","ks.max"),

+ n.minobsinnode = 10,

+ n.keep = 1,

+ n.grid = 25,

+ ks.exact = NULL,

+ verbose=FALSE)

In this model, we have specified estimand = "ATT" indicating that we will estimate the average treatment
effect among those who partcipated in the National Supported Work Demonstration. We also specified two
stopping criteria: es.mean and ks.max. This indicates that the algorithm should separately determine
the iteration that minimizes the average absolute standardized effect size (es.mean) and the maximum KS
statistic (ks.max). We will compare the results of these stopping rules to evaluate the sensitivity of the
results to this choice.

The saved object ps.lalonde.gbm is of class ps and contains the propensity score model fit information.
We will work with this object to assess model convergence, to assess the balance of pretreatment charac-
teristics, and to extract the propensity score weights needed for subsequent analysis. By default, the ps()

function uses the gbm package for gradient boosting. A user can request use of xgboost by specifying the
option version="xgboost". The use of xgboost will not be discussed further in this tutorial. See the
documentation for additional details.

3.3.1 Convergence diagnostic checks

Before continuing to outcome analyses, an analyst should perform diagnostic checks assessing the convergence
of the gradient boosting algorithm. The specified value of n.trees should be large enough to allows the
gradient boosted model to have explored sufficiently complicated models. We can do this quickly with the
plot() function.1 As a default, the plot() function applied to a ps object gives the balance measures as a
function of the number of iterations in the gradient boosting algorithm, with higher iterations corresponding
to more complicated fitted models. In the example below, 2127 iterations minimized the average absolute
standardized effect size and 1751 iterations minimized the largest of the eight Kolmogorov-Smirnov (KS)
statistics computed for the covariates.

If it appears that additional iterations would be likely to result in lower values of the balance statistic,
n.trees should be increased. However, after a point, additional complexity typically makes the balance

1In versions 1.0.x of the twang package, the ps function itself included some plotting functions. This is no longer the case
(and the function no longer includes a plots argument); these functions have been moved to the generic plot() function.
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worse, as in the example below. This figure also gives information on how compatible two or more stopping
rules are: if the minima for multiple stopping rules under consideration are near one another, the results
should not be sensitive to which stopping rule one uses for the final analysis. See Section 6.3 for a discussion
of these and other balance measures.

> plot(ps.lalonde.gbm)
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3.3.2 Assessing “balance” using balance tables

Having estimated the propensity scores, bal.table() produces a table that shows how well the resulting
weights succeed in manipulating the control group so that its weighted pretreatment characteristics match,
or balance, those of the unweighted treatment group when estimand = "ATT". If estimand = "ATE", both
the control and treatment groups are weighted so that the weighted pretreatment characteristics match, or
balance, with one another.

By default, the bal.table() function uses the value of estimand set with the ps() function call. For
example, in the analysis we set estimand = "ATT" when calling ps() to estimate the propensity scores.
The function bal.table() automatically uses the correct weights when checking balance and comparing
the distributions of pre-treatment variables for the weighted control group with those from the unweighted
treatment group.

> lalonde.balance <- bal.table(ps.lalonde.gbm)

> lalonde.balance

$unw

tx.mn tx.sd ct.mn ct.sd std.eff.sz stat p ks ks.pval

age 25.816 7.155 28.030 10.787 -0.309 -2.994 0.003 0.158 0.003

educ 10.346 2.011 10.235 2.855 0.055 0.547 0.584 0.111 0.081

black 0.843 0.365 0.203 0.403 1.757 19.371 0.000 0.640 0.000

hispan 0.059 0.237 0.142 0.350 -0.349 -3.413 0.001 0.083 0.339
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nodegree 0.708 0.456 0.597 0.491 0.244 2.716 0.007 0.111 0.081

married 0.189 0.393 0.513 0.500 -0.824 -8.607 0.000 0.324 0.000

re74 2095.574 4886.620 5619.237 6788.751 -0.721 -7.254 0.000 0.447 0.000

re75 1532.055 3219.251 2466.484 3291.996 -0.290 -3.282 0.001 0.288 0.000

$es.mean.ATT

tx.mn tx.sd ct.mn ct.sd std.eff.sz stat p ks ks.pval

age 25.816 7.155 25.802 7.279 0.002 0.015 0.988 0.122 0.892

educ 10.346 2.011 10.573 2.089 -0.113 -0.706 0.480 0.099 0.977

black 0.843 0.365 0.842 0.365 0.003 0.027 0.978 0.001 1.000

hispan 0.059 0.237 0.042 0.202 0.072 0.804 0.421 0.017 1.000

nodegree 0.708 0.456 0.609 0.489 0.218 0.967 0.334 0.099 0.977

married 0.189 0.393 0.189 0.392 0.002 0.012 0.990 0.001 1.000

re74 2095.574 4886.620 1556.930 3801.566 0.110 1.027 0.305 0.066 1.000

re75 1532.055 3219.251 1211.575 2647.615 0.100 0.833 0.405 0.103 0.969

$ks.max.ATT

tx.mn tx.sd ct.mn ct.sd std.eff.sz stat p ks ks.pval

age 25.816 7.155 25.760 7.412 0.008 0.059 0.953 0.106 0.923

educ 10.346 2.011 10.571 2.141 -0.112 -0.709 0.478 0.107 0.919

black 0.843 0.365 0.835 0.372 0.023 0.191 0.849 0.008 1.000

hispan 0.059 0.237 0.043 0.203 0.069 0.776 0.438 0.016 1.000

nodegree 0.708 0.456 0.601 0.490 0.235 1.101 0.271 0.107 0.919

married 0.189 0.393 0.199 0.400 -0.025 -0.171 0.864 0.010 1.000

re74 2095.574 4886.620 1678.117 3948.049 0.085 0.791 0.429 0.053 1.000

re75 1532.055 3219.251 1259.757 2677.096 0.085 0.715 0.475 0.093 0.973

bal.table() returns information on the pretreatment covariates before and after weighting. The object
is a list with named components, one for an unweighted analysis (named unw) and one for each stop.method

specified, here es.mean and ks.max. McCaffrey et al (2004) essentially used es.mean for the analyses, but
our more recent work has sometimes used ks.max. See McCaffrey et al. (2013) for a more detailed description
of these choices.

