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1 Introduction

The tsmarch package represents a re-write and re-think of the models in rmgarch. It is written using simpler
S3 methods and classes, has a cleaner code base, extensive documentation and unit tests, provides speed gains
by making use of parallelization in both R (via the future package) and in the C++ code (via RcppParallel
package), and works with the new univariate GARCH package tsgarch.

To simplify usage, similar to the approach adopted in tsgarch, conditional mean dynamics are not included.
Since the distributions are location/scale invariant, the series must be pre-filtered for conditional mean
dynamics before submitting the data, but there is an option to pass the conditional_mean (cond_mean)
as an argument in both the setup specification, filtering, prediction and simulation methods so that it is
incorporated into the output of various methods at each step of the way. Alternatively, the user can location
shift (re-center) the simulated predictive distribution matrix by the pre-calculated conditional mean forecast,
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or pass the zero mean correlated predictive distribution innovations as an input to the conditional mean
prediction simulation dynamics.

The nature of the models implemented allows for separable dynamics in estimation which means that
individual series have univariate dynamics which can be estimated in parallel. However, the drawback to
this is that for standard errors a partitioned Hessian must be calculated which may be very time consuming.
While the package defaults to the use of OPG (outer of product of gradients) for standard errors which is
fast, there is always the option to calculate the full partitioned Hessian for other types of standard error
estimators.

The next sections provide a detailed overview of each of the 3 models available, namely the Dynamic
Correlation GARCH model of R. F. Engle (2002) (DCC), the Copula-DCC model (see Patton (2009) and
Ausin and Lopes (2010)) (CGARCH) and the Generalized Orthogonal GARCH model with multivariate
affine Generalized Hyperbolic Distribution (see Chen, Härdle, and Spokoiny (2010) and Broda and Paolella
(2009)) (GOGARCH).

Code snippets are provided in each section to highlight the code implementation, whilst Section 4 provides
diagrams for the methods in the package.

2 Covariance Decomposition Models (dcc and cgarch)

The covariance decomposition type models decompose the dynamics of the conditional covariance into the
conditional standard deviations and correlations, so that they may be expressed in such a way that the
univariate and multivariate dynamics may be separated, thus simplifying the estimation process. This
decomposition allows a great deal of flexibility by defining individual univariate dynamics for each marginal
series, and separate dynamics for the conditional correlation, using a 2-stage estimation process.

2.1 Constant Correlation

In the Constant Conditional Correlation (CCC) model of Bollerslev (1990) the equation for the conditional
covariance can be represented as:

Ht = DtRDt = ρij
√

hiithjjt, (1)

where Dt = diag(
√
h11,t, ...,

√
hnn,t), and R is the positive definite constant correlation matrix.

The conditional variances, hii,t, which can be estimated separately, usually admit some type of GARCH(p,q)
model, but can be generalized to any admissible model for the variance dynamics.

The conditions for the positivity of the covariance matrix Ht are that R is positive definite and the diagonal
elements of Dt, hii,t, are positive.

Formally, the model may be represented as follow:

yt = µt + εt, εt ∼ N (0,Σt)

Σt = DtRDt

zt = D−1
t εt

LLt (θ) =
1

2

(
n log (2π) + 2 log |Dt| + log |R| + z′

tR
−1zt

)

(2)

where yt is a vector representing the series values at time t, µt a vector of the conditional mean at time t for
each series, εt a vector of zero mean residuals which have a multivariate Normal distribution with conditional
covariance Σt, and LLt (θ) is the log-likelihood at time t given a parameter vector θ of univariate GARCH
(or any other model) parameters. The constant correlation matrix R is usually approximated by its sample
counterpart as

2



R =
1

T

T∑

t=1

ztz
′
t (3)

where zt is the vector of GARCH standardized residuals at time t.

Code Snippet

dcc_modelspec(..., dynamics = 'constant')

2.2 Dynamic Conditional Correlation

Allowing the correlation to be time varying, whilst retaining the 2-stage separation of dynamics, creates an
additional challenge to the positive definiteness constraint at each point in time for the conditional correlation.
R. F. Engle (2002) proposed the following proxy process :

Qt = Q̄+

q
∑

j=1

aj
(
zt−jz

′
t−j − Q̄

)
+

p
∑

j=1

bj
(
Qt−j − Q̄

)

=



1 −
q
∑

j=1

aj −
p
∑

j=1

bj



 Q̄+

q
∑

j=1

aj
(
zt−jz

′
t−j

)
+

p
∑

j=1

bjQt−j

(4)

where aj and bj are non-negative coefficients with the constraint that they sum to less than 1 for stationarity
and positive definiteness, and Q̄ is the unconditional matrix of the standardized residuals zt. To recover Rt,
the following re-scaling operation is performed:

