Package ‘tsensembler’

October 14, 2022

Title Dynamic Ensembles for Time Series Forecasting
Version 0.1.0

Author Vitor Cerqueira [aut, cre],
Luis Torgo [ctb],
Carlos Soares [ctb]

Maintainer Vitor Cerqueira <cerqueira.vitormanuel@gmail.com>

Description A framework for dynamically combining forecasting models for time series forecast-
ing predictive tasks. It leverages machine learning models from other packages to automati-
cally combine expert advice using metalearning and other state-of-the-art forecasting combina-
tion approaches. The predictive methods receive a data matrix as input, representing an embed-
ded time series, and return a predictive ensemble model. The ensemble use generic functions ‘pre-
dict()' and 'forecast()' to forecast future values of the time series. Moreover, an ensemble can be up-
dated using methods, such as 'update_weights()' or 'update_base_models()'. A complete descrip-
tion of the methods can be found in: Cerqueira, V., Torgo, L., Pinto, F., and Soares, C. ** Arbi-
trated Ensemble for Time Series Forecasting." to appear at: Joint European Conference on Ma-
chine Learning and Knowledge Discovery in Databases. Springer International Publish-
ing, 2017; and Cerqueira, V., Torgo, L., and Soares, C.: " Arbitrated Ensemble for Solar Radia-
tion Forecasting." International Work-Conference on Artificial Neural Net-
works. Springer, 2017 <doi:10.1007/978-3-319-59153-7_62>.

Imports xts, zoo, RcppRoll, methods, ranger, glmnet, earth, kernlab,
Cubist, gbm, pls, monmlp, doParallel, foreach, xgboost,
softImpute

Suggests testthat
License GPL (>=2)
Encoding UTF-8
LazyData true
RoxygenNote 7.1.1

URL https://github.com/vcerqueira/tsensembler
NeedsCompilation no

Repository CRAN

Date/Publication 2020-10-27 14:00:02 UTC

https://doi.org/10.1007/978-3-319-59153-7_62
https://github.com/vcerqueira/tsensembler

2 ADE

R topics documented:
ADE . . e e 2
base_ensemble 5
build_base_ensemble e 5
DETS . . . e e e 6
embed_tIMESETIES v e e e e e e e 8
learning_base_models 9
meta_xgb_predict L 10
model_recent_performance 10
model_Specs 11
model_weighting 13
predict . . . Lo e 14
tsensembler L L L e e 16
update_ade 18
update_ade_metao 19
update_base_models L 20
update_weights 22
Water_CONSUMPLON o v v vt b ittt e e e e e 23
Xgb_OPUMIZEr o e e 24
xgb_predict_ 24

Index 25

ADE Arbitrated Dynamic Ensemble
Description

Arbitrated Dynamic Ensemble (ADE) is an ensemble approach for adaptively combining forecast-
ing models. A metalearning strategy is used that specializes base models across the time series.
Each meta-learner is specifically designed to model how apt its base counterpart is to make a pre-
diction for a given test example. This is accomplished by analysing how the error incurred by a
given learning model relates to the characteristics of the data. At test time, the base-learners are
weighted according to their degree of competence in the input observation, estimated by the predic-
tions of the meta-learners.

Usage

ADE (

form,

data,

specs,

lambda = 50,

omega = 0.5,
select_best = FALSE,
all_models = FALSE,

aggregation = "linear"

’

ADE

sequential_reweight = FALSE,
meta_loss_fun = ae,
meta_model_type = "randomforest”,

num_cores =

quickADE(
form,
data,
specs,
lambda = 50,
omega = 0.5,
select_best

all_models =

FALSE,

FALSE,

aggregation = "linear”,
sequential_reweight = FALSE,
meta_loss_fun = ae,

meta_model_type = "randomforest”,
num_cores =
)
Arguments
form formula;
data data to train the base models
specs object of class model_specs-class. Contains the parameter setting information
for training the base models;
lambda window size. Number of observations to compute the recent performance of
the base models, according to the committee ratio omega. Essentially, the top
omega models are selected and weighted at each prediction instance, according
to their performance in the last lambda observations. Defaults to 50 according
to empirical experiments;
omega committee ratio size. Essentially, the top omega * 100 percent of models are se-

select_best

all_models

aggregation

lected and weighted at each prediction instance, according to their performance
in the last lambda observations. Defaults to .5 according to empirical experi-
ments;