If there are missing values (represented as NA) in the covariates, twang will attempt to construct weights
that also balance rates of missingness in the treatment and control arms. In this case, the bal.table() will
have an extra row for each variable that has missing entries. User should note that missing data in xgboost

is handled differently than in gbm. In gbm, missing values are placed in their own node, while in xgboost

missing values are placed in the left or right node based on minimizing the objective function.
The columns of the table consist of the following items:

tx.mn, ct.mn The treatment means and the control means for each of the variables. The unweighted table
(unw) shows the unweighted means. For each stopping rule the means are weighted using weights
corresponding to the gbm model selected by ps() using the stopping rule. When estimand = "ATT"

the weights for the treatment group always equal 1 for all cases and there is no difference between
unweighted and propensity score weighted tx.mn.

tx.sd, ct.sd The propensity score weighted treatment and control groups’ standard deviations for each of
the variables. The unweighted table (unw) shows the unweighted standard deviations.

std.eff.sz The standardized effect size, defined as the treatment group mean minus the control group mean
divided by the treatment group standard deviation if estimand = "ATT" or divided by the pooled
sample (treatment and control) standard deviation if estimand = "ATE". (In discussions of propensity
scores this value is sometimes referred to as “standardized bias“.) Occasionally, lack of treatment group
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or pooled sample variance on a covariate results in very large (or infinite) standardized effect sizes. For
purposes of analyzing mean effect sizes across multiple covariates, we set all standardized effect sizes
larger than 500 to NA (missing values).

stat, p Depending on whether the variable is continuous or categorical, stat is a t-statistic or a Ç2 statistic.
p is the associated p-value

ks, ks.pval The Kolmogorov-Smirnov test statistic and its associated p-value. P-values for the KS statis-
tics are either derived from Monte Carlo simulations or analytic approximations, depending on the
specifications made in the perm.test.iters argument of the ps function. For categorical variables
this is just the Ç2 test p-value.

Components of these tables are useful for demonstrating that pretreatment differences between groups
on observed variables have been eliminated using the weights.

The summary() method for ps objects offers a compact summary of the sample sizes of the groups and
the balance measures. If perm.test.iters>0 was used to create the ps object, then Monte Carlo simulation
is used to estimate p-values for the maximum KS statistic that would be expected across the covariates, had
individuals with the same covariate values been assigned to groups randomly. Thus, a p-value of 0.04 for
max.ks.p indicates that the largest KS statistic found across the covariates is larger than would be expected
in 96% of trials in which the same cases were randomly assigned to groups. Otherwise, max.ks.p will be NA.

> summary(ps.lalonde.gbm)

n.treat n.ctrl ess.treat ess.ctrl max.es mean.es max.ks

unw 185 429 185 429.00000 1.7567745 0.56872589 0.6404460

es.mean.ATT 185 429 185 22.96430 0.2177817 0.07746175 0.1223384

ks.max.ATT 185 429 185 27.18469 0.2346990 0.08007702 0.1069914

max.ks.p mean.ks iter

unw NA 0.27024507 NA

es.mean.ATT NA 0.06361021 2127

ks.max.ATT NA 0.06259804 1751

In general, weighted means can have greater sampling variance than unweighted means from a sample
of equal size. The effective sample size (ESS) of the weighted comparison group captures this increase in
variance as

ESS =

(
∑

i∈C wi

)2

∑

i∈C w2

i

. (1)

The ESS is approximately the number of observations from a simple random sample that yields an estimate
with sampling variation equal to the sampling variation obtained with the weighted comparison observations.
Therefore, the ESS will give an estimate of the number of comparison participants that are comparable to
the treatment group when estimand = "ATT". The ESS is an accurate measure of the relative size of the
variance of means when the weights are fixed or they are uncorrelated with outcomes. Otherwise the ESS
underestimates the effective sample size (Little & Vartivarian, 2004). With propensity score weights, it is rare
that weights are uncorrelated with outcomes. Hence the ESS typically gives a lower bound on the effective
sample size, but it still serves as a useful measure for choosing among alternative models and assessing the
overall quality of a model, even if it provides a possibly conservative picture of the loss in precision due to
weighting.

The ess.treat and ess.ctrl columns in the summary results shows the ESS for the estimated propensity
scores. Note that although the original comparison group had 429 cases, the propensity score estimates
effectively utilize only 24 or 36.4 of the comparison cases, depending on the rules and measures used to
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estimate the propensity scores. While this may seem like a large loss of sample size, this indicates that many
of the original cases were unlike the treatment cases and, hence, were not useful for isolating the treatment
effect. Moreover, similar or even greater reductions in ESS would be expected from alternative approaches
to using propensity scores, such as matching or stratification. Since the estimand of interest in this example
is ATT, ess.treat = n.treat throughout (i.e., all treatment cases have a weight of 1).

3.3.3 Graphical assessments of balance

The plot() function can generate useful diagnostic plots from the propensity score objects. The full set
of plots available in twang and the argument value of plot to produce each one are given in Table 1. The
convergence plot — the default — was discussed above.

Descriptive Numeric Description
argument argument

"optimize" 1 Balance measure as a function of GBM iterations
"boxplot" 2 Boxplot of treatment/control propensity scores

"es" 3 Standardized effect size of pretreatment variables
"t" 4 t-test p-values for weighted pretreatment variables

"ks" 5 Kolmogorov-Smirnov p-values for weighted pretreatment variables
"histogram" 6 Histogram of weights for treatment/control

Table 1: Available options for plots argument to plot() function.

The plot() function takes a plots argument in order to produce other diagnostic plots. For example,
specifying plots = 2 or plots = "boxplot" produces boxplots illustrating the spread of the estimated
propensity scores in the treatment and comparison groups. Whereas propensity score stratification requires
considerable overlap in these spreads, excellent covariate balance can often be achieved with weights, even
when the propensity scores estimated for the treatment and control groups show little overlap.

> plot(ps.lalonde.gbm, plots=2)
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The effect size plot illustrates the effect of weights on the magnitude of differences between groups on
each pretreatment covariate. These magnitudes are standardized using the standardized effect size described
earlier. In these plots, substantial reductions in effect sizes are observed for most variables (blue lines), with
only one variable showing an increase in effect size (red lines), but only a seemingly trivial increase. Closed
red circles indicate a statistically significant difference, many of which occur before weighting, none after.
In some analyses variables can have very little variance in the treatment group sample or the entire sample
and group differences can be very large relative to the standard deviations. In these situations, the user is
warned that some effect sizes are too large to plot.

> plot(ps.lalonde.gbm, plots=3)
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When many of the p-values testing individual covariates for balance are very small, the groups are clearly
imbalanced and inconsistent with what we would expect had the groups been formed by random assignment.
After weighting we would expect the p-values to be larger if balance had been achieved. We use a QQ plot
comparing the quantiles of the observed p-values to the quantiles of the uniform distribution (45 degree line)
to conduct this check of balance. Ideally, the p-values from independent tests in which the null hypothesis
is true will have a uniform distribution. Although the ideal is unlikely to hold even if we had random
assignment (Bland, 2013), severe deviation of the p-values below the diagonal suggests lack of balance and
p-values running at or above the diagonal suggests balance might have been achieved. The p-value plot
(plots=4 or plots="t") allows users to visually to inspect the p-values of the t-tests for group differences
in the covariate means.

