Package ‘tuneR’

April 17,2024

Version 1.4.7

Date 2024-04-16

Title Analysis of Music and Speech
Depends R (>=3.0.0)

Encoding UTF-8

Suggests pastecs

Imports signal, methods

Description Analyze music and speech, extract features like MFCCs, handle wave files and their rep-
resentation in various ways, read mp3, read midi, perform steps of a transcription, ...
Also contains functions ported from the ‘rastamat’ 'Matlab' package.

License GPL-2 | GPL-3

URL https://tuner.R-forge.R-project.org
NeedsCompilation yes

Author Uwe Ligges [aut, cre, cph] (<https://orcid.org/0000-0001-5875-6167>),

Sebastian Krey [aut, cph],

Olaf Mersmann [aut, cph],

Sarah Schnackenberg [aut, cph],

Guillaume Guénard [aut, cph] (for the 'pulse’ functionality),

Daniel P. W. Ellis [aut, cph] (functions ported from 'rastamat'),

Underbit Technologies [aut, cph] (for the included libmad MPEG audio
decoder library"),

Andrea Preusser [ctb],

Anita Thieler [ctb],

Johanna Mielke [ctb],

Claus Weihs [ctb],

Brian D. Ripley [ctb],

Matthias Heymann [ctb] (for ideas from the former 'sound' package)

Maintainer Uwe Ligges <ligges@statistik.tu-dortmund.de>
Repository CRAN
Date/Publication 2024-04-17 14:08:24

https://tuner.R-forge.R-project.org
https://orcid.org/0000-0001-5875-6167

2 R topics documented:

R topics documented:

Arith-methods L 3
AUdSPEC e e e 3
bind L 5
channel 5
deltas e 6
dolpc . . e 7
downsample L 8
equalWave 9
extractVvave L. e e 9
FE o e 11
freqeconvo L e e e 12
getMIdINOteS e e e e 13
length L 14
Lifter e 15
lilyinput L 16
Ipc2cep e 17
MCnames e e e e 18
melfcc 19
melodyplot 21
Mono-Stereo e e e 23
nchannel L 24
normalize-methods 24
noSilence e 25
noteFromFF o e 26
NOENAIMES . « « . . v v v e e et et e e e e e e e e e e e e e 27
PANOTAIMAot e e e e e e 28
periodogram-methods 29
play-methods 32
plot-Wave 33
Plot-WSpec e e e e 34
plot-WspecMat e e e 35
postaud 36
POWSPEC .« . v v o v e i e e e e e e e e e e e e e e 37
prepComb 38
QUANEIZE . . o o o e e e e e e e e e e e e 39
quantplot e e e e e 40
readMidi. e 42
readMP3 L 43
readWave e e e 44
show-WaveWspec-methods 45
smoothero 46
SPEC2CED -+ v v e 47
summary-methods L e 48
tuneR . . . L L 48
updateWave L e 50

Wave . . . e e e 51

Arith-methods

Wave-class e
Waveforms e e e
WaveMC e e e e
WaveMC-class e e e
WavPlayer
WIItEWAVE e e e e e e e e
Wspec-class e e e e
WspecMat-class e
[F-methods e

Index

Arith-methods Arithmetics on Waves

Description

Methods for arithmetics on Wave and WaveMC objects

Methods

object = ""Wave'' An object of class Wave.
object = ""WaveMC" An object of class WaveMC.
object = "numeric'" For, e.g., adding a number to the whole Wave, e.g. useful for demeaning.

object = "'missing'' For unary Wave operations.

Author(s)

Uwe Ligges <ligges@statistik.tu-dortmund.de>

See Also

For the S3 generic: groupGeneric, Wave-class, Wave, WaveMC-class, WaveMC

audspec Frequency band conversion

Description

Perform critical band analysis (see PLP), which means the reduction of the fourier frequencies of a

signal’s powerspectrum to a reduced number of frequency bands in an auditory frequency scale.

Usage

audspec(pspectrum, sr = 16000, nfilts = ceiling(hz2bark(sr/2)) + 1,
fbtype = c("bark”, "mel”, "htkmel”, "fcmel”), minfreq = 0,
maxfreq = sr/2, sumpower = TRUE, bwidth = 1)

Arguments

pspectrum

sr
nfilts
fbtype
minfreq
maxfreq

sumpower

bwidth

Value

aspectrum

wts

Author(s)

audspec

Output of powspec, matrix with the powerspectrum of each time frame in its
columns.

Sample rate of the original recording.

Number of filters/frequency bins in the auditory frequency scale.
Used auditory frequency scale.

Lowest frequency.

Highest frequency.

If sumpower = TRUE, the frequency scale transformation is based on the power-
spectrum, if sumpower = FALSE, it is based on its squareroot (absolute value of
the spectrum) and squared afterwards.

Modify the width of the frequency bands.

Matrix with the auditory spectrum of each time frame in its columns.

Weight matrix for the frequency band conversion.

Sebastian Krey <krey@statistik.tu-dortmund.de>

References

Daniel P. W. Ellis: https://www.ee.columbia.edu/~dpwe/resources/matlab/rastamat/

See Also

fft2melmx, fft2barkmx

Examples

testsound <- normalize(sine(400) + sine(1000) + square(250), "16")
pspectrum <- powspec(testsound@left, testsound@samp.rate)
aspectrum <- audspec(pspectrum, testsound@samp.rate)

https://www.ee.columbia.edu/~dpwe/resources/matlab/rastamat/

bind 5

bind Concatenating Wave objects

Description

Generic function for concatenating objects of class Wave or WaveMC.

Usage

bind(object, ...)

S4 method for signature 'Wave'
bind(object, ...)

S4 method for signature 'WaveMC'

bind(object, ...)
Arguments
object, ... Objects of class Wave or class WaveMC, each of the same class and of the same

kind (checked by equalWave), i.e. identical sampling rate, resolution (bit), and
number of channels (for WaveMC, resp. stereo/mono for Wave).

Value

An object of class Wave or class WaveMC that corresponds to the class of the input.

Author(s)

Uwe Ligges <ligges@statistik.tu-dortmund.de>, Sarah Schnackenberg

See Also
prepComb for preparing the concatenation, Wave-class, Wave, WaveMC-class, WaveMC, extractWave,
stereo
channel Channel conversion for Wave objects
Description

Convenient wrapper to extract one or more channels (or mirror channels) from an object of class
Wave.

Usage

channel(object, which = c("both"”, "left"”, "right", "mirror"))

6 deltas

Arguments

object Object of class Wave.

which Character indicating which channel(s) should be returned.
Details

For objects of WaveMC-class, channel selection can be performed by simple matrix indexing, e.g.
WaveMCobject[, 2] selects the second channel.

Value

Wave object including channels specified by which.

Author(s)

Uwe Ligges <ligges@statistik.tu-dortmund.de>

See Also

Wave, Wave-class, mono, extractWave

deltas Calculate delta features

Description
Calculate the deltas (derivatives) of a sequence of features using a w-point window with a simple
linear slope.

Usage

deltas(x, w = 9)

Arguments
X Matrix of features. Every column represents one time frame. Each row is filtered
separately.
w Window width (usually odd).
Details

This function mirrors the delta calculation performed in HTKs ‘feacalc’.

Value

Returns a matrix of the delta features (one column per frame).

dolpc 7

Author(s)

Sebastian Krey <krey@statistik.tu-dortmund.de>

References

Daniel P. W. Ellis: https://www.ee.columbia.edu/~dpwe/resources/matlab/rastamat/

Examples

testsound <- normalize(sine(400) + sine(1000) + square(250), "16")
m <- melfcc(testsound, frames_in_rows=FALSE)
d <- deltas(m)

dolpc (Perceptive) Linear Prediction

Description

Compute autoregressive model from spectral magnitude samples via Levinson-Durbin recursion.

Usage
dolpc(x, modelorder = 8)

Arguments
X Matrix of spectral magnitude samples (each sample/time frame in one column).
modelorder Lag of the AR model.

Value

Returns a matrix of the normalized AR coefficients (depending on the input spectrum: LPC or PLP
coefficients). Every column represents one time frame.

Author(s)

Sebastian Krey <krey@statistik.tu-dortmund.de>

References

Daniel P. W. Ellis: https://www.ee.columbia.edu/~dpwe/resources/matlab/rastamat/

See Also

levinson

https://www.ee.columbia.edu/~dpwe/resources/matlab/rastamat/
https://www.ee.columbia.edu/~dpwe/resources/matlab/rastamat/

8 downsample

Examples

testsound <- normalize(sine(400) + sine(1000) + square(250), "16")
pspectrum <- powspec(testsound@left, testsound@samp.rate)
aspectrum <- audspec(pspectrum, testsound@samp.rate)$aspectrum
lpcas <- dolpc(aspectrum, 10)

downsample Downsampling a Wave or WaveMC object

Description

Downsampling an object of class Wave or class WaveMC.

Usage

downsample(object, samp.rate)

Arguments
object Object of class Wave or class WaveMC.
samp.rate Sampling rate the object is to be downsampled to. samp. rate must be in [2000,
19200017; typical values are 11025, 22050, and 44100 for CD quality. If the
object’s sampling rate is already equal or smaller than samp.rate, the object
will be returned unchanged.
Value

An object of class Wave or class WaveMC.

Author(s)

Uwe Ligges <ligges@statistik.tu-dortmund.de>

See Also

Wave-class, Wave, WaveMC-class, WaveMC

equalWave 9

equalWave Checking Wave objects

Description
Internal S4 generic function that checks for some kind of equality of objects of class Wave or class
WaveMC.

Usage

equalWave(objectl, object2)

Arguments

objectl, object?2
Object(s) of class Wave or class WaveMC (both of the same class).
Value

Does not return anything. It stops code execution with an error message indicating the problem if
the objects are not of the same class (either Wave oder WaveMC) or if the two objects don’t have the
same properties, i.e. identical sampling rate, resolution (bit), and number of channels (for WaveMC,
resp. stereo/mono for Wave).

Author(s)

Uwe Ligges <ligges@statistik.tu-dortmund.de>, Sarah Schnackenberg

See Also

Wave-class, Wave, WaveMC-class, WaveMC

extractWave Extractor for Wave and WaveMC objects

Description

Extractor function that allows to extract inner parts for Wave or WaveMC objects (interactively).

Usage

extractWave(object, from = 1, to = length(object),
interact = interactive(), xunit = c("samples”, "time"), ...)

10 extractWave

Arguments
object Object of class Wave or class WaveMC.
from Sample number or time in seconds (see xunit) at which to start extraction.
to Sample number or time in seconds (see xunit) at which to stop extraction. If to
< from, object will be returned as is.
interact Logical indicating whether to choose the range to be extracted interactively (if
TRUE). See Section Details.
xunit Character indicating which units are used to specify the range to be extracted
(both in arguments from and to, and in the plot, if interact = TRUE). If xunit
= "time", the unit is time in seconds, otherwise the number of samples.
Parameters to be passed to the underlying plot function (plot-methods)if interact
= TRUE.
Details

This function allows interactive selection of a range to be extracted from an object of class Wave or
class WaveMC. The default is to use interactive selection if the current R session is interactive. In
case of interactive selection, plot-methods plot the Wave or WaveMC object, and the user may click
on the starting and ending points of his selection (given neither from nor to have been specified,
see below). The cut-points are drawn and the corresponding selection will be returned in form of a
Wave or WaveMC object.

Setting interact = TRUE in a non-interactive session does not work.

Setting arguments from or to explicitly means that the specified one does not need to be selected
interactively, hence only the non-specified one will be selected interactively. Moreover, setting both
from or to implies interact = FALSE.

Value

An object of class Wave or class WaveMC.

Author(s)

Uwe Ligges <ligges@statistik.tu-dortmund.de>, Sarah Schnackenberg

See Also

Wave-class, Wave, WaveMC-class, WaveMC, bind, channel, mono

Examples

Wobj <- sine(440)

extracting the middle @.5 seconds of that 1 sec. sound:

Wobj2 <- extractWave(Wobj, from = @.25, to = 0.75, xunit = "time")
Wobj2

Not run:
or interactively:

FF

11

Wobj2 <- extractWave(Wobj)

End(Not run)

FF

Estimation of Fundamental Frequencies from a Wspec object

Description

Estimation of Fundamental Frequencies from an object of class Wspec. Additionally, some heuris-
tics are used to distinguish silence, noise (and breathing for singers) from real tones.

Usage

FF(object, peakheight = 0.01, silence = 0.2, minpeak = 9, diapason = 440,
notes = NULL, interest.frgs = seq(along = object@freq),

search.par

FFpure(object,

= c(0.8, 10, 1.3, 1.7))

peakheight = 0.01, diapason = 440,

notes = NULL, interest.frqs = seq(along = object@freq),

search.par

Arguments

object
peakheight

silence

minpeak

diapason

notes

interest.frgs

search.par

= c(0.8, 10, 1.3, 1.7))

An object of class Wspec.