Rt = diag (Qt)
−1/2

Qtdiag (Qt)
−1/2

(5)

Under the assumption that εt ∼ N (0,Σt), the log-likelihood is:

LLt (θ) = −1

2
(n log (2π) + 2 log |Dt| + ztz

′
t) − 1

2

(
ztz

′
t + log |Rt| + z′

tR
−1
t zt

)

= LLV,t(ϕ) + LLR,t (ψ|ϕ)
(6)

where LLV,t(ϕ) is the log-likelihood of the conditional variances given the GARCH parameters ϕ, and
LLR,t (ψ|ϕ) is the log-likelihood of the conditional correlation given the DCC parameters ψ|ϕ (conditioned
on the GARCH parameters).

Code Snippet

dcc_modelspec(..., dynamics = 'dcc')

2.3 Estimation

Estimation of the CCC and DCC models is done in 2 steps. The first step is to estimate the conditional
variances for each series using a univariate GARCH model. The univariate models do not need to conform to
the any single type of dynamics, but can be any admissible model. The conditional variances are then used to
standardize the residuals which are then used to estimate the conditional correlation matrix. Since the first
step is separable, it can be done in parallel for each series. After considerable experimentation, it was chosen
to avoid the use of TMB for automatic differentiation and instead use numerical derivatives for the second
stage estimation due to speed considerations, and observing that there was little gain in terms of accuracy.

Code Snippet
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dcc_modelspec(...) |> estimate(...)

2.4 Standard Errors

Since estimation is performed in 2 stages, the log-likelihood is the sum of these 2 stages. More specifically,
the second stage log-likelihood is estimated conditioning on the parameters of the first stage. Details of the
assumptions behind this and the arguments for the asymptotic distribution of the estimates are put forth
in R. F. Engle and Sheppard (2001), who posit that the asymptotic distribution of the 2-stage DCC model
estimates with parameters θ = (ϕ, ψ) is:

√
T
(

θ̂T − θ̂0

)
A∼ N

(

0, B−1
0 M0B

′−1
0

)

(7)

where:

B0 =

[
∇ϕϕ ln f1(ϕ0) 0
∇ϕψ ln f2(ϕ0) ∇ψψ ln f2(θ0)

]

=

[
B11 0
B12 B22

]

(8)

and

M0 = var

[
T∑

t=1

{

T−1/2∇′
ϕ ln f1(rt, ϕ0), T−1/2∇′

ψ ln f2(rt, ϕ0, ψ0)
}
]

=

[
M11 M12

M12 M22

]

(9)

where B−1
0 and M0 are the Hessian and the covariance matrix of the score vector respectively, also called the

bread and meat of the sandwich estimator. In the case of this 2 stage estimation procedure, the Hessian
is partitioned into 4 blocks, B11, B12, B22 and M11, M12, M22, where B11 and M11 are the Hessian and
covariance matrix of the first stage log-likelihood, and B22 and M22 are the Hessian and covariance matrix
of the second stage log-likelihood. B12 and M12 are the cross derivatives of the first and second stage
log-likelihoods.

Because the Hessian is partitioned, the calculation of the standard errors is more computationally intensive
than the standard OPG (outer product of gradients) method. The package defaults to the OPG method, but
the user can choose to calculate the full partitioned Hessian if they so wish, for which parallel functionality
has been implemented to provide some speed gains. The package uses numerical derivatives for the second
stage estimation, as well as the calculation of the standard errors. When the partitioned Hessian is present,
a number of additional estimators become available including the those of the QML and HAC (using the
bandwidth of Newey and West (1994)) type.

Code Snippet

dcc_modelspec(...) |> estimate(...) |> vcov(...)

2.5 Distributions

The original DCC model was based on the assumption that the residuals are Normally distributed, as shown
in equations (2) and (6).

However, this is not always the case in practice. There are 2 possible approaches to this problem. The first is
to use a different multivariate distribution for the DCC model and the second is to use a copula approach.