> plot(ps.lalonde.gbm, plots = 4)
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Before weighting (closed circles), the groups have statistically significant differences on many variables
(i.e., p-values are near zero). After weighting (open circles) the p-values are generally above the 45-degree
line, which represents the cumulative distribution of a uniform variable on [0,1]. This indicates that the
p-values are even larger than would be expected in a randomized study.

One can inspect similar plots for the KS statistic with the argument plots = "ks" or plots = 5.

> plot(ps.lalonde.gbm, plots = 5)
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In all cases, the subset argument can be used if we wish to focus on results from one stopping rule.

> plot(ps.lalonde.gbm, plots = 3, subset = 2)
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3.3.4 Understanding the relationship between the covariates and the treatment assignment

The gbm package has various tools for exploring the relationship between the covariates and the treatment
assignment indicator if these are of interest. These tools can be used with the ps object to extract useful
information. In particular, the summary() function applied to the underling gbm object computes the relative
influence of each variable for estimating the probability of treatment assignment. The relaive influence of
each variable changes as more iteration are added to the gradient boosted model. In this example, we choose
the number of iterations to be the optimal number for minimizing the largest of the KS statistics. This
value can be found in the ps.lalonde.gbm$desc$ks.max.ATT$n.trees. Figure 1 shows the barchart of the
relative influence and is produced when plot=TRUE in the call to summary().

> summary(ps.lalonde.gbm$gbm.obj,

+ n.trees=ps.lalonde.gbm$desc$ks.max.ATT$n.trees,

+ plot=FALSE)

var rel.inf

black black 57.84196723

age age 16.51419940

re74 re74 15.61206620

re75 re75 3.57534275

married married 3.02199483

educ educ 2.91568989

nodegree nodegree 0.43801453

hispan hispan 0.08072517
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Figure 1: Relative influence of the covariates on the estimated propensity score.
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Additionally, our team has developed the SBdecomp package for R which can be used to quantify the
proportion of the estimated selection bias explained by each observed confounder when estimating causal
effects using propensity score weights. It includes two approaches to quantify the proportion of the selection
bias explained by each observed confounder: a single confounder removal approach and a single confounder
inclusion approach. This tool can help analyze data where there is a substantive interest in identifying the
variable or variables that explains the largest proportion of the estimated selection bias. Interested users are
encourage to review the tutorial for that package at https://www.rand.org/pubs/tools/TLA570-3.html.

3.4 Analysis of outcomes

3.4.1 Propensity scores from ps()

A separate R package, the survey package, is useful for performing the outcomes analyses using weights. Its
statistical methods account for the weights when computing standard error estimates. It is not a part of the
standard R installation but installing twang should automatically install survey as well.

> library(survey)

The get.weights() function extracts the propensity score weights from a ps object. Those weights may
then be used as case weights in a svydesign object. By default, it returns weights corresponding to the
estimand (ATE or ATT) that was specified in the original call to ps(). If needed, the user can override the
default via the optional estimand argument.

> lalonde$w <- get.weights(ps.lalonde.gbm, stop.method="es.mean")

> design.ps <- svydesign(ids=~1, weights=~w, data=lalonde)

The stop.method argument specifies which GBM model, and consequently which weights, to utilize. The
svydesign function from the survey package creates an object that stores the dataset along with design
information needed for analyses. See help(svydesign) for more details on setting up svydesign objects.

The aim of the National Supported Work Demonstration analysis is to determine whether the program
was effective at increasing earnings in 1978. The propensity score adjusted test can be computed with svyglm.

> glm1 <- svyglm(re78 ~ treat, design=design.ps)

> summary(glm1)

Call:

svyglm(formula = re78 ~ treat, design = design.ps)

Survey design:

svydesign(ids = ~1, weights = ~w, data = lalonde)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 5616.6 884.9 6.347 4.28e-10 ***

treat 732.5 1056.6 0.693 0.488

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for gaussian family taken to be 49804197)

Number of Fisher Scoring iterations: 2
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The analysis estimates an increase in earnings of $733 for those that participated in the NSW compared
with similarly situated people observed in the CPS. The effect, however, does not appear to be statistically
significant.

Some authors have recommended utilizing both propensity score adjustment and additional covariate
adjustment to minimize mean square error or to obtain “doubly robust“ estimates of the treatment effect
(Huppler-Hullsiek & Louis 2002, Bang & Robins 2005). These estimators are consistent if either the propen-
sity scores are estimated correctly or the regression model is specified correctly. For example, note that the
balance table for es.mean.ATT made the two groups more similar on nodegree, but still some differences
remained, 70.8% of the treatment group had no degree while 60.9% of the comparison group had no degree.
While linear regression is sensitive to model misspecification when the treatment and comparison groups are
dissimilar, the propensity score weighting has made them more similar, perhaps enough so that additional
modeling with covariates can adjust for any remaining differences. In addition to potential bias reduction,
the inclusion of additional covariates can reduce the standard error of the treatment effect if some of the
covariates are strongly related to the outcome.

> glm2 <- svyglm(re78 ~ treat + nodegree, design=design.ps)

> summary(glm2)

Call:

svyglm(formula = re78 ~ treat + nodegree, design = design.ps)

Survey design:

svydesign(ids = ~1, weights = ~w, data = lalonde)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 6768.4 1471.0 4.601 5.11e-06 ***

treat 920.3 1082.8 0.850 0.396

nodegree -1891.8 1261.9 -1.499 0.134

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for gaussian family taken to be 49013778)

Number of Fisher Scoring iterations: 2

Adjusting for the remaining group difference in the nodegree variable slightly increased the estimate of
the program’s effect to $920, but the difference is still not statistically significant. We can further adjust for
the other covariates, but that too in this case has little effect on the estimated program effect.