The peak’s proportion of the maximal peak height to be considered for funda-
mental frequency detection. The default (0.01) means peaks smaller than 0.02
times the maximal peak height are omitted.

The maximum proportion of periodograms to be considered as silence or noise
(such as breathing). The default (0.2) means that less than 20 out of 100 peri-
odograms represent silence or noise.

If more than minpeak peaks are considered for detection and passed argument
peakheight, such periodograms are detected to be silence or noise (if silence
> 0).

Frequency of diapason a, default is 440 (Hertz).

Optional, a vector of integers indicating the notes (in halftones from diapason

a) that are expected. By applying this restriction, the “detection error” might be
reduced in some cases.

Optional, either a vector of integers indicating the indices of (fundamental) fre-
quencies in object that are expected, or one of the character strings "bass”,
"tenor"”, "alto"” or "soprano”. For these voice types, only typical frequency
ranges are considered for detection.

By applying this restriction, the “detection error” might be reduced in some
cases.

Parameters to look for peaks:

12 freqconv

1. The first peak larger than peakheight * 'largest_peak' is taken.

2. Its frequency is multiplied by 1+search.par[1] Now, any larger peak be-
tween the old peak and that value is taken, if (a) it exists and if (b) it is
above the search.par[2]-th Fourier-Frequency.

3. Within the interval of frequencies 'current peak' * search.par[3:41],
another high peak is looked for. If any high peak exists in that interval, it can
be assumed we got the wrong partial and the ‘real’ fundamental frequency
can be re-estimated from the next two partials.

Details

FFpure just estimates the fundamental frequencies for all periodograms contained in the object
(of class Wspec).

FF additionally uses some heuristics to distinguish silence, noise (and breathing for singers) from
real tones. It is recommended to use the wrapper function FF rather than FFpure. If silence detecion
can be omitted by specifying silence = 0.

Value

Vector of estimated fundamental frequencies (in Hertz) for each periodogram conatined in object.

Note

These functions are still in development and may be changed in due course.

Author(s)

Uwe Ligges <ligges@statistik.tu-dortmund.de>

See Also

Wspec, periodogram (including an example), noteFromFF, and tuneR for a very complete example.

freqconv Frequency scale conversion

Description

Perform frequency scale conversions between Hertz, Bark- and different variants von the Melscale.

Usage
bark2hz(z)
hz2bark (f)
hz2mel(f, htk = FALSE)
mel2hz(z, htk = FALSE)

getMidiNotes 13

Arguments
f Frequency in Hertz
z Frequency in the auditory frequency scale
htk Use the HTK-Melscale (htk = TRUE) or Slaney’s Melscale from the Auditory
Toolbox (htk = FALSE)
Value

The value of the input in the target frequency scale.

Author(s)

Sebastian Krey <krey@statistik.tu-dortmund.de>

References

Daniel P. W. Ellis: https://www.ee.columbia.edu/~dpwe/resources/matlab/rastamat/, Mal-
colm Slaney: Auditory Toolbox

Examples

hz2bark (440)

bark2hz(hz2bark(440))

hz2mel (440, htk = TRUE)

mel2hz(hz2mel (440, htk = TRUE), htk = TRUE)
hz2mel (440, htk = FALSE)

mel2hz(hz2mel (440, htk = FALSE), htk = FALSE)

getMidiNotes Extract note events from objects returned by readMidi

Description

Extract only note events from an object returned by the readMidi function.

Usage
getMidiNotes(x, ...)
Arguments
X A data.frame returned by the readMidi function.

Further arguments are passed to the notenames function for extracting the hu-
man readable note names rather than their integer representations.

https://www.ee.columbia.edu/~dpwe/resources/matlab/rastamat/

14 length

Value

A data frame with columns

time start time

length length

track track number

channel channel number

note note

notename notename

velocity note velocity
Author(s)

Uwe Ligges and Johanna Mielke

See Also

readMidi

Examples

content <- readMidi(system.file("example_files”, "Bass_sample.mid”, package="tuneR"))
getMidiNotes(content)

length S4 generic for length

Description

S4 generic for length.

Methods

x = "Wave'' The length of the left channel (in samples) of this object of class Wave will be returned.
x = "WaveMC" The length for each of the time series in the WaveMC will be returned.

object = "ANY" For compatibility.

See Also

For the primitive: length

lifter 15

lifter Liftering of cepstra

Description

Apply liftering to a matrix of cepstra.

Usage

lifter(x, lift = 0.6, inv = FALSE, htk = FALSE)

Arguments
X Matrix of cepstra, one sample/time frame per column.
lift Liftering exponent/length.
inv Invert the liftering (undo a previous liftering).
htk Switch liftering type.
Details

If htk = FALSE, then perform wi'ift, i = 1,..., nrow(x) liftering. If htk = TRUE, then perform
HTK-style sin-curve liftering with length 1ift.
Value

Matrix of the liftered cepstra.

Author(s)

Sebastian Krey <krey@statistik.tu-dortmund.de>

References

Daniel P. W. Ellis: https://www.ee.columbia.edu/~dpwe/resources/matlab/rastamat/

Examples

testsound <- normalize(sine(400) + sine(1000) + square(250), "16")
m <- melfcc(testsound, frames_in_rows=FALSE)
unlm <- lifter(m, inv=TRUE)

https://www.ee.columbia.edu/~dpwe/resources/matlab/rastamat/

16 lilyinput

lilyinput Providing LilyPond compatible input

Description

A function (in development!) that writes a file to be processed by LilyPond by extracting the relevant
information (e.g. pitch, length, ...) from columns of a data frame. The music notation software
LilyPond can “transcribe” such an input file into sheet music.

Usage

lilyinput(X, file = "Rsong.ly"”, Major = TRUE, key = "c",
clef = c("treble”, "bass"”, "alto", "tenor"), time = "4/4",
endbar = TRUE, midi = TRUE, tempo = "2 = 60",

textheight = 220, linewidth = 150, indent = @, fontsize = 14)

Arguments
X A data frame containing 4 named components (columns):
* note: Integer - the notes’ pitch in halftones from diapason (a), i.e. 0 for
diapason a, 3 for c’, ...
* duration: Integer - denominator of lengths of the notes, e.g. 8 for a quaver.
* punctate: Logical - whether to punctate a note.
* slur: Logical - TRUE indicates to start a slur, or to end it. That means that
the first, third, ... occurences of TRUE start slurps, while the second, fourth,
... occurences end slurps. Note that it is only possible to draw one slur at a
time.
file The file to be written for LilyPond’s input.
Major Logical indicating major key (if TRUE) or minor key.
key Keynote, necessary to set sharps/flats.
clef Integer indicating the kind of clef, supported are "treble” (default), "bass”,
"alto”, and "tenor”.
time Character indicating which meter to use, examples are: "3/4", "4/4".
endbar Logical indicating whether to set an ending bar at the end of the sheet music.
midi Logical indicating whether Midi output (by LilyPond) is desirable.
tempo Character specifying the tempo to be used for the Midi file if midi = TRUE. The
default, "2 = 60" indicates: 60 half notes per minute, whereas "4 = 90" indicates
90 quarters per minute.
textheight Textheight of the sheet music to be written by LilyPond.
linewidth Linewidth of the sheet music to be written by LilyPond.
indent Indentation of the sheet music to be written by LilyPond.
fontsize Fontsize of the sheet music to be written by LilyPond.

Ipc2cep 17

Details

Details will be given when development has reached a stable stage ...!

Value

Nothing is returned, but a file is written.

Note

This function is in development!!!

Everything (and in particular its user interface) is subject to change!!!
Author(s)

Andrea Preuler and Uwe Ligges <ligges@statistik.tu-dortmund.de>

References

The LilyPond development team (2005): LilyPond - The music typesetter. https://1lilypond.
org/, Version 2.7.20.

Preufler, A., Ligges, U. und Weihs, C. (2002): Ein R Exportfilter fiir das Notations- und Midi-
Programm LilyPond. Arbeitsbericht 35. Fachbereich Statistik, Universitdt Dortmund. (german)

See Also

quantMerge prepares the data to be written into the LilyPond format; quantize and quantplot
generate another kind of plot; and exhaustive example is given in tuneR.

lpc2cep LPC to cepstra conversion

Description

Convert the LPC coefficients in each column of a into frames of cepstra.

Usage

lpc2cep(a, nout = nrow(a))

Arguments
a Matrix of LPC coefficients.
nout Number of cepstra to produce.
Value

Matrix of cepstra (one column per time frame).

https://lilypond.org/
https://lilypond.org/

18 MCnames

Author(s)

Sebastian Krey <krey@statistik.tu-dortmund.de>

References

Daniel P. W. Ellis: https://www.ee.columbia.edu/~dpwe/resources/matlab/rastamat/

See Also

spec2cep

Examples

testsound <- normalize(sine(400) + sine(1000) + square(250), "16")
pspectrum <- powspec(testsound@left, testsound@samp.rate)
aspectrum <- audspec(pspectrum, testsound@samp.rate)

lpcas <- dolpc(aspectrum$aspectrum, 8)

cepstra <- lpc2cep(lpcas)

MCnames Default channel ordering for multi channel wave files

Description
A data frame representing the default channel ordering with id, descriptive label, and abbreviated
name for multi channel wave files.

Format
A data frame with 18 observations on the following 3 variables:

id id of the channel
label full label for the channel

name abbreviated name for the channel

Source
Data derived from the technical documentation given at https://docs.microsoft.com/en-us/
windows-hardware/drivers/ddi/content/ksmedia/ns-ksmedia-waveformatextensible.
References
Microsoft Corporation (2018): WAVEFORMATEXTENSIBLE structure, https://docs.microsoft.
com/en-us/windows-hardware/drivers/ddi/content/ksmedia/ns-ksmedia-waveformatextensible.
Examples

MCnames # the 18 predefined channels in a multi channel Wave file (WaveMC object)

https://www.ee.columbia.edu/~dpwe/resources/matlab/rastamat/
https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/content/ksmedia/ns-ksmedia-waveformatextensible
https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/content/ksmedia/ns-ksmedia-waveformatextensible
https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/content/ksmedia/ns-ksmedia-waveformatextensible
https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/content/ksmedia/ns-ksmedia-waveformatextensible

melfcc

19

melfcc

MFCC Calculation

Description

Calculate Mel-frequency cepstral coefficients.

Usage

melfcc(samples, sr = samples@samp.rate, wintime = 0.025,

hoptime

0.01, numcep = 12, lifterexp = 0.6, htklifter = FALSE,

sumpower = TRUE, preemph = 0.97, dither = FALSE,

minfreq = @, maxfreq = sr/2, nbands = 40, bwidth = 1,
dCttype = C("tz”, ”t1“’ "t3”, ”t4“),

fbtype = c("mel”, "htkmel”, "fcmel”, "bark"), usecmp = FALSE,

modelorder

Arguments

samples
sr
wintime
hoptime
numcep
lifterexp
htklifter

sumpower

preemph
dither
minfreq
maxfreq
nbands
bwidth
dcttype
fbtype
usecmp

modelorder

spec_out

= NULL, spec_out = FALSE, frames_in_rows = TRUE)

Object of Wave-class or WaveMC-class. Only the first channel will be used.
Sampling rate of the signal.

Window length in sec.

Step between successive windows in sec.

Number of cepstra to return.

Exponent for liftering; O = none.

Use HTK sin lifter.

If sumpower = TRUE the frequency scale transformation is based on the power-
spectrum, if sumpower = FALSE it is based on its squareroot (absolute value of
the spectrum) and squared afterwards.

Apply pre-emphasis filter [1 -preemph] (O = none).

Add offset to spectrum as if dither noise.

Lowest band edge of mel filters (Hz).

Highest band edge of mel filters (Hz).

Number of warped spectral bands to use.

Width of spectral bands in Bark/Mel.

Type of DCT used - 1 or 2 (or 3 for HTK or 4 for feacalc).

Auditory frequency scale to use: "mel”, "bark”, "htkmel”, "fcmel”.

Apply equal-loudness weighting and cube-root compression (PLP instead of
LPC).

If modelorder > 9, fit a linear prediction (autoregressive-) model of this order
and calculation of cepstra out of 1pcas.

Should matrices of the power- and the auditory-spectrum be returned.

frames_in_rows Return time frames in rows instead of columns (original Matlab code).