2.5.1 Multivariate Student Distribution (mvt)

Introducing a multivariate distribution which requires estimation of higher moment parameters implies that
the univariate margins must also have the same distribution and usually the same higher moment parameters.
This in turn implies the need for joint estimation of all dynamics in the model with specific constraints
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on the joint parameters. This is computationally intensive and may not be feasible for anything but a few
series. However, it may be possible to estimate the higher moment parameters using QML (quasi-maximum
likelihood) for the first stage (essentially use a Normal distribution for the residuals), and then use these
estimates in the second stage estimation. This is the approach taken in the tsmarch package when using the
multivariate Student distribution with log-likelihood equal to:

LLt (θ, ν|ϕ) = log Γ

(
ν + n

2

)

− log Γ
(ν

2

)

− n

2
log (π (ν − 2))

− 1

2
log |Rt| − log |Dt| − ν + 2

2
log

(

1 +
1

ν − 2
z′
tR

−1
t zt

) (10)

where ν is the degrees of freedom parameter of the Student distribution, and n is the number of series. The
assumption post-estimation is that the marginal distribution of each series is Student with the same degrees
of freedom parameter ν.

Code Snippet

dcc_modelspec(distribution = 'mvt')

2.5.2 Copula Distribution (cgarch)

The copula approach is a more general approach which allows for the use of different marginal distributions
for each series. In simple terms, the copula is a function which links the marginal distributions to the joint
distribution by applying a transformation to the marginal residuals to make them uniformly distributed. The
joint distribution is then obtained by applying the inverse distribution of the copula to the uniform margins.

Specifically:

ut = C (F1 (z1,t) , . . . , Fn (zn,t))

ϵt = F−1 (ut)
(11)

where F is the marginal distribution function, F−1 is the inverse of the multivariate distribution function,
C is the copula function, and ut is the vector of uniform margins. The transformation of the margins is
called the Probability Integral Transform (PIT). There are a number of ways to transform the margins to
uniform distributions, including a parametric transform (also called the Inference-Functions-For-Margins by
Joe (1997)), using the empirical CDF (also called pseudo-likelihood and investigated by Genest, Ghoudi, and
Rivest (1995)) and the semi-parametric approach (see Davison and Smith (1990)). All three approaches are
implemented in the tsmarch package. The package implements both a Normal and Student copula, with
either constant or dynamic correlation. For the Student Copula, the log-likelihood is given by:

LLt (θ) =

n∑

i=1

(

−1

2
log hi,t + log fi,t(zi,t)

)

+ log ct (ui,t, . . . , un,t)

= LLV,t (ϕ) + LLR,t (ψ, η|ϕ)

(12)

where

log ct (u1,t, . . . , un,t) = log ft
(
F−1
i (u1,t|η) , . . . , F−1

i (un,t|η) |Rt, η
)

−
n∑

i=1

log fi
(
F−1
i (ui,t)|η

)
(13)

with ui,t = Fi,t (εi,t|ϕi) is the PIT transformation of each series by it’s conditional distribution estimated
in the first stage GARCH process by any choice of dynamic and distributions, F−1

i (ui,t|η) represents the
quantile transformation of the uniform margins subject to a common shape parameter of the multivariate
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Student Copula, and ft
(
F−1
i (u1,t|η) , . . . , F−1

i (un,t|η) |Rt, η
)

is the joint density of the Student Copula with
shape parameter η and correlation matrix Rt.

Therefore, the log-likelihood is composed of essentially 3 parts: the first stage univariate models, the univariate
PIT transformation and inversion given the Copula distribution and the second stage multivariate model.

The correlation can be modeled as either constant or dynamic in the copula model. The dynamic correlation
is modeled in the same way as the DCC model, but the residuals are transformed to uniform margins before
estimating the correlation. Appendix 5.1 provides a more detailed overview for the constant correlation case.

Essentially, the difference between the standard DCC type model and the one with a Copula distribution
involves the PIT transformation step, which is reflected in the inference (standard errors), forecasting and
simulation methods for this model.

Code Snippet

cgarch_modelspec(...)

2.6 Generalized Dynamics

A number of extensions to the DCC model have been proposed in the literature. These include the use of
asymmetric and generalized dynamics. Cappiello, Engle, and Sheppard (2006) generalize the DCC model
with the introduction of the Asymmetric Generalized DCC (AGDCC) where the dynamics of Qt now become:

Qt =
(
Q̄−A′Q̄A−B′Q̄B −G′N̄G

)
+

q
∑

j=1

A′
jzt−jz

′
t−jAj +

q
∑

j=1

G′
j z̄t−j z̄

′
t−jGj +

p
∑

j=1

B′
jQBj (14)

where A, B and G are the N×N parameter matrices, z̄t are the zero-threshold standardized residuals (equal to
zt when less than zero else zero otherwise), Q̄ and N̄ are the unconditional matrices of zt and z̄t respectively.
The generalization allows for cross dynamics between the standardized residuals, and cross-asymmetric
dynamics. However, this comes at the cost of increased computational complexity making it less feasible for
large scale systems. Additionally, covariance targeting in such a high dimensional model where the parameters
are no longer scalars creates difficulties in imposing positive definiteness constraints. The tsmarch package
does not implement this generalized model, but instead a scalar version to capture asymmetric dynamics
(adcc):