> glm3 <- svyglm(re78 ~ treat + age + educ + black + hispan + nodegree +

+ married + re74 + re75,

+ design=design.ps)

> summary(glm3)

Call:

svyglm(formula = re78 ~ treat + age + educ + black + hispan +

nodegree + married + re74 + re75, design = design.ps)

Survey design:

svydesign(ids = ~1, weights = ~w, data = lalonde)
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Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -2.459e+03 4.289e+03 -0.573 0.56671

treat 7.585e+02 1.019e+03 0.745 0.45674

age 3.005e+00 5.558e+01 0.054 0.95691

educ 7.488e+02 2.596e+02 2.884 0.00406 **

black -7.627e+02 1.012e+03 -0.753 0.45153

hispan 6.106e+02 1.711e+03 0.357 0.72123

nodegree 5.350e+02 1.626e+03 0.329 0.74227

married 4.918e+02 1.072e+03 0.459 0.64660

re74 5.699e-02 1.801e-01 0.316 0.75176

re75 1.568e-01 1.946e-01 0.806 0.42076

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for gaussian family taken to be 47150852)

Number of Fisher Scoring iterations: 2

3.4.2 Estimating the program effect using linear regression

The classical regression approach to estimating the program effect would fit a linear model with a treatment
indicator and linear terms for each of the covariates.

> glm4 <- lm(re78 ~ treat + age + educ + black + hispan + nodegree +

+ married + re74 + re75,

+ data=lalonde)

> summary(glm4)

Call:

lm(formula = re78 ~ treat + age + educ + black + hispan + nodegree +

married + re74 + re75, data = lalonde)

Residuals:

Min 1Q Median 3Q Max

-13595 -4894 -1662 3929 54570

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 6.651e+01 2.437e+03 0.027 0.9782

treat 1.548e+03 7.813e+02 1.982 0.0480 *

age 1.298e+01 3.249e+01 0.399 0.6897

educ 4.039e+02 1.589e+02 2.542 0.0113 *

black -1.241e+03 7.688e+02 -1.614 0.1071

hispan 4.989e+02 9.419e+02 0.530 0.5966

nodegree 2.598e+02 8.474e+02 0.307 0.7593

married 4.066e+02 6.955e+02 0.585 0.5590

re74 2.964e-01 5.827e-02 5.086 4.89e-07 ***

re75 2.315e-01 1.046e-01 2.213 0.0273 *

---
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Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 6948 on 604 degrees of freedom

Multiple R-squared: 0.1478, Adjusted R-squared: 0.1351

F-statistic: 11.64 on 9 and 604 DF, p-value: < 2.2e-16

This model estimates a rather strong treatment effect, estimating a program effect of $1548 with a p-
value=0.048. Several variations of this regression approach also estimate strong program effects. For example
using square root transforms on the earnings variables yields a p-value=0.016. These estimates, however, are
very sensitive to the model structure since the treatment and control subjects differ greatly as seen in the
unweighted balance comparison from bal.table(ps.lalonde.gbm).
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3.5 Propensity scores from logistic regression

Propensity score analysis is intended to avoid problems associated with the misspecification of covariate
adjusted models of outcomes, but the quality of the balance and the treatment effect estimates can be
sensitive to the method used to estimate the propensity scores. Consider estimating the propensity scores
using logistic regression instead of ps().

> ps.logit <- glm(treat ~ age + educ + black + hispan + nodegree +

+ married + re74 + re75,

+ data = lalonde,

+ family = binomial)

> lalonde$w.logit <- rep(1,nrow(lalonde))

> lalonde$w.logit[lalonde$treat==0] <- exp(predict(ps.logit,subset(lalonde,treat==0)))

predict() for logistic regression model produces estimates on the log-odds scale by default. Exponen-
tiating those predictions for the comparison subjects gives the ATT weights p/(1 − p). dx.wts() from the
twang package diagnoses the balance for an arbitrary set of weights producing a balance table. This function
requires the user to specify the estimand argument in order to perform the appropriate calculations relative
to the target group on which we are drawing inferences. The function dx.wts has not been updated in
Version 2.0 and still relies on the older version of the balance calculations.

> bal.logit <- dx.wts(x = lalonde$w.logit,

+ data=lalonde,

+ vars=c("age","educ","black","hispan","nodegree",

+ "married","re74","re75"),

+ treat.var="treat",

+ perm.test.iters=0, estimand = "ATT")

> bal.logit

type n.treat n.ctrl ess.treat ess.ctrl max.es mean.es max.ks

1 unw 185 429 185 429.00000 1.7567745 0.5687259 0.6404460

2 185 429 185 99.81539 0.1188496 0.0318841 0.3078039

mean.ks iter

1 0.27024507 NA

2 0.09302319 NA

Applying the bal.table() function to this object returns a variable-by-variable summary of balance,
just like it did for the ps object.

> bal.table(bal.logit)

$unw

tx.mn tx.sd ct.mn ct.sd std.eff.sz stat p ks

age 25.816 7.155 28.030 10.787 -0.309 -2.994 0.003 0.158

educ 10.346 2.011 10.235 2.855 0.055 0.547 0.584 0.111

black 0.843 0.365 0.203 0.403 1.757 19.371 0.000 0.640

hispan 0.059 0.237 0.142 0.350 -0.349 -3.413 0.001 0.083

nodegree 0.708 0.456 0.597 0.491 0.244 2.716 0.007 0.111

married 0.189 0.393 0.513 0.500 -0.824 -8.607 0.000 0.324

re74 2095.574 4886.620 5619.237 6788.751 -0.721 -7.254 0.000 0.447

re75 1532.055 3219.251 2466.484 3291.996 -0.290 -3.282 0.001 0.288

ks.pval
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age 0.003

educ 0.075

black 0.000

hispan 0.319

nodegree 0.075

married 0.000

re74 0.000

re75 0.000

[[2]]

tx.mn tx.sd ct.mn ct.sd std.eff.sz stat p ks

age 25.816 7.155 24.966 10.535 0.119 0.739 0.460 0.308

educ 10.346 2.011 10.403 2.459 -0.028 -0.219 0.827 0.036

black 0.843 0.365 0.845 0.362 -0.006 -0.069 0.945 0.002

hispan 0.059 0.237 0.059 0.236 0.001 0.008 0.993 0.000

nodegree 0.708 0.456 0.690 0.463 0.040 0.332 0.740 0.018

married 0.189 0.393 0.171 0.377 0.047 0.456 0.649 0.019

re74 2095.574 4886.620 2106.045 4235.832 -0.002 -0.022 0.983 0.228

re75 1532.055 3219.251 1496.541 2716.258 0.011 0.107 0.915 0.133

ks.pval

age 0.000

educ 1.000

black 1.000

hispan 1.000

nodegree 1.000

married 1.000

re74 0.002

re75 0.185

For weights estimated with logistic regression, the largest KS statistic was reduced from the unweighted
sample’s largest KS of 0.64 to 0.31, which is still quite a large KS statistic.

Table 2 and 3 compares the balancing quality of the weights directly with one another using the standardize
effect size and the KS statistic, respectively. The standardized effect sizes for both sets of propensity score
weights are improved compared to the unweighted analysis. The KS statistics for age and re74 are larger for
the logistic regression model than the GBM-based propensity score model. Combining the results of Table 2
and 3 we can conclude that logistic regression is achieving mean balance between the groups (Table 2), but
it does not balance the full distribution (Table 3).