Logical. If true, at each prediction time, a single base model is picked to make a
prediction. The picked model is the one that has the lowest loss prediction from
the meta models. Defaults to FALSE;

Logical. If true, at each prediction time, all base models are picked to make a
prediction. The models are weighted according to their predicted loss and the
aggregation function. Defaults to FALSE;

Type of aggregation used to combine the predictions of the base models. The
options are:

softmax default
erfc the complementary Gaussian error function

4 ADE

linear a linear scaling

sequential_reweight
Besides ensemble heterogeneity we encourage diversity explicitly during the ag-
gregation of the output of experts. This is achieved by taking into account not
only predictions of performance produced by the arbiters, but also the correla-
tion among experts in a recent window of observations.

meta_loss_fun Besides
meta_model_type
meta model to use — defaults to random forest

num_cores A numeric value to specify the number of cores used to train base and meta
models. num_cores = 1 leads to sequential training of models. num_cores > 1
splits the training of the base models across num_cores cores.

References

Cerqueira, Vitor; Torgo, Luis; Pinto, Fabio; and Soares, Carlos. "Arbitrated Ensemble for Time
Series Forecasting" to appear at: Joint European Conference on Machine Learning and Knowledge
Discovery in Databases. Springer International Publishing, 2017.

V. Cerqueira, L. Torgo, and C. Soares, “Arbitrated ensemble for solar radiation forecasting,” in
International Work-Conference on Artificial Neural Networks. Springer, Cham, 2017, pp. 720-732

See Also

model_specs-class for setting up the ensemble parameters for an ADE model; predict for the
method that predicts new held out observations; update_weights for the method used to update
the weights of an ADE model between successive predict or forecast calls; update_ade_meta for
updating (retraining) the meta models of an ADE model; update_base_models for the updating
(retraining) the base models of an ADE ensemble (and respective weights); ade_hat-class for the
object that results from predicting with an ADE model; and update_ade to update an ADE model,
combining functions update_base_models, update_meta_ade, and update_weights.

Examples

specs <- model_specs(
learner = c("bm_ppr"”, "bm_glm”, "bm_mars"),
learner_pars = list(
bm_glm = list(alpha = c(0, .5, 1)),
bm_svr = list(kernel = c("rbfdot”, "polydot"),
C=c(, 3),
bm_ppr = list(nterms = 4)
)
)

data("water_consumption)
train <- embed_timeseries(water_consumption, 5)

train <- train[1:300,] # toy size for checks

model <- ADE(target ~., train, specs)

base _ensemble 5

base_ensemble base_ensemble

Description

base_ensemble is a S4 class that contains the base models comprising the ensemble. Besides the
base learning algorithms — base_models — base_ensemble class contains information about other
meta-data used to compute predictions for new upcoming data.

Usage

base_ensemble(base_models, pre_weights, form, colnames)

Arguments
base_models a list comprising the base models;
pre_weights normalized relative weights of the base learners according to their performance
on the available data;
form formula;
colnames names of the columns of the data used to train the base_models;

build_base_ensemble Wrapper for creating an ensemble

Description

Using the parameter specifications from model_specs-class, this function trains a set of regression
models.

Usage

build_base_ensemble(form, data, specs, num_cores = 1)

Arguments
form formula;
data data.frame for training the predictive models;
specs object of class model_specs-class. Contains the information about the param-

eter setting of the models to train.

num_cores number of cores

6 DETS

Value

An S4 class with the following slots: base_models, a list containing the trained models; pre_weights,
a numeric vector describing the weights of the base models according to their performance in the
training data; and colnames, the column names of the data, used for reference.