Qt =



1 −
q
∑

j=1

aj −
p
∑

j=1

bj



 Q̄−
q
∑

j=1

gjN̄ +

q
∑

j=1

aj
(
zt−kz

′
t−j

)
+

q
∑

j=1

gj
(
z̄t−kz̄

′
t−j

)
+

p
∑

j=1

bjQt−j (15)

Code Snippet

cgarch_modelspec(..., dynamics = 'adcc')

2.7 Forecasting and Simulation

Because of the non linearity of the DCC evolution process, the multi-step ahead forecast of the correlation
cannot be directly solved. R. F. Engle and Sheppard (2001) provide a couple of suggestions which form a
reasonable approximation. In the tsmarch package we instead use a simulation approach, similar to the other
packages in the tsmodels universe, and in doing so generate a simulated distribution of the h-step ahead
correlation and covariance. This also generalizes to the copula model which does not have a closed form
solution. Formally, for a draw s at time t, the simulated correlation is given by:
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Qst = Q̄+

q
∑

j=1

aj
(
zst−jz

s′
t−j − Q̄

)
+

p
∑

j=1

bj
(
Qst−j − Q̄

)

Rst = diag (Qst)
−1/2

Qstdiag (Qs)
−1/2

zst = EΛ1/2ϵst

(16)

where ϵst is a vector of standard Normal random variables, Λ is the diagonal matrix of the eigenvalues of Rst
and E is the matrix of eigenvectors of Rst, such that:

Rst = EΛE′ (17)

For the multivariate Student distribution, the draws for zst are generated as :

zst = EΛ1/2ϵst

√
ν

W s
(18)

where W s is a random draw from a chi-squared distribution with ν degrees of freedom. For ϵst, it is also
possible to instead use the empirical standardized and de-correlated residuals, an option which is offered in
the package.

Code Snippet

dcc_modelspec(...) |> estimate(...) |> predict(...)

dcc_modelspec(...) |> estimate(...) |> simulate(...)

2.8 Weighted Distribution

Since all predictions are generated through simulation, the weighted predictive distribution ȳt
s can be obtained

as:

ȳt
s|w =

n∑

i=1

wi,tyi,t
s (19)

where s is a sample draw from the simulated predictive distribution of the n series, and wi,t the weight on
series i at time t.

Code Snippet

dcc_modelspec(...) |> estimate(...) |> tsaggregate(...)

2.9 News Impact Surface

Robert F. Engle and Ng (1993) introduced the news impact curve as a tool for evaluating the effects of news
on the conditional variances, and further extended by Kroner and Ng (1998) to the multivariate GARCH
case. The news impact surface shows the effect of shocks from a pair of assets on their conditional covariance
(or correlation). Formally, the correlation Ri,j given a set of shock (zi, zj) is given by:

Ri,j (zi, zj) =
(1 − a− b) Q̄i,j − gN̄i,j + azizj + gz̄iz̄j + bQ̄i,j

√[
(1 − a− b) Q̄i,i − gN̄i,i + az2

i + gz̄2
i + bQ̄i,i

]
·
[
(1 − a− b) Q̄j,j − gN̄i,j + az2

j + gz̄2
j + bQ̄j,j

]

(20)

where z̄, Q̄ and N̄ are defined as in equation (14).
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Code Snippet

dcc_modelspec(...) |> estimate(...) |> newsimpact(...) |> plot(...)

2.10 Critique

The DCC model has come under a considerable amount of criticism in the literature, particularly by Caporin
and McAleer (2008) who argue that consistency and asymptotic Normality of the estimators has not been
fully established, and proposes instead the indirect DCC model (essentially a scalar BEKK) which models
directly the conditional covariance matrix and forgoes univariate GARCH dynamics.

Aielli (2013) also points out that the estimation of Qt as the empirical counterpart of the correlation matrix
of zt is inconsistent since E [ztz

′
t] = E [Rt] ≠ E [Qt]. They propose a DCC (cDCC) model which includes a

corrective step which eliminates this inconsistency, albeit at the cost of targeting which is not allowed.

3 Generalized Orthogonal GARCH Model (gogarch)

The GOGARCH model in the tsmarch package is based on the approach described in Chen, Härdle, and
Spokoiny (2010), Broda and Paolella (2009) and Ghalanos, Rossi, and Urga (2015). Unlike the covariance
decomposition models, the Generalized Orthogonal GARCH model is akin to a full distributional decomposition
model rather than just the covariance, since it makes use of higher moments to achieve independent margins
from which univariate models can then be used to estimate the conditional dynamics (see Schmidt, Hrycej,
and Stützle (2006) for details on the multivariate affine Generalized Hyperbolic distribution).