Covariate Unweighted Using ps Using logistic regression
age -0.309 0.002 0.119

educ 0.055 -0.113 -0.028
black 1.757 0.003 -0.006

hispan -0.349 0.072 0.001
nodegree 0.244 0.218 0.04
married -0.824 0.002 0.047

re74 -0.721 0.11 -0.002
re75 -0.29 0.1 0.011

Table 2: Standardized effect size of covariates using GBM and logistic regression.
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Covariate Unweighted Using ps Using logistic regression
age 0.158 0.122 0.308

educ 0.111 0.099 0.036
black 0.64 0.001 0.002

hispan 0.083 0.017 0
nodegree 0.111 0.099 0.018
married 0.324 0.001 0.019

re74 0.447 0.066 0.228
re75 0.288 0.103 0.133

Table 3: KS statistic of covariates using GBM and logistic regression.

> design.logit <- svydesign(ids=~1, weights=~w.logit, data=lalonde)

> glm6 <- svyglm(re78 ~ treat, design=design.logit)

> summary(glm6)

Call:

svyglm(formula = re78 ~ treat, design = design.logit)

Survey design:

svydesign(ids = ~1, weights = ~w.logit, data = lalonde)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 5135.1 588.9 8.719 <2e-16 ***

treat 1214.1 824.7 1.472 0.142

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for gaussian family taken to be 49598072)

Number of Fisher Scoring iterations: 2

The analysis estimates an increase in earnings of $1214 for those that participated in the NSW compared
with similarly situated people observed in the CPS. Table 4 compares all of the treatment effect estimates.

Treatment effect PS estimate Linear adjustment
$733 GBM, minimize ES none
$920 GBM, minimize ES nodegree
$758 GBM, minimize ES all

$1548 None all
$1214 Logistic regression none
$1237 Logistic regression all

Table 4: Treatment effect estimates by various methods
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4 An ATE example

In the analysis of Section 2, we focused on estimating ATT for the lalonde dataset. In this situation, the
ATE is not of great substantive interest because not all people who are offered entrance into the program
could be expected to take advantage of the opportunity. Further, there is some evidence that the treated
subjects were drawn from a subset of the covariate space. In particular, in an ATE analysis, we see that we
are unable to achieve balance, especially for the “black“ indicator.

We now turn to an ATE analysis that is feasible and meaningful. We focus on the lindner dataset,
which was included in the USPS package (Obenchain 2011), and is now included in twang for convenience.
A tutorial by Helmreich and Pruzek (2009; HP) for the PSAgraphics package also uses propensity scores to
analyze a portion of these data. HP describe the data as follows on p. 3 with our minor recodings in square
braces:

The lindner data contain data on 996 patients treated at the Lindner Center, Christ Hospital,
Cincinnati in 1997. Patients received a Percutaneous Coronary Intervention (PCI). The data
consists of 10 variables. Two are outcomes: [sixMonthSurvive] ranges over two values... de-
pending on whether patients surved to six months post treatment [denoted by TRUE] or did not
survive to six months [FALSE]... Secondly, cardbill contains the costs in 1998 dollars for the first
six months (or less if the patient did not survive) after treatment... The treatment variable is
abcix, where 0 indicates PCI treatment and 1 indicates standard PCI treatment and additional
treatment in some form with abciximab. Covariates include acutemi, 1 indicating a recent acute
myocardial infarction and 0 not; ejecfrac for the left ventricle ejection fraction, a percentage
from 0 to 90; ves1proc giving the number of vessels (0 to 5) involved in the initial PCI; stent
with 1 indicating coronary stent inserted, 0 not; diabetic where 1 indicates that the patient has
been diagnosed with diabetes, 0 not; height in centimeters and female coding the sex of the
patent, 1 for female, 0 for male.

HP focus on cardbill — the cost for the first months after treatment — as their outcome of interest.
However, since not all patients survived to six months, it is not clear whether a lower value of cardbill is
good or not. For this reason, we choose six-month survival (sixMonthSurvive) as our outcome of interest.

Ignoring pre-treatment variables, we see that abcix is associated with lower rates of 6-month mortality:

> data(lindner)

> table(lindner$sixMonthSurvive, lindner$abcix)

0 1

FALSE 15 11

TRUE 283 687

> chisq.test(table(lindner$sixMonthSurvive, lindner$abcix))

Pearson's Chi-squared test with Yates' continuity correction

data: table(lindner$sixMonthSurvive, lindner$abcix)

X-squared = 8.5077, df = 1, p-value = 0.003536

The question is whether this association is causal. If health care policies were to be made on the basis
of these data, we would wish to elicit expert opinion as to whether there are likely to be other confounding
pretreatment variables. For this tutorial, we simply follow HP in choosing the pre-treatment covariates. The
twang model is fit as follows
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> set.seed(1)

> ps.lindner <- ps(abcix ~ stent + height + female + diabetic +

+ acutemi + ejecfrac + ves1proc,

+ data = lindner,

+ estimand = "ATE",

+ verbose = FALSE)

We set estimand = "ATE" because we are interested in the effects of abciximab on everyone in the
population. We do not specify the stopping rules. Consequently ps() uses the defaults: es.mean and
ks.mean. We then inspect pre- and post-weighting balance with the command

> bal.table(ps.lindner)