Examples

data("water_consumption)
dataset <- embed_timeseries(water_consumption, 5)
specs <- model_specs(c("bm_ppr"”,"bm_svr"), NULL)

M <- build_base_ensemble(target ~., dataset, specs, 1)
DETS Dynamic Ensemble for Time Series
Description

A Dynamic Ensemble for Time Series (DETS). The DETS ensemble method we present settles on
individually pre-trained models which are dynamically combined at run-time to make a prediction.
The combination rule is reactive to changes in the environment, rendering an online combined
model. The main properties of the ensemble are:

heterogeneity Heterogeneous ensembles are those comprised of different types of base learners.
By employing models that follow different learning strategies, use different features and/or
data observations we expect that individual learners will disagree with each other, introducing
a natural diversity into the ensemble that helps in handling different dynamic regimes in a time
series forecasting setting;

responsiveness We promote greater responsiveness of heterogeneous ensembles in time series
tasks by making the aggregation of their members’ predictions time-dependent. By tracking
the loss of each learner over time, we weigh the predictions of individual learners according
to their recent performance using a non-linear function. This strategy may be advantageous
for better detecting regime changes and also to quickly adapt the ensemble to new regimes.

Usage

DETS(
form,
data,
specs,
lambda = 50,
omega = 0.5,
select_best

= FALSE,
num_cores = 1

DETS

Arguments

form
data

specs

lambda

omega

select_best

num_cores

References

formula;
data frame to train the base models;

object of class model_specs-class. Contains the parameter setting information
for training the base models;

window size. Number of observations to compute the recent performance of
the base models, according to the committee ratio omega. Essentially, the top
omega models are selected and weighted at each prediction instance, according
to their performance in the last lambda observations. Defaults to 50 according
to empirical experiments;

committee ratio size. Essentially, the top omega models are selected and weighted
at each prediction instance, according to their performance in the last lambda
observations. Defaults to .5 according to empirical experiments;

Logical. If true, at each prediction time, a single base model is picked to make a
prediction. The picked model is the one that has the lowest loss prediction from
the meta models. Defaults to FALSE;

A numeric value to specify the number of cores used to train base and meta
models. num_cores = 1 leads to sequential training of models. num_cores > 1
splits the training of the base models across num_cores cores.

Cerqueira, Vitor; Torgo, Luis; Oliveira, Mariana, and Bernhard Pfahringer. "Dynamic and Hetero-
geneous Ensembles for Time Series Forecasting.” Data Science and Advanced Analytics (DSAA),
2017 IEEE International Conference on. IEEE, 2017.

See Also

model_specs-class for setting up the ensemble parameters for an DETS model; predict for the
method that predicts new held out observations; update_weights for the method used to update
the weights of an DETS model between successive predict or forecast calls; update_base_models
for the updating (retraining) the base models of an DETS ensemble (and respective weights); and
dets_hat-class for the object that results from predicting with an DETS model.

Examples

specs <- model_specs(
c("bm_ppr", "bm_svr"),

list(bm_ppr
bm_svr

)

list(nterms = c(2, 4)),
list(kernel = c("vanilladot”, "polydot"), C = c(1,5)))

data("water_consumption”);
train <- embed_timeseries(water_consumption, 5);

model <- DETS(target ~., train, specs, lambda = 30, omega = .2)

embed._timeseries

embed_timeseries Embedding a Time Series

Description

This function embeds a time series into an Euclidean space. This implementation is based on the
function embed of stats package and has theoretical backgroung on reconstruction of attractors (see
Takens, 1981). This shape transformation of the series allows for the use of any regression tool
available to learn the time series. The assumption is that there are no long-term dependencies in the

data.

Usage

embed_timeseries(timeseries, embedding.dimension)

Arguments

timeseries a time series of class \"xts\".

embedding.dimension
an integer specifying the embedding dimension.

Value

An embedded time series

See Also

embed for the details of the embedding procedure.

Examples

Not run:

require(xts)

ts <- as.xts(rnorm(100L), order.by = Sys.Date() + rnorm(100L))
embedded.ts <- embed.timeseries(ts, 20L)

End(Not run)

learning_base_models 9

learning_base_models Training the base models of an ensemble

Description

This function uses train to build a set of predictive models, according to specs

Usage

learning_base_models(train, form, specs, num_cores)

Arguments
train training set to build the predictive models;
form formula;
specs object of class model_specs-class
num_cores A numeric value to specify the number of cores used to train base and meta
models. num_cores = 1 leads to sequential training of models. num_cores > 1
splits the training of the base models across num_cores cores.
Value

A series of predictive models (base_model), and the weights of the models computed in the training
data (preweights).