Formally, the stationary return series yt follows a linear dynamic model:

yt = µt + εt

εt = Aft
(21)

where A is an invertible and constant mixing matrix, which transforms the independent components ft back
into the residuals εt. This can be further decomposed into de-whitening and rotation matrices, Σ1/2 and U

respectively:

A = Σ1/2U (22)

where Σ is the unconditional covariance matrix of the residuals and performs the role of de-correlating
(whitening) the residuals prior to rotation (independence). It is at this juncture where dimensionality reduction
may also be performed, by selecting the first m (≤ n) principal components of the residuals. In that case
εt ≈ ε̂t = Aft since the dimensionality reduced system only approximates the original residuals.

The rotation matrix U is calculated through the use of Independent Component Analysis (ICA) which is
a method separating multivariate mixed signals into additive statistically independent and non-Gaussian
components1 (see Hyvärinen and Oja (2000)). The algorithm used in the tsmarch package for ICA is based
on the RADICAL algorithm of Learned-Miller and Fisher (2003) which uses an efficient entropy estimator
(due to Vasicek (1976)) which is robust to outliers and requires no strong characterization assumptions about
the data generating process.2

The independent components ft can be further decomposed as:

ft = H
1/2
t zt (23)

1Technically, up to 1 component may be Gaussian.
2To speed estimation, parts of the ICA algorithm are parallelized in C++ using ‘RcppParallel‘ and hence benefits from

multi-threading.
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where Ht is the conditional covariance matrix of the independent components with Ht = E[ftf
′
t |Ft−1],

being a diagonal matrix with elements (h1,t, . . . , hn,t) which are the conditional variances of the factors, and
zt = (z1,t, . . . , zn,t)

′. The random variable zi,t is independent of zjt−s ∀j ̸= i and ∀s, with E[zi,t|Ft−1] = 0
and E[z2

i,t] = 1, implying that E[ft|Ft−1] = 0 and E[εt|Ft−1] = 0. The factor conditional variances, hi,t can
be modeled as a GARCH-type process. The unconditional distribution of the factors is characterized by:

E[ft] = 0 E[ftf
′
t ] = In (24)

which, in turn, implies that:

E[εt] = 0 E[εtε
′
t] = AA′. (25)

It then follows that the return series can be expressed as:

yt = µt +AH
1/2
t zt. (26)

The conditional covariance matrix, Σt ≡ E[(yt − µt)(yt − µt)
′|Ft−1] is given by Σt = AHtA

′.

The Orthogonal Factor model of Alexander (2002)3 which uses only information in the covariance matrix,
leads to uncorrelated components but not necessarily independent unless assuming a multivariate Normal
distribution. However, while whitening is not sufficient for independence, it is nevertheless an important step
in the pre-processing of the data in the search for independent factors, since by exhausting the second order
information contained in the covariance matrix it makes it easier to infer higher order information, reducing
the problem to one of rotation (orthogonalization).

Code Snippet

gogarch_modelspec(...)

3.1 Estimation

The estimation of the GOGARCH model is performed in 3 steps.

1. Filter the data for conditional mean dynamics (µi,t). Similar to the DCC model, this is performed
outside the system.

2. Perform Independent Component Analysis (ICA) on the residuals to separate out the additive and
statistically independent components.

3. Estimate the conditional distribution of each independent component using an admissible univariate
model. In the tsmarch package we use the tsgarch package for estimating the GARCH model for each
factor with either a Generalized Hyperbolic (gh) or Normal Inverse Gaussian (nig) distribution4

The log-likelihood of the GOGARCH model is composed of the individual log-likelihoods of the univariate
independent factor GARCH models and a term for the mixing matrix:

LLt (θ,A) = log
∣
∣A−1

∣
∣+

n∑

i=1

log (GHλi
(θi)) (27)

where GHλi
is the Generalized Hyperbolic distribution with shape parameter λi for the i-th factor. Since the

inverse of the mixing matrix is the un-mixing matrix A−1 = W = K ′U , and since the determinant of U is 1
(|U | = 1), the the log-likelihood simplifies to:

3When U is restricted to be an identity matrix, the model reduces to the Orthogonal Factor model.
4Technically, the ‘nig‘ distribution is a special case of the ‘gh‘ distribution with λ = −0.5, but since is possesses some nice

properties, it is included as a separate distribution for speed purposes.
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LLt (θ,A) = log |K| +

n∑

i=1

log (GHλi
(θi)) (28)

In the presence of dimensionality reduction, K is no longer square and we cannot directly compute its
determinant. Instead, we use the determinant of KK ′ , to reflect the combined effect of whitening and
dimensionality reduction:

LLt (θ,A) = log |KK ′| +

m∑

i=1

log (GHλi
(θi)) (29)

where m are the number of factors. A key advantage of this approach is the ability to estimate multivariate
dynamics using only univariate methods, providing for feasible estimation of large scale systems. The speed
advantage of this approach does not come for free, as there is a corresponding need for memory to handle the
parallelization offered, particularly when generating higher co-moment matrices.