$unw

tx.mn tx.sd ct.mn ct.sd std.eff.sz stat p ks ks.pval

stent 0.705 0.456 0.584 0.494 0.257 3.624 0.000 0.121 0.004

height 171.443 10.695 171.446 10.589 0.000 -0.005 0.996 0.025 0.999

female 0.331 0.471 0.386 0.488 -0.115 -1.647 0.100 0.055 0.554

diabetic 0.205 0.404 0.268 0.444 -0.152 -2.127 0.034 0.064 0.367

acutemi 0.179 0.384 0.060 0.239 0.338 5.923 0.000 0.119 0.006

ejecfrac 50.403 10.419 52.289 10.297 -0.181 -2.640 0.008 0.114 0.009

ves1proc 1.463 0.706 1.205 0.480 0.393 6.693 0.000 0.188 0.000

$ks.mean.ATE

tx.mn tx.sd ct.mn ct.sd std.eff.sz stat p ks ks.pval

stent 0.683 0.466 0.657 0.475 0.054 0.720 0.472 0.026 1.000

height 171.470 10.549 171.589 10.594 -0.011 -0.153 0.879 0.015 1.000

female 0.338 0.473 0.345 0.476 -0.015 -0.202 0.840 0.007 1.000

diabetic 0.215 0.411 0.229 0.421 -0.033 -0.430 0.667 0.014 1.000

acutemi 0.148 0.355 0.107 0.310 0.114 1.333 0.183 0.040 0.947

ejecfrac 51.051 10.334 51.604 9.112 -0.053 -0.799 0.425 0.027 1.000

ves1proc 1.395 0.666 1.337 0.573 0.089 1.199 0.231 0.027 1.000

$es.mean.ATE

tx.mn tx.sd ct.mn ct.sd std.eff.sz stat p ks ks.pval

stent 0.683 0.466 0.656 0.476 0.056 0.751 0.453 0.027 1.00

height 171.467 10.542 171.586 10.660 -0.011 -0.151 0.880 0.016 1.00

female 0.338 0.473 0.345 0.476 -0.015 -0.206 0.837 0.007 1.00

diabetic 0.215 0.411 0.231 0.422 -0.039 -0.506 0.613 0.016 1.00

acutemi 0.148 0.355 0.108 0.311 0.113 1.327 0.185 0.040 0.95

ejecfrac 51.037 10.348 51.546 9.171 -0.049 -0.733 0.464 0.027 1.00

ves1proc 1.396 0.666 1.342 0.579 0.082 1.087 0.277 0.025 1.00

This balance table shows that stent, acutemi, and ves1proc were all significantly imbalanced before
weighting. After weighting (using either stop.method considered) we do not see problems in this regard.
Examining plot(ps.lindner, plots = x) for x running from 1 to 5 does not reveal problems, either. In
regard to the optimize plot, we note that the scales of the KS and ES statistics presented in the optimize plots
are not necessarily comparable. The fact that the KS values are lower than the ES values in the optimize
plot does not suggest that the KS stopping rule is finding superior models. Each panel of the optimize plot
indicates the gbm model that minimizes each stopping rule. The panels should not be compared other than
to compare the number of iterations selected by each rule.
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> plot(ps.lindner, plots = 1)
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> plot(ps.lindner, plots = 2)
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> plot(ps.lindner, plots = 3)
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> plot(ps.lindner, plots = 4)
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> plot(ps.lindner, plots = 5)

Rank of p−value for pretreatment variables 
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From a call to summary(), we see that the es.mean.ATE stopping rule results in a slightly higher ESS
with comparable balance measures, so we proceed with those weights. Also, we note that ess.treat is no
longer equal to n.treat since we are focusing on ATE rather than ATT.

> summary(ps.lindner)

n.treat n.ctrl ess.treat ess.ctrl max.es mean.es max.ks

unw 698 298 698.0000 298.0000 0.3925637 0.20528943 0.18841945

ks.mean.ATE 698 298 655.7339 229.0034 0.1144059 0.05292428 0.04013745

es.mean.ATE 698 298 658.3496 230.5940 0.1134167 0.05236774 0.03979038

max.ks.p mean.ks iter

unw NA 0.09791845 NA

ks.mean.ATE NA 0.02233864 2582

es.mean.ATE NA 0.02262830 2116

As before, we use the survey package to reweight our sample and perform the analysis.

> lindner$w <- get.weights(ps.lindner, stop.method = "es.mean")

> design.ps <- svydesign(ids=~1, weights = ~w, data = lindner)

> svychisq(~sixMonthSurvive + abcix, design = design.ps)

Pearson's X^2: Rao & Scott adjustment

data: svychisq(~sixMonthSurvive + abcix, design = design.ps)

F = 9.3574, ndf = 1, ddf = 995, p-value = 0.00228

The reweighting does not diminish the association between the treatment and the outcome. Indeed, it is
marginally more significant after the reweighting. Alternatively, we can run a generalised linear model.
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5 Non-response weights

The twang package was designed to estimate propensity score weights for the evaluation of treatment effects
in observational or quasi-experimental studies. However, we find that the package includes functions and
diagnostic tools that are highly valuable for other applications, such as for generating and diagnosing non-
response weights for survey nonresponse or study attrition. We now present an example that uses the tools
in twang. This example uses the subset of the US Sustaining Effects Study data distributed with the HLM
software (Bryk, Raudenbush, Congdon, 1996) and also available in the R package mlmRev. The data include
mathematics test scores for 1721 students in kindergarten to fourth grade. They also include student race
(black, Hispanic, or other), gender, an indicator for whether or not the student had been retained in grade,
the percent low income students at the school, the school size, the percent of mobile students, the students’
grade-levels, student and school IDs, and grades converted to year by centering. The study analysis plans to
analyze growth in math achievement from grade 1 to grade 4 using only students with complete data. How-
ever, the students with complete data differ from other students. To reduce bias that could potentially result
from excluding incomplete cases, our analysis plan is to weight complete cases with nonresponse weights.

The goal of nonresponse weighting is to develop weights for the respondents that make them look like the
entire sample — both the respondents and nonrespondents. Since the respondents already look like them-
selves, the hard part is to figure out how well each respondent represents the nonrespondents. Nonresponse
weights equal the reciprocal of the probability of response and are applied only to respondents.

Note that the the probability of response is equivalent to the propensity score if we consider subjects with
an observed outcome to be the “treated” group, and those with an unobserved outcome to be the “controls”.
We wish to reweight the sample to make it equivalent to the population from which the sample was drawn,
so ATE weights are more appropriate in this case. Further, recall that the weights for the treated subjects
are 1/p in an ATE analysis. Therefore we can reweight the sample of respondents using the get.weights()

function.
Before we can generate nonresponse weights, we need to prepare the data using the following commands.

First we load the data.

> data(egsingle)

Next we create a response indicator variable that we can merge onto the student by test score level
data. We want to include only students with scores from all of grades 1 to 4. The data include scores from
kindergarten (grade = 0) to grade 5 with some students having multiple scores from the same grade. First
we keep the unique grades for each student:

> tmp <- tapply(egsingle$grade, egsingle$childid, unique)

Because students do not all have the same number of score, tapply() returns a list with one element per
student. Each element contains the unique set of grades observed for each student. We now check for grades
in 1 to 4:

> tmp <- lapply(tmp, function(x){return(x %in% 1:4)})

The list tmp now contains a boolean vector for each student, where “TRUE” indicates the grade took on
a value in 1 to 4. The sum of this vector for each student determines how many of grades 1 to 4 we observed
for him or her.

> tmp <- lapply(tmp, sum)

A student is a respondent if he or she has scores from all four of grades 1 to 4 or if the value of tmp is 4.