20 melfcc

Details

Calculation of the MFCCs imlcudes the following steps:

. Preemphasis filtering

. Take the absolute value of the STFT (usage of Hamming window)

1
2
3. Warp to auditory frequency scale (Mel/Bark)
4. Take the DCT of the log-auditory-spectrum
5

. Return the first ‘ncep’ components

Value
cepstra Cepstral coefficients of the input signal (one time frame per row/column)
aspectrum Auditory spectrum (spectrum after transformation to Mel/Bark scale) of the sig-
nal
pspectrum Power spectrum of the input signal.
lpcas If modelorder > 0, the linear prediction coefficients (LPC/PLP).
Note

The following non-default values nearly duplicate Malcolm Slaney’s mfcc (i.e.

melfcc(d, 16000, wintime=0.016, lifterexp=0, minfreq=133.33,
maxfreq=6855.6, sumpower=FALSE)

=~=1o0g(10) * 2 *x mfcc(d, 16000) in the Auditory toolbox for Matlab).
The following non-default values nearly duplicate HTK’s MFCC (i.e.

melfcc(d, 16000, lifterexp=22, htklifter=TRUE, nbands=20, maxfreq=8000,
sumpower=FALSE, fbtype="htkmel”, dcttype="t3")

=~= 2 *x htkmelfcc(:,[13,[1:12]]1) where HTK config has ‘PREEMCOEF = 0.97°, ‘NUM-
CHANS = 20°, ‘CEPLIFTER = 22°, ‘NUMCEPS = 12’, ‘WINDOWSIZE = 250000.0’, ‘USE-
HAMMING = T°, ‘TARGETKIND = MFCC_0’).

For more detail on reproducing other programs’ outputs, see https://www.ee.columbia.edu/
~dpwe/resources/matlab/rastamat/mfccs.html

Author(s)

Sebastian Krey <krey@statistik.tu-dortmund.de>

References

Daniel P. W. Ellis: https://www.ee.columbia.edu/~dpwe/resources/matlab/rastamat/

https://www.ee.columbia.edu/~dpwe/resources/matlab/rastamat/mfccs.html
https://www.ee.columbia.edu/~dpwe/resources/matlab/rastamat/mfccs.html
https://www.ee.columbia.edu/~dpwe/resources/matlab/rastamat/

melodyplot 21

Examples

testsound <- normalize(sine(400) + sine(1000) + square(250), "16")
ml <- melfcc(testsound)

#Use PLP features to calculate cepstra and output the matrices like the

#original Matlab code (note: modelorder limits the number of cepstra)

m2 <- melfcc(testsound, numcep=9, usecmp=TRUE, modelorder=8,
spec_out=TRUE, frames_in_rows=FALSE)

melodyplot Plotting a melody

Description

Plot a observed melody and (optional) an expected melody, as well as corresponding energy values
(corresponding to the loudness of the sound).

Usage

melodyplot(object, observed, expected = NULL, bars = NULL,
main = NULL, xlab = NULL, ylab = "note"”, xlim = NULL, ylim = NULL,
observedtype = "1"”, observedcol = "red”, expectedcol = "grey",
gridcol = "grey"”, 1lwd = 2, las = 1, cex.axis = 0.9,
mar = c(5, 4, 4, 4) + 0.1, notenames = NULL, thin =1,
silence = "silence"”, plotenergy = TRUE, ...,
axispar = list(ax1 = list(side=1),
ax2 = list(side=2),
ax4 = list(side=4)),
boxpar = list(),
energylabel = list(text="energy", side=4, line=2.5, at=rg.s-0.25, las=3),
energypar = list(),
expectedpar = list(),
gridpar = list(col=gridcol),
observedpar = list(col=observedcol, type=observedtype, lwd=2, pch=15))

Arguments

object An object of class Wspec.

observed Observed notes, probably as a result from noteFromFF (or a smoothed ver-
sion). This should correspond to the Wspec object. It can also be a matrix
of k columns where those k notes in the same row are displayed at the same
timepoint.

expected Expected notes (optional; in order to compare results), same format as observed.

bars Number of bars to be plotted (a virtual static segmentation takes place). If NULL

(default), time rather than bars are used.

main Main title of the plot.

22

xlab, ylab

xlim, ylim

observedtype

observedcol
expectedcol
gridcol

lwd

las
cex.axis
mar
notenames

thin

silence

plotenergy

axispar

boxpar
energylabel

energypar

expectedpar

gridpar

observedpar

Author(s)

melodyplot

Annotation of -/y-axes.

Range of x-/y-axis, where ylim must be an integer that represents the range of
note heights that should be displayed.

Type (either "p” for points or "1" for lines) used for representing observed notes.
"1" (the default) is not sensible for polyphonic representations.

Colour for the observed melody.

Colour for the expected melody.

Colour of the grid.

Line width, see par for details.

Orientation of axis labels, see par for details.

Size of tick mark labels, see par for details.

Margins of the plot, see par for details.

Optionally specify other notenames (character) for the y axis.

Amount of thinning of notenames, i.e. only each thinth notename is displayed
on the y-axis.

Character string for label of the ‘silence’ (default) axis.

Logical (default: TRUE), whether to plot energy values in the bottom part of the
plot.

Additional graphical parameters to be passed to underlying plot function.

A named list of three other lists (ax1, ax2, and ax4) containing parameters
passed to the corresponding axis calls for the three axis time (ax1), notes (ax2),
and energy (ax4).

A list of parameters to be passed to the box generating functions.
A list of parameters to be passed to the energy-label generating mtext call.

A list of parameters to be passed to the 1ines function that draws the energy
curve.

A list of parameters to be passed to the rect function that draws the rectangles
for expected values.

A list of parameters to be passed to the abline function that draws the grid lines.

A list of parameters to be passed to the 1ines function that draws the observed
values.

Uwe Ligges <ligges@statistik.tu-dortmund.de>

See Also

noteFromFF, FF, quantplot; for an example, see the help in tuneR.

Mono-Stereo 23

Mono-Stereo Converting (extracting, joining) stereo to mono and vice versa

Description

Functions to extract a channel from a stereo Wave object, and to join channels of two monophonic
Wave objects to a stereophonic one.

Usage

mono(object, which = c("left”, "right"”, "both"))
stereo(left, right)

Arguments
object Object of class Wave.
which Character, indicating whether the “left” or “right” channel should be extracted,
or whether “both” channels should be averaged.
left Object of class Wave containing monophonic sound, to be used for the left chan-
nel.
right Object of class Wave containing monophonic sound, to be used for the right chan-
nel (if missing, the left channel is duplicated). If right is missing, stereo
returns whether left is stereo (TRUE) or mono (FALSE).
Details

For objects of WaveMC-class, a mono channel can be created by simple matrix indexing, e.g.
WaveMCobject[, 2] selects the second channel.
Value

An object of class Wave.

If argument right is missing in stereo, a logical values is returned that indicates whether left is
stereo (TRUE) or mono (FALSE).

Author(s)

Uwe Ligges <ligges@statistik.tu-dortmund.de>

See Also

Wave-class, Wave

24 normalize-methods

Examples

Wobj <- sine(440)

Wobj

Wobj2 <- stereo(Wobj, Wobj)
Wobj2

mono(Wobj2, "right")

nchannel Number of channels

Description

Get the number of channels from a Wave or WaveMC object

Usage

nchannel (object)
S4 method for signature 'Wave'
nchannel (object)
S4 method for signature 'WaveMC'
nchannel (object)

Arguments

object Object of class Wave or class WaveMC.

Value

An integer, the number of channels given in the object.

See Also
Wave-class, WaveMC-class

normalize-methods Rescale the range of values

Description

Centering and rescaling the waveform of a Wave or WaveMC object to a canonical interval corre-
sponding to the Wave format (e.g. [-1, 1], [0, 254], [-32767, 32767], [-8388607, 8388607], or
[-2147483647, 2147483647]).

Usage

normalize(object, unit = c("1", "8", "16", "24", "32", "64", "0"),
center = TRUE, level = 1, rescale = TRUE, pcm = object@pcm)

noSilence 25

Arguments

object Object of class Wave or WaveMC.

unit Unit to rescale to.
"1" (default) for rescaling to numeric values in [-1, 1],
"8" (i.e. 8-bit) for rescaling to integers in [0, 254],
"16" (i.e. 16-bit) for rescaling to integers in [-32767, 32767],
"24" (i.e. 24-bit) for rescaling to integers in [-8388607, 8388607],
"32" (i.e. 32-bit) for rescaling either to integers in [-2147483647, 2147483647]
(PCM Wave format if pcm=TRUE) or to numeric values in [-1, 1] (FLOAT_IEEE
Wave format if pcm = FALSE),
"64" (i.e. 64-bit) for rescaling to real values in [-1, 1] (FLOAT_IEEE Wave
format), and
"@" for not rescaling (hence only centering if center = TRUE).

center If TRUE (default), values are centered around O (or 127 if unit = "8").

level Maximal percentage of the amplitude used for normalizing (default is 1).

rescale Logical, whether to rescale to the maximal possible dynamic range.

pcm Logical. By default, the pcm information from the object is kept. Otherwise,
if TRUE, the object is coerced to the PCM Wave format. If FALSE, the object is
coerced to the FLOAT_IEEE format, i.e. numeric values in [-1, 1].

Value

An object containing the normalized data of the same class as the input object, i.e. either Wave or
WaveMC.

Author(s)

Uwe Ligges <ligges@statistik.tu-dortmund.de>, Sarah Schnackenberg, based on code from
Matthias Heymann’s former package ‘sound’.

See Also

writeWave, Wave-class, Wave, WaveMC-class, WaveMC

noSilence Cut off silence from a Wave or WaveMC object

Description
Generic function to cut off silence or low noise at the beginning and/or at the end of an object of
class Wave or class WaveMC.

Usage

noSilence(object, zero = @, level = @, where = c("both”, "start”, "end"))

26 noteFromFF

Arguments
object Object of class Wave or class WaveMC.
zero The zero level (default: 0) at which ideal cut points are determined (see Details).
A typical alternative would be 127 for 8 bit Wave or WaveMC objects. If zero =
NA, the mean of the left Wave channel (for Wave, resp. the mean of the first
channel for WaveMC) is taken as zero level.
level Values in the interval between zero and zero - level/zero + level are con-
sidered as silence.
where One of "both"” (default), "start”, or "end” indicating at where to prepare the
Wave or WaveMC object for concatenation.
Details

Silcence is removed at the locations given by where of the Wave or WaveMC object, where silence is
defined such that (in both channels if stereo, in all channels if multichannel for WaveMC) all values are
in the interval between zero - level and zero + level. All values before (or after, respectively)
the first non-silent value are removed from the object.

Value

An object of class Wave or WaveMC.

Author(s)

Uwe Ligges <ligges@statistik.tu-dortmund.de>, Sarah Schnackenberg, based on code from
Matthias Heymann’s former package ‘sound’.

See Also

silence, Wave-class, Wave, WaveMC-class, WaveMC, extractWave

noteFromFF Deriving notes from frequencies

Description

Deriving notes from given (fundamental) frequencies.

Usage

noteFromFF(x, diapason = 440, roundshift = 0)

notenames 27

Arguments
X Fundamental frequency.
diapason Frequency of diapason a, default is 440 (Hertz).
roundshift Shift that indicates from here to round to the next integer (note). The default
(0) is “classical” rounding as described in round. A higher value means that
roundshift is added to the calculated real note value before rounding to an
integer. This is useful if it is unclear that some instruments really shift the note
in the center between two theoretical frequencies.
Example: if x = 452 and diapason = 440, the internally calculated real value
of 0.46583 is rounded to 0, but for roundshift = 0.1 we get 0.56583 and it is
rounded to note 1.
Details

The formula used is simply round(12 * log(x / diapason, 2) + roundshift).

Value

An integer representing the (rounded) difference in halftones from diapason a, i.e. indicating the
note that corresponds to fundamental frequency x given the value of diapason. For example: 0
indicates diapason a, 3: ¢’, 12: a’, ...

Author(s)

Uwe Ligges <ligges@statistik.tu-dortmund.de>

See Also

FF, periodogram, and tuneR for a very complete example.

notenames Generating note names from numbers

Description

A function that generates note names from numbers

Usage
notenames(notes, language = c("english”, "german"))
Arguments
notes An interger values vector, where O corresponds to a’, notes below and above

have to be specified in the corresponding halftone distance.

language Language of the note names. Currently only english and german are supported.

28 panorama

Value

A character vector of note names.

Author(s)

Uwe Ligges <ligges@statistik.tu-dortmund.de>

Examples

notenames(c(-24, -12, 0, 12)) # octaves of a
notenames(3:15) # chromaticism

same in german:

notenames(3:15, language = "german")
panorama Narrow the Panorama of a Stereo Sample
Description

Generic function to narrow the panorama of a stereo Wave or WaveMC object.