Code Snippet

gogarch_modelspec(...) |> estimate(...)

3.2 Co-Moments

The linear affine representation of the GOGARCH model provides for a closed-form expression for the
conditional co-moments. The first 3 co-moments are given by:

M2
t = AM2

f,tA
′

M3
t = AM3

f,t (A′ ⊗A′)

M4
t = AM4

f,t (A′ ⊗A′ ⊗A′)

(30)

where M2
f,t, M

3
f,t and M4

f,t are the (N ×N) conditional covariance, (N ×N2) the conditional third co-moment

matrix and the (N ×N3) conditional fourth co-moment matrix of the factors, respectively, represented as
unfolded tensors5

These are calculated from the univariate factor dynamics, and defined as:

M3
f,t =

[
M3

1,f,t,M
3
2,f,t, . . . ,M

3
n,f,t

]
(31)

M4
f,t =

[
M4

1,1,f,t,M
4
1,2,f,t, . . . ,M

4
1,n,f,t| . . . |M4

n,1,f,t,M
4
n,2,f,t, . . . ,M

4
n,n,f,t

]
(32)

whereM3
k,f,t, k = 1, . . . , n andM4

k,l,f,t, k, l = 1, . . . , n are theN×N sub-matrices ofM3
f,t andM4

f,t, respectively,
with elements

m3
i,j,k,f,t = E[fi,tfj,tfk,t|Ft−1]

m4
i,j,k,l,f,t = E[fi,tfj,tfk,tfl,t|Ft−1].

(33)

Since the factors fi,t can be decomposed as zi,t
√
hi,t, and given the assumptions on zi,t then

E[fi,tfj,tfk,t|Ft−1] = 0. It is also true that for i ≠ j ̸= k ̸= l E[fi,tfj,tfk,tfl,t|Ft−1] = 0 and when
i = j and k = l,

E[fi,tfj,tfk,tfl,t|Ft−1] = h2
i,th

2
k,t. (34)

5The package allows to extract these tensors in both folded and unfolded form.
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Thus, under the assumption of mutual independence, all elements in the conditional co-moments matrices
with at least 3 different indices are zero. Finally, standardizing the conditional co-moments one obtains
conditional co-skewness and co-kurtosis of yt,

Si,j,k,t =
m3
i,j,k,t

(σi,tσj,tσk,t)
,

Ki,j,k,l,t =
m4
i,j,k,l,t

(σi,tσj,tσk,tσl,t)

(35)

where Si,j,k,t represents the series co-skewness between elements i, j, k of yt, σi,t the standard deviation of
yi,t, and in the case of i = j = k represents the skewness of series i at time t, and similarly for the co-kurtosis
tensor Ki,j,k,l,t. Two natural applications of return co-moments matrices are Taylor type utility expansions
in portfolio allocation and higher moment news impact surfaces.

Code Snippet

tscov(...)

tscor(...)

tscoskew(...)

tscoskurt(...)

The weighted moments are calculated as follows:

µ1,t = wt‘M
1
t

µ2,t = w′
tM

2
t wt

µ3,t = w′
tM

3
t (wt ⊗ wt)

µ4,t = w′
tM

4
t (wt ⊗ wt ⊗ wt)

(36)

where wt is the vector of weights at time t. Using the vectorization operator vec the weighted moments can
be re-written compactly as:

µk = vec (Mk)
′
(wt ⊗ . . .⊗ wt)
︸ ︷︷ ︸

k times

(37)

One application of this is in the calculation of the Constant Absolute Risk Aversion utility function, using a
Taylor series expansion as in Ghalanos, Rossi, and Urga (2015):

Et−1 [U (Wt)] = Et−1

[
− exp

(
−ηW̄t

)]
≈ − exp

(
−ηW̄t

)
[

1 +
η

2
µ2,t − η3

3!
µ3,t +

η4

4!
µ4,t

]

(38)

where η represents the investor’s constant absolute risk aversion, with higher (lower) values representing
higher (lower) aversion, and W̄t = w′

tEt−1 [yt] is the expected portfolio return at time t. Note that this
approximation includes two moments more than the mean-variance criterion, with the skewness and kurtosis
are directly related to investor preferences (dislike) for odd (even) moments, under certain mild assumptions
given in Scott and Horvath (1980).