> tmp <- sapply(tmp, function(x){as.numeric(x == 4)})
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We create a data frame of response indicators so we can merge them onto the test scores data:

> tmp <- data.frame(tmp)

> names(tmp) <- "resp"

> tmp$childid <- row.names(tmp)

and merge this back to create a single data frame

> egsingle <- merge(egsingle, tmp)

Because nonresponse is a student-level variable rather than a student-by-year-level variable we create one
record per student.

> egsingle.one <-unique(egsingle[,-c(3:6)])

We also create a race variable

> egsingle.one$race <- as.factor(race <- ifelse(egsingle.one$black==1, 1,

+ ifelse(egsingle.one$hispanic==1, 2, 3)))

As discussed above, to use ps() to estimate nonresponse, we need to let respondents be the treatment
group by modeling an indicator of response.

> egsingle.ps <- ps(resp ~ race + female + size + lowinc + mobility,

+ data=egsingle.one,

+ stop.method=c("es.mean","ks.max"),

+ n.trees=5000,

+ verbose=FALSE,

+ estimand = "ATE")

As in standard propensity score applications, we should check that n.trees was set large enough, so that
balance would seem not to be improved if more complex models were considered. Recall that for es.mean.ATE
the measure is the average effect size difference between the two groups and for ks.max.ATE the measure is
the largest of the KS statistics.

> plot(egsingle.ps)
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By default the balance table generated by ps() compares the weighted treatment group (respondents)
to the weighted comparison group (nonresponders) – both groups weighted to equal the overall population.
However, the goal is to weight the respondents to match the population not to compare the weighted respon-
dents and nonrespondents. The default balance table may be useful for evaluating the propensity scores, but
it does not directly assess the quality of the weights for balancing the weighted respondents with the overall
population.

We can “trick” the dx.wts() function in the twang package into making the desired comparison. We
want to compare the weighted respondents to the unweighted full sample. When evaluating ATT weights
we compare the weighted comparison group with the unweighted treatment group. If we apply dx.wts()

to a data set where the “treatment” group is the entire esingle.one sample and the “control” group is
the esingle.one respondents and the weights equal one for every student in the pseudo-treatment group
and equal the weights from ps() for every student in the pseudo-control group, we can obtain the balance
statistics we want.

We begin by setting up the data with the pseudo-treatment and control groups. We add ATE weights
from the “ks.max” stopping rule as our nonresponse weights.

> egsingle.one$wgt <- get.weights(egsingle.ps, stop.method="ks.max")

We now stack the full sample and the respondents. The variable “nr2” is the pseudo-treatment indicator.
We set it equal to one for the full sample and 0 for the respondents. Similarly, “wgt2” is the pseudo-ATT
weight which is set equal to one for the full sample and equal to the nonresponse weights for the respondents.

> egtmp <- rbind(data.frame(egsingle.one, nr2=1, wgt2=1),

+ data.frame(egsingle.one, nr2=0, wgt2=egsingle.one$wgt)[egsingle.one$resp==1,])

We now run dx.wts() to obtain the balance statistics. Switching to ATT from ATE yields a warning
that can be ignored in this case.

> egdxwts <- dx.wts(x=egtmp$wgt2,

+ data=egtmp,

+ estimand="ATT",

+ vars=c("race", "female", "size", "lowinc", "mobility"),

+ treat.var="nr2")

> # pretty.tab<-bal.table(egdxwts)[[2]][,c("tx.mn","ct.mn","std.eff.sz","ks")]

> # names(pretty.tab) <- c("OverallS Sample","Weighted responders","Std ES","KS")

> # xtable(pretty.tab,

> # caption = "Balance of the nonrespondents and respondents",

> # label = "tab:balance2",

> # digits = c(0, 2, 2, 2, 2),

> # align=c("l","r","r","r","r"))

> bal.table(egdxwts)[[2]]

tx.mn tx.sd ct.mn ct.sd std.eff.sz stat p ks race:1 0.694 0.461 0.690 0.463 0.011 0.147 0.862 0.005 race:2 0.145
0.352 0.142 0.349 0.010 NA NA 0.003 race:3 0.160 0.367 0.169 0.374 -0.022 NA NA 0.008 female:Female
0.492 0.500 0.486 0.500 0.013 0.092 0.761 0.007 female:Male 0.508 0.500 0.514 0.500 -0.013 NA NA 0.007 size
755.888 314.292 756.535 312.935 -0.002 -0.048 0.961 0.018 lowinc 78.172 26.505 78.507 27.214 -0.013 -0.297
0.767 0.032 mobility 34.588 13.994 34.222 13.697 0.026 0.626 0.532 0.018 ks.pval race:1 0.862 race:2 0.862
race:3 0.862 female:Female 0.761 female:Male 0.761 size 0.991 lowinc 0.631 mobility 0.991

The balance is very good. We can use the weighted respondents for analysis. We select only the records
with an observed outcome. This will be our analysis sample and the variable “wgt” will contains the nonre-
ponse weights.
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> egsinge.resp <- merge(subset(egsingle, subset=resp==1),

+ subset(egsingle.one, subset=resp==1,

+ select=c(childid, wgt)) )

6 The details of twang

6.1 Propensity scores and weighting

Propensity scores can be used to reweight comparison cases so that the distribution of their features match
the distribution of features of the treatment cases, for ATT, or cases from both treatment and control groups
to match each other, for ATE (Rosenbaum 1987, Wooldridge 2002, Hirano and Imbens 2001, McCaffrey
et al. 2004) Let f(x|t = 1) be the distribution of features for the treatment cases and f(x|t = 0) be the
distribution of features for the comparison cases. If treatments were randomized then we would expect these
two distributions to be similar. When they differ for ATT we will construct a weight, w(x), so that

f(x|t = 1) = w(x)f(x|t = 0). (2)

For example, if f(age=65, sex=F|t = 1) = 0.10 and f(age=65, sex=F|t = 0) = 0.05 (i.e. 10% of the treatment
cases and 5% of the comparison cases are 65 year old females) then we need to give a weight of 2.0 to every 65
year old female in the comparison group so that they have the same representation as in the treatment group.
More generally, we can solve (2) for w(x) and apply Bayes Theorem to the numerator and the denominator
to give an expression for the propensity score weight for comparison cases,

w(x) = K
f(t = 1|x)

f(t = 0|x)
= K

P (t = 1|x)

1− P (t = 1|x)
, (3)

where K is a normalization constant that will cancel out in the outcomes analysis. Equation (3) indicates
that if we assign a weight to comparison case i equal to the odds that a case with features xi would be
exposed to the treatment, then the distribution of their features would balance. Note that for comparison
cases with features that are atypical of treatment cases, the propensity score P (t = 1|x) would be near 0 and
would produce a weight near 0. On the other hand, comparison cases with features typical of the treatment
cases would receive larger weights.