Usage

panorama(object, pan = 1)

Arguments
object Object of class Wave or class WaveMC.
pan Value in [-1,1] to narrow the panorama, see the Details below. The default (1)
does not change anything.
Details

If abs(pan) < 1, mixtures of the two channels of the Wave or WaveMC objects are used for the left
and the right channel of the returned Sample object if the object is of class Wave, resp. for the
first and second channel of the returned Sample object if the object is of class WaveMC, so that they
appear closer to the center.

For pan = 0, both sounds are completely in the center (i.e. averaged).

If pan <0, the left and the right channel (for Wave objects, the first and the second channel for
WaveMC objects) are interchanged.

Value

An object of class Wave or class WaveMC with the transformed panorama.

periodogram-methods 29

Author(s)

Uwe Ligges <ligges@statistik.tu-dortmund.de>, Sarah Schnackenberg, based on code by
Matthias Heymann

See Also

Wave-class, Wave, WaveMC-class, WaveMC

periodogram-methods Periodogram (Spectral Density) Estimation on Wave objects

Description

This function estimates one or more periodograms (spectral densities) of the time series contained
in an object of class Wave or WaveMC (or directly in a Wave file) using a window running through
the time series (possibly with overlapping). It returns an object of class Wspec.

Usage

periodogram(object, ...)

S4 method for signature 'WaveGeneral'

periodogram(object, width = length(object), overlap = 0,
starts = NULL, ends = NULL, taper = @, normalize = TRUE,
frgRange = c(-Inf, Inf), ...)

S4 method for signature 'character'

periodogram(object, width, overlap = @, from = 1, to = Inf,

units = c("samples”, "seconds”, "minutes"”, "hours"),
downsample = NA, channel = c("left"”, "right"), pieces =1, ...)
Arguments
object An object of class Wave, WaveMC, or a character string pointing to a Wave file.
width A window of width ‘width’ running through the time series selects the samples
from which the periodograms are to be calculated.
overlap The window can be applied by each overlapping overlap samples.
starts Start number (in samples) for a window. If not given, this value is derived from

argument ends, or will be derived width and overlap.

ends End number (in samples) for a window. If not given, this value is derived from
argument starts, or will be derived from width and overlap.

taper proportion of data to taper. See spec.pgram for details.

normalize Logical; if TRUE (default), two steps will be applied: (i) the input signal will
be normalized to amplitude max (abs(amplitude)) == 1, (ii) the resulting spec
values will be normalized to sum up to one for each periodogram.

30 periodogram-methods

frgRange Numeric vector of two elements indicating minimum and maximum of the fre-
quency range that is to be stored in the resulting object. This is useful to reduce
memory consumption.

from Where to start reading in the Wave file, in units.
to Where to stop reading in the Wave file, in units.
units Units in which from and to is given, the default is “samples”, but can be set to

time intervals such as “seconds”, see the Usage Section above.

downsample Sampling rate the object is to be downsampled to. If NA, the default, no changes
are applied. Otherwise downsample must be in [2000, 1920001]; typical values
are 11025, 22050, and 44100 for CD quality. See also downsample.

channel Character, indicating whether the “left” or “right” channel should be extracted
(see mono for details) - stereo processing is not yet implemented.

pieces The Wave file will be read in in pieces steps in order to reduce the amount of
required memory.

Further arguments to be passed to the underlying function spec.pgram.

Value

An object of class Wspec is returned containing the following slots.

freq Vector of frequencies at which the spectral density is estimated. See spectrum
for details. (1)
spec List of vectors or matrices of the spec values returned by spec.pgram at fre-

quencies corresponding to freq. Each element of the list corresponds to one
periodogram estimated from samples of the window beginning at start of the
Wave or WaveMC object.

kernel The kernel argument, or the kernel constructed from spans returned by spec. pgram.
)]

df The distribution of the spectral density estimate can be approximated by a chi
square distribution with df degrees of freedom. (1)

taper The value of the taper argument. (1)

width The value of the width argument. (1)

overlap The value of the overlap argument. (1)

normalize The value of the normalize argument. (1)

starts If the argument starts was given in the call, its value. If the argument ends

was given in the call, ‘ends - width’. If neither starts nor ends was given, the
start points of all periodograms. In the latter case the start points are calculated
from the arguments width and overlap.

stereo Always FALSE (for back compatibility). (1)
samp.rate Sampling rate of the underlying Wave or WaveMC object. (1)
variance The variance of samples in each window, corresponding to amplitude / loudness

of sound.

periodogram-methods 31

energy The “energy” FE, also an indicator for the amplitude / loudness of sound:

E(.ﬁ[) = 20 * lOglo Z ‘.I‘j|,
jerl

where [indicates the interval I := start[i]:end[i] for all ¢ := 1,...,
length(starts).

Those slots marked with “(1)” contain the information once, because it is unique for all peri-
odograms of estimated by the function call.

Note

Support for processing more than one channel of Wave or WaveMC objects has not yet been imple-
mented.

Author(s)

Uwe Ligges <ligges@statistik.tu-dortmund.de>

See Also

* for the resulting objects’ class: Wspec,

for plotting: plot-Wspec,

for the underlying periodogram calculations: spec.pgram,

for the input data class: Wave-class, Wave, WaveMC-class, WaveMC.

Examples

constructing a Wave object (1 sec.) containing sinus sound with 440Hz:
Wobj <- sine(440)
Wobj

Calculate periodograms in windows of 4096 samples each - without
any overlap - resulting in an Wspec object that is printed:
Wspecobj <- periodogram(Wobj, width = 4096)

Wspecobj

Plot the first periodogram from Wspecobj:
plot(Wspecobj)

Plot the third one and choose a reasonable xlim:
plot(Wspecobj, which = 3, xlim = c(@, 1000))

Mark frequency that has been generated before:
abline(v = 440, col="red")

plot the spectrogram

image (Wspecobj, ylim=c(@, 2000))

same again with normalize = FALSE and with logarithmic y-axis plotted:
Wspecobj2 <- periodogram(Wobj, width = 4096, normalize = FALSE)
Wspecobj2

32 play-methods

plot(Wspecobj2, which = 3, xlim = c(@, 1000), log="y")
abline(v = 440, col="red")
image (Wspecobj2, ylim=c(@, 2000), log="z")

FF (Wspecobj) # all ~ 440 Hertz
noteFromFF (FF(Wspecobj)) # all diapason a

play-methods Playing Waves

Description

Plays wave files and objects of class Wave.

Usage

play(object, player, ...)

Arguments

object Either a filename pointing to a Wave file, or an object of class Wave or WaveMC.
If the latter, it is written to a temporary file by writeWave, played by the chosen
player, and deleted afterwards.

player (Path to) a program capable of playing a wave file by invocation from the com-
mand line. If under Windows and no player is given, “mplay32.exe” or “wm-
player.exe” (if the former does not exists as under Windows 7) will be chosen as
the default.

Further arguments passed to the Wave file player. If no player and no further
arguments are given under Windows, the default is: "/play /close”.

Author(s)

Uwe Ligges <ligges@statistik.tu-dortmund.de>

See Also

Wave-class, WaveMC-class, Wave, WaveMC, writeWave, setWavPlayer

plot-Wave

33

plot-Wave

Plotting Wave objects

Description

Plotting objects of class Wave.

Usage

S4 method for signature 'Wave,missing'

plot(x, info =

FALSE, xunit = c("time"”, "samples"),

ylim = NULL, main = NULL, sub = NULL, xlab = NULL, ylab = NULL,
simplify = TRUE, nr = 2500, axes = TRUE, yaxt = par("yaxt"), las =1,
center = TRUE, ...)

S4 method for signature 'WaveMC,missing'

plot(x, info =

FALSE, xunit = c("time"”, "samples"),

ylim = NULL, main = NULL, sub = NULL, xlab = NULL, ylab = colnames(x),
simplify = TRUE, nr = 2500, axes = TRUE, yaxt = par("yaxt"), las =1,
center = TRUE, mfrow = NULL, ...)

plot_Wave_channel(x, xunit, ylim, xlab, ylab, main, nr, simplify, axes = TRUE,

yaxt = par("yaxt"), las = 1, center = TRUE, ...)
Arguments

X Object of class Wave or WaveMC, respectively.

info Logical, whether to include (written) information on the Wave or WaveMC object
within the plot.

xunit Character indicating which units are used for setting up user coordinates (see
par) and x-axis labeling. If xunit = "time", the unit is time in seconds, other-
wise the number of samples.

ylim The y (amplitude) limits of the plot.

main, sub A title / subtitle for the plot.

x1lab Label for x-axis.

ylab Label for y-axis (on the right side of the plot). For WaveMC objects, this can
be the default colnames(x) (i.e. channel names of the WaveMC object), NULL
for “channel 17, ..., “channel nc” where nc is ncol (x), NA for no labels, or a
character vector of labels (one element for each channel). For Wave objects, this
can be de default “left channel” (for mono) or “left channel” and “right channel”
(for stereo), NA for no labels, or a character vector of labels (one element for each
channel).

simplify Logical, whether the plot should be “simplified”. If TRUE (default), not all (thou-

sand/millions/billions) of points (samples) of the Wave or WaveMC object are

34 plot-Wspec

drawn, but the nr (see below) ranges (in form of segments) within nr windows
of the time series.

Plotting with simplify = FALSE may take several minutes (depending on the
number of samples in the Wave or WaveMC) and output in any vector format may
be really huge.

nr Number of windows (segments) to be used approximately (an appropriate num-
ber close to nr is selected) to simplify (see above) the plot. Only used if
simplify = TRUE and the number of samples of the Wave or WaveMC object x is

larger.
axes Whether to plot axes, default is TRUE.
yaxt How to plot the y-axis ("n" for no y-axis).
las The style of the axis labels, default is 1las = 1 (always horizontal), see par for
details.
center Whether to plot with y-axes centered around 0 (or 127 if 8-bit), default is TRUE.
mfrow A vector indicating the arrangement of the figures, see par for details.

Further arguments to be passed to the underlying plot functions.

Details

Function plot_Wave_channel is a helper function to plot a single channel (left for a Wave object,
first channel / first column of data slot of a WaveMC object); in particular it is not intended to be
called by the user directly.

Author(s)

Uwe Ligges <ligges@statistik.tu-dortmund.de>, Sarah Schnackenberg

See Also

Wave-class, Wave, WaveMC-class, WaveMC and tuneR

plot-Wspec Plotting Wspec objects

Description

Plotting a periodogram contained in an object of class Wspec.

Usage

S4 method for signature 'Wspec,missing'’
plot(x, which = 1, type = "h", xlab = "frequency”,
ylab = NULL, log = "", ...)

plot-WspecMat 35

Arguments
X Object of class Wspec.
which Integer indicating which of the periodograms contained in object x to plot. De-
fault is to plot the first one.
type The default is to plot horizontal lines, rather than points. See plot.default for
details.
xlab, ylab Label for x-/y-axis.
log Character - "x" if the x-axis is to be logarithmic, "y" if the y-axis is to be
logarithmic (quite typical for some visualizations of periodograms), and "xy"
or "yx" if both axes are to be logarithmic.
Further arguments to be passed to the underlying plot functions. See plot.default
for details.
Author(s)

Uwe Ligges <ligges@statistik.tu-dortmund.de>

See Also

see Wspec, periodogram and tuneR for the constructor function and some examples.

plot-WspecMat Plotting WspecMat objects

Description

Plotting a spectogram (image) of an object of class Wspec or WspecMat.

Usage

S4 method for signature 'WspecMat,missing'
plot(x, xlab = "time"”, ylab = "frequency"”,

xunit = c("samples”, "time"), log = "", ...)
S4 method for signature 'Wspec'
image(x, xlab = "time", ylab = "frequency”,
xunit = c("samples”, "time"), log = "", ...)
Arguments
X Object of class WspecMat (for plot) or Wspec (for image).
xlab, ylab Label for x-/y-axis.
xunit Character indicating which units are used to annotate the x-axis. If xunit =

"time", the unit is time in seconds, otherwise the number of samples.
log Character - "z" if the z values are to be logarithmic.

Further arguments to be passed to the underlying image function. See image for
details.

36 postaud

Details

Calling image on a Wspec object converts it to class WspecMat and calls the corresponding plot
function.
Calling plot on a WspecMat object generates an image with correct annotated axes.