Code Snippet

gogarch_modelspec(...) |> estimate(...) |> predict(...) |> tsaggregate(...)
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3.3 Weighted Distribution

The weighted conditional density of the model may be obtained via the inversion of the Generalized Hyperbolic
characteristic function through the fast fourier transform (FFT) method as in Chen, Härdle, and Spokoiny
(2010) or by simulation as in Section 2.8. The tsmarch package generates both simulated predictive
distributions as well as the weighted p∗, d∗ and q∗ functions based on FFT.

It should be noted that while the n-dimensional NIG distribution is closed under convolution, when the
distributional higher moment parameters are allowed to be different across assets, as is the case here, this
property no longer holds.

Provided that ϵt is a n-dimensional vector of innovations, marginally distributed as 1-dimensional standardized
GH, the density of weighted asset returns, wi,tyi,t is:

wi,tyi,t − wi,tµi,t = w̄i,tϵi,t ∼ maGHλi

(

w̄i,tµ̄i,t, |w̄i,tδi,t| ,
αi,t

|w̄i,t|
,
βi,t

|w̄i,t|

)

(39)

where w̄t = w′
tAH

1/2
t and hence w̄i,t is the i-th element of this vector, µi,t is the conditional mean of series i

at time t, and the parameter vector (µ̄i,t, δi,t, βi,t, αi,t, λi) represents the generalized hyperbolic distributional
parameters which have been converted from their (ρ, ζ) parameterization used in the tsgarch package
estimation routine. In order to obtain the weighted density we need to sum the individual log densities of ϵi,t:

φ(u) =

n∏

i=1

φw̄ϵi
(u) = exp



iu
d∑

j=1

µ̄j +
d∑

j=1

(

λj

2
log
(γ

υ

)

+ log

(

Kλj
(δ̄j

√
υ)

Kλj
(δ̄j

√
γ)

))

 (40)

where, γ = ᾱ2
j − β̄2

j , υ = ᾱ2
j − (β̄j + iu)2, and (ᾱj , β̄j , δ̄j , µ̄j) are the scaled versions of the parameters

(αi, βi, δi, µi) as shown in equation (39). The density may be accurately approximated by FFT as follows:

fy(r) =
1

2π

∫ +∞

−∞

e(−iur)φy(u)du ≈ 1

2π

∫ s

−s

e(−iur)φy(u)du. (41)

Once the density is obtained, we use smooth approximations to obtain functions for the density (d∗), quantile
(q∗) and distribution (p∗), with random number generation provided by the use of the inverse transform
method using the quantile function.

Code Snippet

gogarch_modelspec(...) |> estimate(...) |> predict(...) |> tsconvolve(...) |> dfft(...)

3.4 Factor News Impact Surface

Consider the equation for the construction of the conditional covariance matrix Σt:

Σt = AHtA
′ (42)

where Ht is the diagonal conditional covariance matrix of the independent components. The factor news
impact covariance surface is a measure of the effect of shocks from the independent factors on the conditional
covariance of the returns of assets i and j at time t− 1. In order to construct this we first generate the news
impact curves for all the factors using a common grid of shock values, and then calculate the effect of these
on the conditional covariance of the returns of assets i and j. Since the factors are independent, we simply
loop through all pairwise combinations of these shocks6 to calculate the covariance surface, keeping the value
of the other factors constant:

6We loop through all possible combinations of shocks for factors k and l which were previously calculated from their respective

news impact curves using a common grid of shock values {ϵ1, . . . , ez}
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Σi,j = ak,i · hk,k|ϵk · ak,j + al,i · hl,l|ϵl · al,j +

n∑

m=1
m̸=k,l

am,i · hm,m|ϵm = 0 · am,j (43)

where :

1. ak,i is the loading of factor k on asset i,
2. hk,k|ϵk is the conditional variance of factor k from the news impact curve given the shock ϵk,
3. ak,i · hk,k|ϵk · ak,j captures the contribution of factor k to the covariance between assets i and j, based

on the shock ϵk
applied to factor k,

4. al,i · hl,l|ϵl · al,j captures the contribution of factor l to the covariance between assets i and j, based on
the shock ϵl applied to factor l and

5.
∑n

m=1
m̸=k,l

am,i · sm,m(0) · am,j captures the contributions of all other factors (except k and l), where their

variances are held constant at their unconditional levels (i.e., with no shocks).