For ATE, each group is weighted to match the population. The weight must satisfy:

f(x|t = 1) = w(x)f(x), and (4)

f(x|t = 0) = w(x)f(x), and (5)

Again using Bayes Theorem we obtain w(x) ∝ 1/f(t = 1|x) for the treatment group and w(x) ∝ 1/f(t = 0|x)
for the control group.

6.2 Estimating the propensity score

In randomized studies P (t = 1|x) is known and fixed in the study design. In observational studies the
propensity score is unknown and must be estimated, but poor estimation of the propensity scores can cause
just as much of a problem for estimating treatment effects as poor regression modeling of the outcome. Linear
logistic regression is the common method for estimating propensity scores, and can suffice for many problems.
Linear logistic regression for propensity scores estimates the log-odds of a case being in the treatment given
x as

log
P (t = 1|x)

1− P (t = 1|x)
= ´′

x (6)
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Usually, ´ is selected to maximize the logistic log-likelihood

ℓ´ =
1

n

n
∑

i=1

ti´
′
xi − log (1 + exp(´′

xi)) (7)

Maximizing (7) provides the maximum likelihood estimates of ´. However, in an attempt to remove
as much confounding as possible, observational studies often record data on a large number of potential
confounders, many of which can be correlated with one another. Standard methods for fitting logistic
regression models to such data with the iteratively reweighted least squares algorithm can be statistically
and numerically unstable. To improve the propensity score estimates we might also wish to include non-linear
effects and interactions in x. The inclusion of such terms only increases the instability of the models.

One increasingly popular method for fitting models with numerous correlated variables is the lasso (least
absolute subset selection and shrinkage operator) introduced in statistics in Tibshirani (1996). For logistic
regression, lasso estimation replaces (7) with a version that penalizes the absolute magnitude of the coefficients

ℓ´ =
1

n

n
∑

i=1

ti´
′
xi − log (1 + exp(´′

xi))− ¼

J
∑

j=1

|´j | (8)

The second term on the right-hand side of the equation is the penalty term since it decreases the overall
of ℓ´ when there are coefficient that are large in absolute value. Setting ¼ = 0 returns the standard (and
potentially unstable) logistic regression estimates of ´. Setting ¼ to be very large essentially forces all of

the ´j to be equal to 0 (the penalty excludes ´0). For a fixed value of ¼ the estimated ˆ́ can have many
coefficients exactly equal to 0, not just extremely small but precisely 0, and only the most powerful predictors
of t will be non-zero. As a result the absolute penalty operates as a variable selection penalty. In practice,
if we have several predictors of t that are highly correlated with each other, the lasso tends to include all
of them in the model, shrink their coefficients toward 0, and produce a predictive model that utilizes all of
the information in the covariates, producing a model with greater out-of-sample predictive performance than
models fit using variable subset selection methods.

Our aim is to include as covariates all piecewise constant functions of the potential confounders and
their interactions. That is, in x we will include indicator functions for continuous variables like I(age <
15), I(age < 16), . . . , I(age < 90), etc., for categorical variables like I(sex = male), I(prior MI = TRUE),
and interactions among them like I(age < 16)I(sex = male)I(prior MI = TRUE). This collection of basis
functions spans a plausible set of propensity score functions, are computationally efficient, and are flat at the
extremes of x reducing the likelihood of propensity score estimates near 0 and 1 that can occur with linear
basis functions of x. Theoretically with the lasso we can estimate the model in (8), selecting a ¼ small enough
so that it will eliminate most of the irrelevant terms and yield a sparse model with only the most important
main effects and interactions. Boosting (Friedman 2001, 2003, Ridgeway 1999) effectively implements this
strategy using a computationally efficient method that Efron et al. (2004) showed is equivalent to optimizing
(8). With boosting it is possible to maximize (8) for a range of values of ¼ with no additional computational
effort than for a specific value of ¼. We use boosted logistic regression as implemented in the generalized
boosted modeling (gbm) package in R (Ridgeway 2005).

6.3 Evaluating the weights

As with regression analyses, propensity score methods cannot adjust for unmeasured covariates that are
uncorrelated with the observed covariates. Nonetheless, the quality of the adjustment for the observed
covariates achieved by propensity score weighting is easy to evaluate. The estimated propensity score weights
should equalize the distributions of the cases’ features as in (2). This implies that weighted statistics of the
covariates of the comparison group should equal the same statistics for the treatment group. For example,
the weighted average of the age of comparison cases should equal the average age of the treatment cases. To
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assess the quality of the propensity score weights one could compare a variety of statistics such as means,
medians, variances, and Kolmogorov-Smirnov statistics for each covariate as well as interactions. The twang

package provides both the standardized effect sizes and KS statistics and p-values testing for differences in
the means and distributions of the covariates for analysts to use in assessing balance.

6.4 Analysis of outcomes

With propensity score analyses the final outcomes analysis is generally straightforward, while the propensity
score estimation may require complex modeling. Once we have weights that equalize the distribution of
features of treatment and control cases by reweighting. For ATT, we give each treatment case a weight of
1 and each comparison case a weight wi = p(xi)/(1 − p(xi)). To estimate the ATE, we give control cases
weight wi = 1/(1 − p(xi)) and we give the treatment cases wi = 1/p(xi). We then estimate the treatment
effect estimate with a weighted regression model that contains only a treatment indicator. No additional
covariates are needed if the weights account for differences in x.

A combination of propensity score weighting and covariate adjustment can be useful for several reasons.
First, the propensity scores may not have been able to completely balance all of the covariates. The inclusion
of these covariates in addition to the treatment indicator in a weighted regression model may correct this
if the imbalance is relatively small. Second, in addition to exposure, the relationship between some of
the covariates and the outcome may also be of interest. Their inclusion can provide coefficients that can
estimate the direction and magnitude of the relationship. Third, as with randomized trials, stratifying on
covariates that are highly correlated with the outcome can improve the precision of estimates. Lastly, the
some treatment effect estimators that utilize an outcomes regression model and propensity scores are “doubly
robust” in the sense that if either the propensity score model is correct or the regression model is correct
then the treatment effect estimator will be unbiased (Bang & Robins 2005).

About This Tutorial

This tutorial and the R package were supported by funding from grant R01DA017507, R01DA015697, and
R01DA034065 from the National Institute on Drug Abuse. The overarching goal of this work is to develop
statistical methods and tools that will provide addiction health services researchers and others with the
tools and training they need to study the effectiveness of treatments using observational data. For more
information about twang and other causal tools being developed, see www.rand.org/statistics/twang.
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improve the health and social and economic well-being of populations and communities throughout the world.
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