Author(s)

Uwe Ligges <ligges@statistik.tu-dortmund.de>

See Also
see image, Wspec, WspecMat, periodogram and tuneR for the constructor function and some ex-
amples.
postaud Equal loudness compression
Description

Do loudness equalization and cube root compression

Usage

postaud(x, fmax, fbtype = c("bark”, "mel”, "htkmel”, "fcmel”),
broaden = FALSE)

Arguments
X Matrix of spectra (output of audspec).
fmax Maximum frequency im Hertz.
fbtype Auditory frequency scale.
broaden Use two additional frequency bands for calculation.
Value
X Matrix of the per sample/frame (columns) spectra after applying the frequency
dependant loudness equalization and compression.
eql Vector of the equal loudness curve.
Author(s)

Sebastian Krey <krey@statistik.tu-dortmund.de>

References

Daniel P. W. Ellis https: //www.ee.columbia.edu/~dpwe/resources/matlab/rastamat/, Hynek
Hermansky

https://www.ee.columbia.edu/~dpwe/resources/matlab/rastamat/

powspec 37

See Also

audspec, dolpc

Examples

testsound <- normalize(sine(400) + sine(1000) + square(250), "16")
pspectrum <- powspec(testsound@left, testsound@samp.rate)
aspectrum <- audspec(pspectrum, testsound@samp.rate)
paspectrum <- postaud(x = aspectrum$aspectrum, fmax = 5000,

fbtype = "mel”)

powspec Powerspectrum

Description
Compute the powerspectrum of the input signal. Basically output a power spectrogram using a
Hamming window.

Usage

powspec(x, sr = 8000, wintime = 0.025, steptime = 0.01, dither = FALSE)

Arguments
X Vector of samples.
sr Sampling rate of the signal.
wintime Window length in sec.
steptime Step between successive windows in sec.
dither Add offset to spectrum as if dither noise.
Value

Matrix, where each column represents a power spectrum for a given frame and each row represents
a frequency.

Author(s)

Sebastian Krey <krey@statistik.tu-dortmund.de>

References

Daniel P. W. Ellis: https://www.ee.columbia.edu/~dpwe/resources/matlab/rastamat/

See Also

specgram

https://www.ee.columbia.edu/~dpwe/resources/matlab/rastamat/

38 prepComb

Examples

testsound <- normalize(sine(400) + sine(1000) + square(250), "16")
pspectrum <- powspec(testsound@left, testsound@samp.rate)

prepComb Preparing the combination/concatenation of Wave or WaveMC objects

Description

Preparing objects of class Wave or class WaveMC for binding/combination/concatenation by removing
small amounts at the beginning/end of the Wave or WaveMC in order to make the transition smooth
by avoiding clicks.

Usage

prepComb(object, zero = @, where = c("both", "start”, "end"))

Arguments
object Object of class Wave or class WaveMC.
zero The zero level (default: 0) at which ideal cut points are determined (see Details).
A typical alternative would be 127 for 8 bit Wave or WaveMC objects. If zero =
NA, the mean of the left Wave channel (for a Wave object) or the mean of the first
channel (for a WaveMC object) is taken as zero level.
where One of "both"” (default), "start”, or "end” indicating at where to prepare the
Wave or WaveMC object for concatenation.
Details

This function is useful to prepare objects of class Wave or class WaveMC for binding/combination/concatenation.
At the side(s) indicated by where small amounts of the Wave or WaveMC are removed in order to make
the transition between two Waves or WaveMCs smooth (avoiding clicks).

This is done by dropping all values at the beginning of a Wave or WaveMC before the first positive
point after the zero level is crossed from negative to positive. Analogously, at the end of a Wave
or WaveMC all points are cut after the last negative value before the last zero level crossing from
negative to positive.

Value

An object of class Wave or class WaveMC.

Note

If stereo (for Wave), only the left channel is analyzed while the right channel will simply be cut at
the same locations. If multi channel (for WaveMC), only the first channel is analyzed while all other
channels will simply be cut at the same locations.

quantize 39

Author(s)

Uwe Ligges <ligges@statistik.tu-dortmund.de>, Sarah Schnackenberg, based on code from
Matthias Heymann’s former package ‘sound’.

See Also

bind, Wave-class, Wave, WaveMC-class, WaveMC, extractWave, and noSilence to cut off silence

Examples

Wobj1 <- sine(440, duration = 520)

Wobj2 <- extractWave(sine(330, duration = 500), from = 110, to = 500)
par(mfrow = c(2,1))

plot(bind(Wobj1, Wobj2), xunit = "samples")

abline(v = 520, col = "red"”) # here is a "click"!

now remove the "click” by deleting a minimal amount of information:
Wobj1 <- prepComb(Wobj1, where = "end")

Wobj2 <- prepComb(Wobj2, where = "start")

plot(bind(Wobj1, Wobj2), xunit = "samples")

quantize Functions for the quantization of notes

Description
These functions apply (static) quantization of notes in order to produce sheet music by pressing the
notes into bars.

Usage

quantize(notes, energy, parts)
guantMerge(notes, minlength, barsize, bars)

Arguments

notes Series of notes, a vector of integers such as returned by noteFromFF. At least
one argument (notes and/or energy) must be specified.

energy Series of energy values, a vector of numerics such as corresponding components
of a Wspec object.

parts Number of outcoming parts. The notes vector is divided into parts bins, the
outcome is a vector of the modes of all bins.

minlength 1/(Iength of the shortest note).
Example: if the shortest note is a quaver (1/8), set minlength = 8.

barsize One bar contains barsize number of notes of length minlength.

bars We expect bars number of bars.

40 quantplot
Value
quantize returns a list with components:
notes Vector of length parts corresponding to the input data The data is binned and
modes corresponding to the data in those bins are returned.
energy Same as notes, but for the energy argument.
quantMerge returns a data.frame with components:
note integer representation of a note (see Arguments).
duration 1/duration of a note (see minlength in Section Arguments), if punctuation =
FALSE.
punctuation Whether the note should be punctuated. If TRUE, the real duration is 1.5 times
the duration given in duration.
slur currently always FALSE, sensible processing is not yet implemented.
It is supposed to indicate the beginning and ending positions of slurs.
Author(s)
Uwe Ligges <ligges@statistik.tu-dortmund.de>
See Also

to get the input: noteFromFF, for plotting: quantplot, for further processing: lilyinput, to get
notenames: notenames; for an example, see the help in tuneR.

quantplot Plotting the quantization of a melody

Description

Plot an observed melody and (optional) an expected melody, as well as corresponding energy values
(corresponding to the loudness of the sound) within a quantization grid.

Usage

quan

tplot(observed, energy = NULL, expected = NULL, bars,
barseg = round(length(observed) / bars),
main = NULL, xlab = NULL, ylab = "note"”, xlim = NULL, ylim = NULL,

observedcol = "red", expectedcol = "grey"”, gridcol = "grey",
lwd = 2, las = 1, cex.axis = 0.9, mar = c(5, 4, 4, 4) + 0.1,
notenames = NULL, silence = "silence"”, plotenergy = TRUE, ...,

axispar = list(ax1 = list(side=1), ax2 = list(side=2), ax4 = list(side=4)),
boxpar = list(),

energylabel = list(text="energy", side=4, line=2.5, at=rg.s-0.25, las=3),
energypar = list(pch=20),

quantplot 41

expectedpar = list(),
gridpar = list(gridbar = list(col = 1), gridinner = list(col=gridcol)),
observedpar = list(col=observedcol, pch=15))

Arguments

observed Either a vector of observed notes resulting from some quantization, or a list with
components notes (observed notes) and energy (corresponding energy values),
e.g. the result from a call to quantize.

energy A vector of energy values with same quantization as observed (overwrites any
given energy values if observed is a list).

expected Expected notes (optional; in order to compare results).

bars Number of bars to be plotted (e.g. corresponding to quantize arguments).

barseg Number of segments (minimal length notes) in each bar.

main Main title of the plot.

xlab, ylab Annotation of x-/y-axes.

x1lim, ylim Range of x-/y-axis.

observedcol Colour for the observed notes.

expectedcol Colour for the expected notes.

gridcol Colour of the inner-bar grid.

1wd Line width, see par for details.

las Orientation of axis labels, see par for details.

cex.axis Size of tick mark labels, see par for details.

mar Margins of the plot, see par for details.

notenames Optionally specify other notenames (character) for the y-axis.

silence Character string for label of the ‘silence’ (default) axis.

plotenergy Logical indicating whether to plot energy values in the bottom part of the plot
(default is TRUE) if energy values are specified, and FALSE otherwise.
Additional graphical parameters to be passed to underlying plot function.

axispar A named list of three other lists (ax1, ax2, and ax4) containing parameters
passed to the corresponding axis calls for the three axis time (ax1), notes (ax2),
and energy (ax4).

boxpar A list of parameters to be passed to the box generating functions.

energylabel A list of parameters to be passed to the energy-label generating mtext call.

energypar A list of parameters to be passed to the points function that draws the energy
values.

expectedpar A list of parameters to be passed to the rect function that draws the rectangles
for expected values.

gridpar A named list of two other lists (gridbar and gridinner) containing parameters
passed to the abline functions that draw the grid lines (for bar separators and
inner bar (note) separators).

observedpar A list of parameters to be passed to the 1ines function that draws the observed

values.

42 readMidi

Author(s)

Uwe Ligges <ligges@statistik. tu-dortmund.de>

See Also

noteFromFF, FF, melodyplot, quantize; for an example, see the help in tuneR.

readMidi Read a MIDI file

Description

A MIDI file is read and returned in form of a structured data frame containing most event infor-
mation (minus some meta events and minus all system events). For details about the represented
information see the reference given below.

Usage
readMidi(file)

Arguments

file Filename of MIDI file.

Value

A data frame consisting of columns

time Time or delta-time of the events, depending on the MIDI format.

event A factor indicating the event.

type An integer indicating the type of a “meta event”, otherwise NA.

channel The channel number or NA if not applicable.

parameter1 First parameter of an event, e.g. a representation for a note in a “note event”.
parameter2 Second parameter of an event.

parameterMetaSystem

Information in a “meta event”, currently all meta events are converted to a char-
acter representation (of hex, if all fails), but future versions may have more
appropriate representations.

track The track number.

Please see the given reference about the MIDI file format about details.

Note

The data structure may be changed or extended in future versions.

readMP3 43

Author(s)

Uwe Ligges and Johanna Mielke

References
A good reference about the Midi file format can be found at http://www.music.mcgill.ca/~ich/
classes/mumt306/StandardMIDIfileformat.html.

See Also

The function getMidiNotes extracts a more readable representation of note events only.

You may also want to read Wave (readWave) or MP3 (readMP3).

Examples

content <- readMidi(system.file("example_files"”, "Bass_sample.mid”, package="tuneR"))
str(content)
content

readMP3 Read an MPEG-2 layer 3 file into a Wave object

Description

A bare bones MPEG-2 layer 3 (MP3) file reader that returns the results as 16bit PCM data stored in
a Wave object.

Usage

readMP3(filename)
Arguments

filename Filename of MP3 file.
Value

A Wave object.

Note

The decoder can currently only handle files which are either mono or stereo. This is a limitation of
the Wave object and the underlying MAD decoder.

Author(s)

Olaf Mersmann <olafm@statistik.tu-dortmund.de>

http://www.music.mcgill.ca/~ich/classes/mumt306/StandardMIDIfileformat.html
http://www.music.mcgill.ca/~ich/classes/mumt306/StandardMIDIfileformat.html

44 readWave

References
The decoder source code is taken from the MAD library, see http://www.underbit.com/products/
mad/.

See Also

Wave

Examples

Not run:

Requires an mp3 file named sample.mp3 in the current directory.
mpt <- readMP3("sample.mp3")

summary (mpt)

End(Not run)

readWave Reading Wave files

Description

Reading Wave files.

Usage

readWave(filename, from = 1, to = Inf,
units = c("samples”, "seconds”, "minutes”, "hours"), header = FALSE, toWaveMC = NULL)

Arguments

filename Filename of the file to be read.

from Where to start reading (in order to save memory by reading wave file piecewise),
inunits.

to Where to stop reading (in order to save memory by reading wave file piecewise),
inunits.

units Units in which from and to is given, the default is "samples”, but can be set to
time intervals such as "seconds”, see the Usage Section above.

header If TRUE, just header information of the Wave file are returned, otherwise (the
default) the whole Wave object.

toWaveMC If TRUE, a WaveMC-class object is returned. If NULL (default) or FALSE and

a non-extensible Wave file or an extensible Wave file with no other than the
“FL” and “FR” channels is found, a Wave-class object is returned, otherwise a
WaveMC-class object.

http://www.underbit.com/products/mad/
http://www.underbit.com/products/mad/

show-Wave Wspec-methods 45

Value

An object of class Wave or WaveMC or a list containing just the header information if header = TRUE.
If the latter, some experimental support for reading bext chunks in Broadcast Wave Format files is
implemented, and the content is returned as an unprocessed string (character).