This means that the covariance will be affected by both the relative sign and magnitude of the loadings and
the relative magnitude of the variance of the factors.

The news impact surface is not restricted to the covariance matrix, but can be extended to the conditional
co-skewness and co-kurtosis, but that is only truly meaningful when the higher moment distributional
parameters are allowed to vary as in Ghalanos, Rossi, and Urga (2015).

Code Snippet

gogarch_modelspec(...) |> estimate(...) |> newsimpact(...) |> plot(...)
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4 Methods and Classes

Figures 1 and 2 provide a visual summary of the main methods in the package for the DCC and GOGARCH
type models. Blue boxes denote a method which produces a custom class which can be further manipulated
with other methods7, whilst Appendix 5.2 provides a summary of some of the methods and output classes in
the tsmarch package and the type of parallelization they use.

Figure 1: DCC/CGARCH diagram representing function/method relationships in the package.

7The tsfilter method returns an updated object of the same class as the ‘estimate‘ method hence has an arrow going back to

that method to denote this.
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Figure 2: GOGARCH diagram representing function/method relationships in the package.
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5 Appendix

5.1 Correlation and Kendall’s τ

Pearson’s product moment correlation R totally characterizes the dependence structure in the multivariate
Normal case, where zero correlation also implies independence, but can only characterize the ellipses of equal
density when the distribution belongs to the elliptical class. In the latter case for instance, with a distribution
such as the multivariate Student, the correlation cannot capture tail dependence determined by the shape
parameter. Furthermore, it is not invariant under monotone transformations of original variables making it
inadequate in many cases. An alternative measure which does not suffer from this is Kendall’s τ (see Kruskal
(1958)), based on rank correlations which makes no assumption about the marginal distributions but depends
only on the copula C. It is a pairwise measure of concordance calculated as:

τ(xi, xj) = 4

∫ 1

0

∫ 1

0

C (ui, uj) dC (ui, uj) − 1 (44)

For elliptical distributions, Lindskog, Mcneil, and Schmock (2003), proved that there is a one-to-one
relationship between this measure and Pearson’s correlation coefficient ρ given by:

τ(xi, xj) =

(

1 −
∑

x∈R

(
P{Xi = x}2

)

)

2

π
arcsin ρij (45)

which under certain assumptions (e.g. in the multivariate Normal case) simplifies to

2

π
arcsin ρij

. Kendall’s τ is invariant under monotone transformations making it more suitable when working with
non-elliptical distributions. A useful application arises in the case of the multivariate Student distribution
where the maximum likelihood approach for the estimation of the correlation matrix R become unfeasible for
large dimensions. Instead, estimating the sample counterpart of Kendall’s τ from the transformed margins
and then translating that into a correlation matrix as detailed in equation (45) provides for a method of
moments type estimator. The shape parameter ν is then estimated keeping the correlation matrix constant,
with little loss in efficiency.
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5.2 Notes on Selected Methods

The table below provides a summary of selected methods, the classes they belong to, the classes they
output, whether they are parallelized and the dimensions of the objects involved. For example, the tsaggrate
method on predicted and simulated objects will return a list of length 4, with each slot having an object
of class tsmodel.distribution of size sim × h representing the predictive simulatated distribution of
each of the weighted moments generated by the model.8 The output for the tsconvolve method which is
list(h):list(sim) means that the output is a list of length h where each slot contains a list of length sim.

Method class (in) class (out) future RcppParallel dimensions
tscov (1,4,7) matrix no no [n, n, T]
tscov (2,3,5,6,8,9) matrix no no [n, n, h, sim]
tscoskew (1) matrix no yes [n, n2, T]
tscoskew (2,3) matrix no yes [n, n2, h, sim]
tscokurt (1) matrix no yes [n, n3]
tscokurt (2,3) matrix no yes [n, n3, h, sim]
tsconvolve (1) gogarch.fft yes no list(T)
tsconvolve (2,3) gogarch.fftsim yes no list(h):list(sim)
tsaggregate (1,4,7) list no yes 4:n
tsaggregate (2,3,5,6,8,9) list no yes 4:(sim x h)

Table 1: Selected Methods

Key for class (in):

• 1: gogarch.estimate

• 2: gogarch.predict

• 3: gogarch.simulate

• 4: dcc.estimate

• 5: dcc.predict

• 6: dcc.simulate

• 7: cgarch.estimate

• 8: cgarch.predict

• 9: cgarch.simulate

8For the DCC and Copula GARCH models only the first 2 moments are time varying and hence contain a simulated

distribution.
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