Author(s)

Uwe Ligges <ligges@statistik.tu-dortmund.de>, Sarah Schnackenberg

See Also

Wave-class, Wave, WaveMC-class, WaveMC, writeWave

Examples

Wobj <- sine(440)

tdir <- tempdir()

tfile <- file.path(tdir, "myWave.wav")
writeWave(Wobj, filename = tfile)
list.files(tdir, pattern = "\\.wav$")
newWobj <- readWave(tfile)

newWobj

file.remove(tfile)

show-WaveWspec-methods
Showing objects

Description

Showing Wave, Wspec, and WspecMat objects.

Methods

object = "Wave' The Wave object is being shown. The number of samples, duration in seconds,
Samplingrate (Hertz), Stereo / Mono, PCM / IEEE, and the resolution in bits are printed.
Note that it does not make sense to print the whole channels containing several thousands or
millions of samples.

object = "WaveMC'" The WaveMC object is being shown. The number of samples, duration in
seconds, Samplingrate (Hertz), number of channels, PCM / IEEE, and the resolution in bits
are printed. Note that it does not make sense to print the whole channels containing several
thousands or millions of samples.

object = "Wspec'" The number of periodograms, Fourier frequencies, window width (used amount
of data), amount of overlap of neighboring windows, and whether the periodogram(s) has/have
been normalized will be printed.

object = ""WspecMat' The number of periodograms, Fourier frequencies, window width (used
amount of data), amount of overlap of neighboring windows, and whether the periodogram(s)
has/have been normalized will be printed.

46 smoother

Author(s)

Uwe Ligges <ligges@statistik.tu-dortmund.de>

See Also

Wave-class, Wave, WaveMC-class, WaveMC, Wspec, WspecMat, plot-methods, summary-methods,
and periodogram for the constructor function and some examples

smoother Meta Function for Smoothers

Description

Apply a smoother to estimated notes. Currently, only a running median (using decmedian in pack-
age pastecs) is available.

Usage
smoother(notes, method = "median”, order = 4, times = 2)
Arguments
notes Series of notes, a vector of integers such as returned by noteFromFF.
method Currently, only a running 'median’' (using decmedian in package pastecs) is
available.
order The window used for the running median corresponds to 2*order + 1.
times The number of times the running median is applied (default: 2).
Value

The smoothed series of notes.

Author(s)

Uwe Ligges <ligges@statistik.tu-dortmund.de>

spec2cep 47

spec2cep Spectra to Cepstra Conversion

Description
Calculate cepstra from spectral samples (in columns of spec) through Discrete Cosine Transforma-
tion.

Usage

spec2cep(spec, ncep = 12, type = c("t2", "t1", "t3", "t4"))

Arguments

spec Input spectra (samples/time frames in columns).

ncep Number of cepstra to return.

type DCT Type.
Value

cep Matrix of resulting cepstra.

dctm Returns the DCT matrix that spec was multiplied by to give cep.
Author(s)

Sebastian Krey <krey@statistik.tu-dortmund.de>

References

Daniel P. W. Ellis: https://www.ee.columbia.edu/~dpwe/resources/matlab/rastamat/

See Also

lpc2cep

Examples

testsound <- normalize(sine(400) + sine(1000) + square(250), "16")
pspectrum <- powspec(testsound@left, testsound@samp.rate)
aspectrum <- audspec(pspectrum, testsound@samp.rate)

cepstra <- spec2cep(aspectrum$aspectrum)

https://www.ee.columbia.edu/~dpwe/resources/matlab/rastamat/

48 tuneR

summary-methods Object Summaries

Description

summary is a generic function used to produce result summaries of the results of various model
fitting functions. The function invokes particular methods which depend on the class of the first
argument.

Methods

object ="ANY'" Any object for which a summary is desired, dispatches to the S3 generic.

object = ""Wave'' The Wave object is being shown and an additional summary of the Wave-object’s
(one or two) channels is given.

object = ""WaveMC'' The WaveMC object is being shown and an additional summary of the WaveMC-
object’s channels is given.

object = "Wspec'" The Wspec object is being shown and as an additional output is given: df, taper
(see spectrum) and for the underlying Wave object the number of channels and its sampling
rate.

object = "WspecMat' The WspecMat object is being shown and as an additional output is given:
df, taper (see spectrum) and for the underlying Wave object the number of channels and its
sampling rate.

Author(s)

Uwe Ligges <ligges@statistik.tu-dortmund.de>

See Also

For the S3 generic: summary.default, plot-methods, Wave-class, Wave, WaveMC-class, WaveMC,
Wspec, WspecMat, show

tuneR tuneR

Description

tuneR, a collection of examples

tuneR 49

Functions in tuneR

tuneR consists of several functions to work with and to analyze Wave files. In the following ex-
amples, some of the functions to generate some data (such as sine), to read and write Wave files
(readWave, writeWave), to represent or construct (multi channel) Wave files (Wave, WaveMC), to
transform Wave objects (bind, channel, downsample, extractWave, mono, stereo), and to play
Wave objects are used.

Other functions and classes are available to calculate several periodograms of a signal (periodogram,
Wspec), to estimate the corresponding fundamental frequencies (FF, FFpure), to derive the cor-
responding notes (noteFromFF), and to apply a smoother. Now, the melody and corresponding
energy values can be plotted using the function melodyplot.

A next step is the quantization (quantize) and a corresponding plot (quantplot) showing the note
values for binned data. Moreover, a function called 1ilyinput (and a data-preprocessing function
quantMerge) can prepare a data frame to be presented as sheet music by postprocessing with the
music typesetting software LilyPond.

Of course, print (show), plot and summary methods are available for most classes.

Author(s)

Uwe Ligges <ligges @statistik.tu-dortmund.de> with contributions from Sebastian Krey, Olaf Mers-
mann, Sarah Schnackenberg, Andrea Preusser, Anita Thieler, and Claus Weihs, as well as code
fragments and ideas from the former package sound by Matthias Heymann and functions from
‘rastamat’ by Daniel P. W. Ellis. The included parts of the libmad MPEG audio decoder library are
authored by Underbit Technologies.

Examples

library(”tuneR") # in a regular session, we are loading tuneR

constructing a mono Wave object (2 sec.) containing sinus
sound with 440Hz and folled by 220Hz:

Wobj <- bind(sine(440), sine(220))

show(Wobj)

plot(Wobj) # it does not make sense to plot the whole stuff
plot(extractWave(Wobj, from = 1, to = 500))

Not run:

play(Wobj) # listen to the sound

End(Not run)

tmpfile <- file.path(tempdir(), "testfile.wav")

write the Wave object into a Wave file (can be played with any player):
writeWave(Wobj, tmpfile)

reading it in again:

Wobj2 <- readWave(tmpfile)

Wobjm <- mono(Wobj, "left") # extract the left channel

and downsample to 11025 samples/sec.:

Wobjm11 <- downsample(Wobjm, 11025)

extract a part of the signal interactively (click for left/right limits):

50 updateWave

Not run:
Wobjm11s <- extractWave(Wobjmi1)

End(Not run)
or extract some values reproducibly
Wobjm11s <- extractWave(Wobjm11, from=1000, to=17000)

calculating periodograms of sections each consisting of 1024 observations,
overlapping by 512 observations:

WspecObject <- periodogram(Wobjml11s, normalize = TRUE, width = 1024, overlap = 512)
Let's look at the first periodogram:

plot(WspecObject, xlim = c(@, 2000), which = 1)

or a spectrogram

image (WspecObject, ylim = c(0, 1000))

calculate the fundamental frequency:

ff <- FF(WspecObject)

print(ff)

derive note from FF given diapason a'=440

notes <- noteFromFF(ff, 440)

smooth the notes:

snotes <- smoother(notes)

outcome should be @ for diapason "a'" and -12 (12 halftones lower) for "a"
print(snotes)

plot melody and energy of the sound:

melodyplot (WspecObject, snotes)

apply some quantization (into 8 parts):

gnotes <- quantize(snotes, WspecObject@energy, parts = 8)

an plot it, 4 parts a bar (including expected values):
quantplot(gnotes, expected = rep(c(@, -12), each = 4), bars = 2)
now prepare for LilyPond

glily <- quantMerge(snotes, 4, 4, 2)

glily

updateWave Update old Wave objects for use with new versions of tuneR

Description
Update old Wave objects generated with tuneR < 1.0.0 to the new class definition for use with new
versions of the package.

Usage

updateWave(object)

Arguments

object An object of Wave-class.

Wave 51

Details
This function is only needed to convert Wave-class objects that have been saved with tuneR versions
prior to 1.0-0 to match the new class definition.

Value

An object of Wave-class as implemented in tuneR versions >= 1.0-0.

Author(s)
Uwe Ligges <ligges@statistik.tu-dortmund.de>, Sarah Schnackenberg

See Also

Wave-class, Wave

Examples

X <- sine(440)
updateWave (x)

Wave Constructors and coercion for class Wave objects

Description

Constructors and coercion for class Wave objects

Usage

Wave(left, ...)

S4 method for signature 'numeric'

Wave(left, right = numeric(@), samp.rate = 44100, bit = 16, pcm = TRUE, ...)
Arguments

left, right, samp.rate, bit, pcm
See Section “Slots” on the help page Wave-class. Except for numeric, the argu-
ment left can also be a matrix (1 or 2 columns), data.frame (1 or 2 columns),
list (1 or 2 elements), or WaveMC (1 or 2 channels) object representing the chan-
nels.

Further arguments to be passed to the numeric method.

Details

The class definition has been extended in tuneR version 1.0-0. Saved objects of class Wave gener-
ated with former versions can be updated with updateWave to match the new definition.

52 Wave-class

Value

An object of Wave-class.

Author(s)

Uwe Ligges <ligges@statistik.tu-dortmund.de>

See Also

Wave-class, WaveMC-class, writeWave, readWave, updateWave

Examples

constructing a Wave object (1 sec.) containing sinus sound with 440Hz:
x <- seq(@, 2xpi, length = 44100)

channel <- round(32000 * sin(440 * x))

Wobj <- Wave(left = channel)

Wobj

or more easily:
Wobj <- sine(440)

Wave-class Class Wave

Description

Class “Wave”.

Details

The class definition has been extended in tuneR version 1.0-0. Saved objects of class Wave gener-
ated with former versions can be updated with updateWave to match the new definition.

Objects from the Class

Objects can be created by calls of the form new("Wave”, ...), or more conveniently using the
function Wave.

Slots

left: Object of class "numeric” representing the left channel.
right: Object of class "numeric” representing the right channel, NULL if mono.

stereo: Object of class "logical” indicating whether this is a stereo (two channels) or mono
representation.

samp.rate: Object of class "numeric” - the sampling rate, e.g. 44100 for CD quality.

bit: Object of class "numeric”, common is 16 for CD quality, or 8 for a rather rough representa-
tion.

pcm: Object of class "logical” indicating whether this is a PCM or IEEE_FLOAT Wave format.

Waveforms 53

Author(s)

Uwe Ligges <ligges@statistik.tu-dortmund.de>

See Also

Wave, updateWave, and for multi channel Wave files see WaveMC-class

Waveforms Create Wave Objects of Special Waveforms

Description

Create a Wave object of special waveform such as silcence, power law (white, red, pink, ...) noise,
sawtooth, sine, square, and pulse.

Usage
noise(kind = c("white", "pink"”, "power”, "red"), duration = samp.rate,
samp.rate = 44100, bit = 1, stereo = FALSE,
xunit = c("samples”, "time"), alpha =1, ...)

pulse(freq, duration = samp.rate, from = @, samp.rate = 44100,
bit = 1, stereo = FALSE, xunit = c("samples”, "time"),
width = 0.1, plateau = 0.2, interval = 0.5, ...)

sawtooth(freq, duration = samp.rate, from = @, samp.rate = 44100,
bit = 1, stereo = FALSE, xunit = c("samples”, "time"),
reverse = FALSE, ...)

silence(duration = samp.rate, from = @, samp.rate = 44100,
bit = 1, stereo = FALSE, xunit = c("samples”, "time"), ...)

sine(freq, duration = samp.rate, from = @, samp.rate = 44100,
bit = 1, stereo = FALSE, xunit = c("samples”, "time"), ...)

square(freq, duration = samp.rate, from = @, samp.rate = 44100,
bit = 1, stereo = FALSE, xunit = c("”samples”, "time"),

up = 0.5, ...)
Arguments
kind The kind of noise, “white”, “pink”, “power”, or “red” (these are not dB adjusted
(1) but all except for “white” are linear decreasing on a log-log scale). Algorithm
for generating power law noise is taken from Timmer and Konig (1995).
freq The frequency (in Hertz) to be generated.

duration Duration of the Wave in xunit.

54 Waveforms

from Starting value of the Wave in xunit.
samp.rate Sampling rate of the Wave.
bit Resolution of the Wave and rescaling unit. This may be

1 (default) for rescaling to numeric values in [-1,1],

8 (i.e. 8-bit) for rescaling to integers in [0, 254],

16 (i.e. 16-bit) for rescaling to integers in [-32767, 32767],

24 (i.e. 24-bit) for rescaling to integers in [-8388607, 83886071,

32 (i.e. 32-bit) for rescaling either to integers in [-2147483647, 2147483647]
(PCM Wave format if pcm = TRUE) or to numeric values in [-1, 1] (FLOAT_IEEE
Wave format if pcm = FALSE),

64 (i.e. 64-bit) for rescaling to numeric values in [-1, 1] (FLOAT_IEEE Wave
format), and

0 for not rescaling at all. These numbers are internally passed to normalize.

The Wave slot bit will be setto 32 if bit =0, bit =1 orbit = 32.
stereo Logical, if TRUE, a stereo sample will be generated. The right channel is identical

to the left one for sawtooth, silence, sine, and square. For noise, both
channel are independent.

xunit Character indicating which units are used (both in arguments duration and
from). If xunit = "time", the unit is time in seconds, otherwise the number of
samples.

alpha The power for the power law noise (defaults are 1 for pink and 1.5 for red noise)
1/f«.

reverse Logical, if TRUE, the waveform will be mirrored vertically.

up A number between 0 and 1 giving the percentage of the waveform at max value
(=1 - percentage of min value).

width Relative pulses width: the proportion of time the amplitude is non-zero.

plateau Relative plateau width: the proportion of the pulse width where amplitude is £1.

interval Relative interval between the up-going and down-going pulses with respect to

the center of the wave period (0: immediatly after up-going, 1: center of the
wave period).

Further arguments to be passed to Wave through the internal function postWaveform.

Value

A Wave object.

Author(s)
Uwe Ligges <ligges@statistik.tu-dortmund.de>, partly based on code from Matthias Hey-
mann’s former package ‘sound’, Anita Thieler, Guillaume Guénard

References

J. Timmer and M. Konig (1995): On generating power law noise. Astron. Astrophys. 300, 707-710.

WaveMC 55

See Also

Wave-class, Wave, normalize, noSilence

Examples

Wobj <- sine(440, duration = 1000)
Wobj2 <- noise(duration = 1000)
Wobj3 <- pulse(220, duration = 1000)
plot(Wobj)

plot(Wobj2)

plot(Wobj3)

WaveMC Constructors and coercion for class WaveMC objects

Description

Constructors and coercion for class WaveMC objects

Usage

WaveMC(data, ...)

S4 method for signature 'matrix’

WaveMC(data = matrix(numeric(@), 0, @), samp.rate = 44100, bit =16, pcm = TRUE, ...)
Arguments

data Except for a numeric matrix, the argument data can also be a numeric vector
(for one channel), data.frame (columns representing channels), list (elements
containing numeric vectors that represent the channels), or Wave object.

samp.rate, bit, pcm
See Section “Slots” on the help page WaveMC-class.

Further arguments to be passed to the matrix method.

Value

An object of WaveMC-class.

Author(s)

Uwe Ligges <ligges@statistik.tu-dortmund.de>, Sarah Schnackenberg

See Also

WaveMC-class, Wave-class, writeWave, readWave

56 WaveMC-class

Examples

constructing a WaveMC object (1 sec.) containing sinus sound with 44QHz:
x <- seq(@, 2xpi, length = 44100)

channel <- round(32000 * sin(440 * x))

WMCobj <- WaveMC(data = channel)

WMCobj

WaveMC-class Class WaveMC

Description

Class “WaveMC”.

Details

This class has been added in tuneR version 1.0-0 for representation and construction of multi chan-
nel Wave files. Objects of class Wave can be transformed to the new class definition by calls of the
form as(..., "WaveMC"). Coercion from the WaveMC class to the Wave-class works via as(. ..,
"Wave") if there are no more than 2 channels. Coercing back to the Wave-class can be useful since
some (very few) functions cannot yet deal with multi channel Wave objects.

Note that also the Wave-class definition has been extended in tuneR version 1.0-0. For more details
see Wave-class.

Objects from the Class
Objects can be created by calls of the form new("WaveMC", ...), or more conveniently using the
function WaveMC.

Slots

.Data: Object of class "matrix"” containing numeric data, where each column is representing one
channel. Column names are the appropriate way to name different channels. The data object
MCnames contains a data frame of standard names for channels in multi channel Wave files.

samp.rate: Object of class "numeric” - the sampling rate, e.g. 44100 for CD quality.

bit: Object of class "numeric”, common is 16 for CD quality, or 8 for a rather rough representa-
tion.

pcm: Object of class "logical” indicating whether this is a PCM or IEEE_FLOAT Wave format.

Author(s)

Uwe Ligges <ligges@statistik.tu-dortmund.de>, Sarah Schnackenberg

See Also

WaveMC, Wave-class, MCnames

WavPlayer 57

WavPlayer Getting and setting the default player for Wave files

Description

Getting and setting the default player for Wave files

Usage
setWavPlayer(player)
getWavPlayer ()
Arguments
player Set the character string to call a Wave file player (including optional arguments)
using options.
Value

getWavPlayer returns the character string that has been set by setWavPlayer.

Author(s)

Uwe Ligges <ligges@statistik.tu-dortmund.de>

See Also

Wave-class, Wave, play

writeWave Writing Wave files

Description

Writing Wave files.

Usage

writeWave(object, filename, extensible = TRUE)

Arguments
object Object of class Wave or WaveMC to be written to a Wave file.
filename Filename of the file to be written.
extensible If TRUE (default), an extensible Wave format file is written. If FALSE, a non-

extensible Wave file is written.

58 write Wave

Details

It is only possible to write a non-extensible Wave format file for objects of class Wave or for objects
of class WaveMC with one or two channels (mono or stereo).

If the argument object is a Wave-class object, the channels are automatically chosen to be “FL”
(for mono) or “FL” and “FR” (for stereo).

The channel mask used to arrange the channel ordering in multi channel Wave files is written ac-
cording to Microsoft standards as given in the data frame MCnames containing the first 18 stan-
dard channels. In the case of writing a multi channel Wave file, the column names of the object
object (colnames(object)) must be specified and must uniquely identify the channel ordering
for WaveMC objects. The column names of the object of class WaveMC have to be a subset of the 18
standard channels and have to match the corresponding abbreviated names. (See MCnames for pos-
sible channels and the abbreviated names: “FL”, “FR”, “FC”, “LF”, “BL”, “BR”, “FLC”, “FRC”,
“BC”, “SL”, “SR”, “TC”, “TFL”, “TFC”, “TFR”, “TBL”, “TBC” and “TBR”).

The function normalize can be used to transform and rescale data to an appropriate amplitude
range for various Wave file formats (either pcm with 8-, 16-, 24- or 32-bit or IEEE_FLOAT with
32- or 64-bit).

Value

writeWave creates a Wave file, but returns nothing.

Author(s)

Uwe Ligges <ligges@statistik.tu-dortmund.de>, Sarah Schnackenberg

See Also

Wave-class, Wave, WaveMC-class, WaveMC, normalize, MCnames, readWave

Examples
Wobj <- sine(440)

tdir <- tempdir()

tfile <- file.path(tdir, "myWave.wav")
writeWave(Wobj, filename = tfile)
list.files(tdir, pattern = "\\.wav$")
newWobj <- readWave(tfile)

newWobj

file.remove(tfile)

Wspec-class 59

Wspec-class Class Wspec

Description

Class “Wspec” (Wave spectrums). Objects of this class represent a bunch of periodograms (see
periodogram, each generated by spectrum) corresponding to one or several windows of one Wave
or WaveMC object. Redundancy (e.g. same frequencies in each of the periodograms) will be omitted,
hence reducing memory consumption.

Details

The subset function “[” extracts the selected elements of slots spec, starts, variance and energy
and returns the other slots unchanged.

Objects from the Class

Objects can be created by calls of the form new("Wspec”, ...), but regularly they will be created
by calls to the function periodogram.

Slots

The following slots are defined. For details see the constructor function periodogram.

freq: Object of class "numeric”.
spec: Object of class "1ist”.

kernel: Object of class "ANY".

df: Object of class "numeric”.

taper: Object of class "numeric”.
width: Object of class "numeric”.
overlap: Object of class "numeric”.
normalize: Object of class "logical”.
starts: Object of class "numeric”.
stereo: Object of class "logical”.
samp.rate: Object of class "numeric”.
variance: Object of class "numeric”.

energy: Object of class "numeric”.

Author(s)

Uwe Ligges <ligges@statistik.tu-dortmund.de>

60 WspecMat-class

See Also

e the show, plot and summary methods,

* for the constructor function and some examples: periodogram (and hence also spec.pgram,
Wave-class, Wave, WaveMC-class, and WaveMC)

* WspecMat for a similar class that represents the spectrum in form of a matrix.

WspecMat-class Class WspecMat

Description

Class “WspecMat” (Wave spectrums as Matrix). Objects of this class represent a bunch of peri-
odograms (see periodogram, each generated by spectrum) corresponding to one or several win-
dows of one Wave or WaveMC object. Redundancy (e.g. same frequencies in each of the peri-
odograms) will be omitted, hence reducing memory consumption.

Details

The subset function “[” extracts the selected elements of slots spec, starts, variance and energy
and returns the other slots unchanged.

Objects from the Class

Objects can be created by calls of the form new("WspecMat”, ...), but regularly they will be
created from a Wspec object by calls such as as(Wspec_Object, "WspecMat").

Slots

The following slots are defined. For details see the constructor function periodogram.

freq: Object of class "numeric”.
spec: Object of class "matrix”.
kernel: Object of class "ANY".

df: Object of class "numeric”.

taper: Object of class "numeric”.
width: Object of class "numeric”.
overlap: Object of class "numeric”.
normalize: Object of class "logical”.
starts: Object of class "numeric”.
stereo: Object of class "logical”.
samp.rate: Object of class "numeric”.
variance: Object of class "numeric”.

energy: Object of class "numeric”.

[-methods

Author(s)

Uwe Ligges <ligges@statistik.tu-dortmund.de>

See Also

the show, plot and summary methods

61

[-methods Extract or Replace Parts of an Object

Description

Operators act on objects to extract or replace subsets.

See Also

Extract for the S3 generic.

Index

* CD quality
downsample, 8

* 10
play-methods, 32
readMidi, 42
readMP3, 43
readWave, 44
writeWave, 57

* LilyPond
lilyinput, 16

x+ MIDI
readMidi, 42

* MP3
readMP3, 43

* WaveMC
downsample, 8
noSilence, 25
panorama, 28
prepComb, 38
WaveMC, 55
WaveMC-class, 56

+ Wave
bind, 5
channel, 5
downsample, 8
equalWave, 9
extractWave, 9
FF, 11
Mono-Stereo, 23
normalize-methods, 24
noSilence, 25
noteFromFF, 26
panorama, 28
periodogram-methods, 29
play-methods, 32
plot-Wave, 33
plot-Wspec, 34
plot-WspecMat, 35
prepComb, 38

62

readWave, 44

show-WaveWspec-methods, 45

tuneR, 48

Wave, 51
Wave-class, 52
Waveforms, 53
WaveMC, 55
WavPlayer, 57
writeWave, 57
Wspec-class, 59

WspecMat-class, 60

* aplot

* ari

plot-Wave, 33
th
Arith-methods, 3

* bark

audspec, 3
freqconv, 12

* bar

quantize, 39

* bin

* bit

quantize, 39

Wave, 51
Wave-class, 52
WaveMC, 55
WaveMC-class, 56

* cepstra

lpc2cep, 17
spec2cep, 47

* cepstrum

melfcc, 19

* channel

channel, 5
Mono-Stereo, 23
panorama, 28
Wave, 51
Wave-class, 52
WaveMC, 55

INDEX

WaveMC-class, 56
* classes
Wave-class, 52
WaveMC-class, 56
Wspec-class, 59
WspecMat-class, 60
* compression
postaud, 36
* conversion
audspec, 3
freqconv, 12
lpc2cep, 17
spec2cep, 47
* cut
noSilence, 25
x datagen
Waveforms, 53
+ datasets
MCnames, 18
x declick
prepComb, 38
x deltas
deltas, 6
+ documentation
tuneR, 48
* durbin
dolpc, 7
* error
equalWave, 9
* 0
FF, 11
noteFromFF, 26
x file
lilyinput, 16
readMidi, 42
readMP3, 43
readWave, 44
writeWave, 57
* frequency
audspec, 3
FF, 11
freqconv, 12
noteFromFF, 26
+ fundamental
FF, 11
noteFromFF, 26
x hertz
freqconv, 12

+ hplot

melodyplot, 21
plot-Wave, 33
plot-Wspec, 34
plot-WspecMat, 35
quantplot, 40

* interface

lilyinput, 16
play-methods, 32

* iplot

extractWave, 9

* levinson

dolpc, 7

x liftering

lifter, 15

* loudness

postaud, 36

* Ipe

dolpc, 7
lpc2cep, 17
melfcc, 19

* manip

bind, 5

channel, 5
downsample, 8
extractWave, 9
Mono-Stereo, 23
normalize-methods, 24
noSilence, 25
panorama, 28
prepComb, 38

* median

smoother, 46

+ melody

melodyplot, 21
quantplot, 40

* mel

audspec, 3
freqconv, 12
melfcc, 19

* methods

[-methods, 61
Arith-methods, 3
length, 14
play-methods, 32
plot-Wave, 33
plot-Wspec, 34
plot-WspecMat, 35

63

64

show-WaveWspec-methods, 45
summary-methods, 48
Wave, 51

WaveMC, 55

* mfce

melfcc, 19

* misc

smoother, 46

* Imono

Mono-Stereo, 23
Wave, 51
Wave-class, 52
WaveMC, 55
WaveMC-class, 56

* music

play-methods, 32
plot-Wave, 33
readMP3, 43
readWave, 44
tuneR, 48

Wave, 51
Wave-class, 52
WaveMC, 55
WaveMC-class, 56
WavPlayer, 57
writeWave, 57
Wspec-class, 59
WspecMat-class, 60

* noise

noSilence, 25

* note

lilyinput, 16
melodyplot, 21
noteFromFF, 26
notenames, 27
quantize, 39

quantplot, 40

* periodogram

FF, 11

noteFromFF, 26
plot-Wspec, 34
plot-WspecMat, 35
show-WaveWspec-methods, 45
tuneR, 48

Wspec-class, 59
WspecMat-class, 60

* pitch

FF, 11

melodyplot, 21
noteFromFF, 26
quantplot, 40

* player

play-methods, 32
WavPlayer, 57

* plp

dolpc, 7
melfcc, 19
postaud, 36

* powerspectrum

powspec, 37

* print

show-WaveWspec-methods, 45
summary-methods, 48

* quantization

quantize, 39

* recursion

dolpc, 7

* running

smoother, 46

* sample

Waveforms, 53

+ sampling rate

downsample, 8
Wave, 51
Wave-class, 52
WaveMC, 55
WaveMC-class, 56

* sampling

downsample, 8
Wave, 51
Wave-class, 52
WaveMC, 55
WaveMC-class, 56

* silcence

Waveforms, 53

* silence

noSilence, 25

* smooth

smoother, 46

* sound

play-methods, 32
readMP3, 43
readWave, 44
Waveforms, 53
WavPlayer, 57
writeWave, 57

INDEX

INDEX

* spectogram
plot-WspecMat, 35

* spectra
spec2cep, 47

* spectrum
periodogram-methods, 29
Wspec-class, 59
WspecMat-class, 60

* speech
play-methods, 32
plot-Wave, 33
readMP3, 43
readWave, 44
Wave, 51
Wave-class, 52
WaveMC, 55
WaveMC-class, 56
WavPlayer, 57
writeWave, 57
Wspec-class, 59
WspecMat-class, 60

* stereo
Mono-Stereo, 23
panorama, 28
Wave, 51
Wave-class, 52
WaveMC, 55
WaveMC-class, 56

* tracking
FF, 11
melodyplot, 21
noteFromFF, 26
quantplot, 40

x transcribe
lilyinput, 16

* transcription
lilyinput, 16
melodyplot, 21
quantplot, 40

* 1S
FF, 11
melfcc, 19
periodogram-methods, 29
smoother, 46

« utilities
bind, 5
channel, 5
downsample, 8

65

equalWave, 9

extractWave, 9

Mono-Stereo, 23

noSilence, 25

noteFromFF, 26

notenames, 27

play-methods, 32

prepComb, 38

quantize, 39

WavPlayer, 57
+ waveform

Waveforms, 53
[,ANY-method ([-methods), 61
[,Wave-method (Wave), 51
[,WaveMC-method (WaveMC), 55
[,Wspec-method (Wspec-class), 59
[,WspecMat-method (WspecMat-class), 60
[-methods, 61

abline, 22,41
Arith,numeric,Wave-method
(Arith-methods), 3
Arith,numeric,WaveMC-method
(Arith-methods), 3
Arith,Wave,missing-method
(Arith-methods), 3
Arith,Wave,numeric-method
(Arith-methods), 3
Arith,Wave,Wave-method (Arith-methods),
3
Arith,WaveMC, numeric-method
(Arith-methods), 3
Arith,WaveMC,WaveMC-method
(Arith-methods), 3
Arith-methods, 3
audspec, 3, 36, 37
axis, 22,41

bark2hz (freqconv), 12
bind, 5, 10, 39, 49
bind,Wave-method (bind), 5
bind,WaveMC-method (bind), 5

channel, 5, 10, 49
coerce,data.frame,Wave-method (Wave), 51
coerce,data.frame,WaveMC-method
(WaveMC), 55
coerce,list,Wave-method (Wave), 51
coerce,list,WaveMC-method (WaveMC), 55

66

coerce,matrix,Wave-method (Wave), 51
coerce,matrix,WaveMC-method (WaveMC), 55
coerce,numeric,Wave-method (Wave), 51
coerce,numeric,WaveMC-method (WaveMC),
55
coerce,Wave,data.frame-method (Wave), 51
coerce,Wave,matrix-method (Wave), 51
coerce,Wave,WaveMC-method (Wave), 51
coerce,WaveGeneral,list-method (Wave),
51
coerce,WaveMC,data.frame-method
(WaveMC), 55
coerce,WaveMC,matrix-method (WaveMC), 55
coerce,WaveMC,Wave-method (WaveMC), 55
coerce,Wspec,WspecMat-method
(WspecMat-class), 60

decmedian, 46
deltas, 6

dolpc, 7,37
downsample, 8, 30, 49

equalWave, 5,9
Extract, 6/
extractWave, 5, 6, 9, 26, 39, 49

FF, 11,22, 27,42, 49
FFpure, 49

FFpure (FF), 11
fft2barkmx, 4
fft2melmx, 4
freqconv, 12

getMidiNotes, 13, 43
getWavPlayer (WavPlayer), 57
groupGeneric, 3

hz2bark (freqconv), 12
hz2mel (freqconv), 12

image, 35, 36

image, ANY-method (plot-WspecMat), 35
image,Wspec-method (plot-WspecMat), 35
image-Wspec (plot-WspecMat), 35
interactive, 10

length, 14, 14

length, ANY-method (length), 14
length,Wave-method (length), 14
length,WaveMC-method (length), 14

INDEX

levinson, 7
lifter, 15
lilyinput, 16, 40, 49
lines, 22,41
lpc2cep, 17,47

MCnames, 18, 56, 58
mel2hz (freqconv), 12
melfcc, 19
melodyplot, 21, 42, 49
mono, 6, 10, 30, 49
mono (Mono-Stereo), 23
Mono-Stereo, 23
mtext, 22, 41

nchannel, 24
nchannel,Wave-method (nchannel), 24
nchannel,WaveMC-method (nchannel), 24
noise (Waveforms), 53
normalize, 54, 55, 58
normalize (normalize-methods), 24
normalize,Wave-method
(normalize-methods), 24
normalize,WaveMC-method
(normalize-methods), 24
normalize-methods, 24
noSilence, 25, 39, 55
noSilence,Wave-method (noSilence), 25
noSilence,WaveMC-method (noSilence), 25
noteFromFF, 12,21, 22, 26, 39, 40, 42, 46, 49
notenames, 13,27, 40

options, 57

panorama, 28

panorama,Wave-method (panorama), 28

panorama,WaveMC-method (panorama), 28

par, 22, 33, 34, 41

periodogram, 12, 27, 35, 36, 46, 49, 59, 60

periodogram (periodogram-methods), 29

periodogram,character-method
(periodogram-methods), 29

periodogram,WaveGeneral-method
(periodogram-methods), 29

periodogram-methods, 29

play, 49, 57

play (play-methods), 32

play, character-method (play-methods), 32

play,WaveGeneral-method (play-methods),
32

INDEX

play-methods, 32

plot,Wave,missing-method (plot-Wave), 33

plot,WaveMC,missing-method (plot-Wave),
33

plot,Wspec,missing-method (plot-Wspec),
34

plot,WspecMat,missing-method
(plot-WspecMat), 35

plot-Wave, 33

plot-Wspec, 34

plot-WspecMat, 35

plot.default, 35

plot_Wave_channel (plot-Wave), 33

points, 41

postaud, 36

powspec, 4, 37

prepComb, 5, 38

pulse (Waveforms), 53

quantize, 17,39, 41, 42, 49
quantMerge, 17,49
quantMerge (quantize), 39
quantplot, 17, 22, 40, 40, 49

readMidi, 13, 14,42
readMP3, 43, 43
readWave, 43, 44, 49, 52, 55, 58
rect, 22,41

round, 27

sawtooth (Waveforms), 53

setWavPlayer, 32

setWavPlayer (WavPlayer), 57

show, 48

show, Wave-method
(show-WaveWspec-methods), 45

show, WaveMC-method
(show-WaveWspec-methods), 45

show, Wspec-method
(show-WaveWspec-methods), 45

show, WspecMat-method
(show-WaveWspec-methods), 45

show-WaveWspec-methods, 45

silence, 26

silence (Waveforms), 53

sine, 49

sine (Waveforms), 53

smoother, 46, 49

spec.pgram, 29-31, 60

67

spec2cep, 18, 47

specgram, 37

spectrum, 30, 48, 59, 60

square (Waveforms), 53

stereo, 5, 49

stereo (Mono-Stereo), 23

stop, 9

summary, ANY-method (summary-methods), 48

summary ,Wave-method (summary-methods),
48

summary ,WaveMC-method
(summary-methods), 48

summary ,Wspec-method (summary-methods),
48

summary , WspecMat-method
(summary-methods), 48

summary-methods, 48

summary.default, 48

tuneR, 12, 17, 22, 27, 34-36, 40, 42, 48
tuneR-package (tuneR), 48

updateWave, 50, 51-53

Wave, 3, 5, 6, 8-10, 14, 23-26, 28-34, 38, 39,
43-46, 48, 49, 51, 51, 52-55, 57-60

Wave, ANY-method (Wave), 51

Wave,data.frame-method (Wave), 51

Wave, list-method (Wave), 51

Wave,matrix-method (Wave), 51

Wave, numeric-method (Wave), 51

Wave,WaveMC-method (Wave), 51

Wave-class, 3, 5, 6, 810, 19, 23-26, 29, 31,
32, 34, 39, 4446, 48, 50-52, 52,
55-58, 60

Waveforms, 53

WaveMC, 3, 5, 8-10, 14, 24-26, 28-34, 38, 39,
45, 46, 48, 49, 55, 56-60

WaveMC, ANY-method (WaveMC), 55

WaveMC,data. frame-method (WaveMC), 55

WaveMC, list-method (WaveMC), 55

WaveMC,matrix-method (WaveMC), 55

WaveMC, numeric-method (WaveMC), 55

WaveMC,Wave-method (WaveMC), 55

WaveMC-class, 3, 5, 6, 8-10, 19, 23-26, 29,
31, 32, 34, 39, 4446, 48, 52, 53, 55,
56, 58, 60

WavPlayer, 57

writeWave, 25, 32, 45,49, 52, 55, 57

68 INDEX

Wspec, 11, 12, 21, 30, 31, 35, 36, 39, 46, 48,
49, 60

Wspec (Wspec-class), 59

Wspec-class, 59

WspecMat, 35, 36, 46, 48, 60

WspecMat (WspecMat-class), 60

WspecMat-class, 60

	Arith-methods
	audspec
	bind
	channel
	deltas
	dolpc
	downsample
	equalWave
	extractWave
	FF
	freqconv
	getMidiNotes
	length
	lifter
	lilyinput
	lpc2cep
	MCnames
	melfcc
	melodyplot
	Mono-Stereo
	nchannel
	normalize-methods
	noSilence
	noteFromFF
	notenames
	panorama
	periodogram-methods
	play-methods
	plot-Wave
	plot-Wspec
	plot-WspecMat
	postaud
	powspec
	prepComb
	quantize
	quantplot
	readMidi
	readMP3
	readWave
	show-WaveWspec-methods
	smoother
	spec2cep
	summary-methods
	tuneR
	updateWave
	Wave
	Wave-class
	Waveforms
	WaveMC
	WaveMC-class
	WavPlayer
	writeWave
	Wspec-class
	WspecMat-class
	[-methods
	Index