See Also

build_base_ensemble.

Examples

data("water_consumption”)

dataset <- embed_timeseries(water_consumption, 5)
specs <- model_specs(c("bm_ppr"”,"bm_svr"), NULL)

M <- build_base_ensemble(target ~., dataset, specs, 1)

10 model_recent_performance

meta_xgb_predict Arbiter predictions via xgb

Description

Arbiter predictions via xgb

Usage

meta_xgb_predict(meta_model, newdata)

Arguments
meta_model arbiter — a ranger object
newdata new data to predict

model_recent_performance
Recent performance of models using EMASE

Description

This function computes EMASE, Erfc Moving Average Squared Error, to quantify the recent per-
formance of the base models.

Usage

model_recent_performance(Y_hat, Y, lambda, omega, pre_weights)

Arguments
Y_hat A data. frame containing the predictions of each base model;
Y know true values from past data to compare the predictions to;
lambda Window size. Number of periods to average over when computing MASE;
omega Ratio of top models in the committee;
pre_weights The initial weights of the models, computed in the available data during the
learning phase;
Value

A list containing two objects:

model_scores The weights of the models in each time point

top_models Models in the committee in each time point

model_specs 11

See Also

Other weighting base models: EMASE(), build_committee(), get_top_models(), model_weighting(),
select_best()

model_specs Setup base learning models

Description

This class sets up the base learning models and respective parameters setting to learn the ensemble.

Usage

model_specs(learner, learner_pars = NULL)

Arguments

learner character vector with the base learners to be trained. Currently available models
are:

bm_gaussianprocess Gaussian Process models, from the kernlab package. See
gausspr for a complete description and possible parametrization. See bm_gaussianprocess
for the function implementation.

bm_ppr Projection Pursuit Regression models, from the stats package. See
ppr for a complete description and possible parametrization. See bm_ppr
for the function implementation.

bm_glm Generalized Linear Models, from the glmnet package. See glmnet
for a complete description and possible parametrization. See bm_glm for
the function implementation.

bm_gbm Generalized Boosted Regression models, from the gbm package. See
gbm for a complete description and possible parametrization. See bm_gbm
for the function implementation.

bm_randomforest Random Forest models, from the ranger package. See ranger
for a complete description and possible parametrization. See bm_randomforest
for the function implementation.

bm_cubist M5 tree models, from the Cubist package. See cubist for a com-
plete description and possible parametrization. See bm_cubist for the func-
tion implementation.

bm_mars Multivariate Adaptive Regression Splines models, from the earth
package. See earth for a complete description and possible parametriza-
tion. See bm_mars for the function implementation.

bm_svr Support Vector Regression models, from the kernlab package. See
ksvm for a complete description and possible parametrization. See bm_svr
for the function implementation.

bm_ffnn Feedforward Neural Network models, from the nnet package. See
nnet for a complete description and possible parametrization. See bm_ffnn
for the function implementation.

12 model_specs

bm_pls_pcr Partial Least Regression and Principal Component Regression mod-
els, from the pls package. See mvr for a complete description and possible
parametrization. See bm_pls_pcr for the function implementation.

learner_pars a list with parameter setting for the learner. For each model, a inner list should
be created with the specified parameters.

Check each implementation to see the possible variations of parameters (also
examplified below).

Examples

A PPR model and a GLM model with default parameters
model_specs(learner = c("bm_ppr"”, "bm_glm"), learner_pars = NULL)

A PPR model and a SVR model. The listed parameters are combined
with a cartesian product.
With these specifications an ensemble with 6 predictive base
models will be created. Two PPR models, one with 2 nterms
and another with 4; and 4 SVR models, combining the kernel
and C parameters.

specs <- model_specs(

c("bm_ppr"”, "bm_svr"),

list(bm_ppr = list(nterms = c(2, 4)),

bm_svr = list(kernel = c("vanilladot”, "polydot"), C = c(1,5)))

)

All parameters currently available (parameter values can differ)
model_specs(
learner = c("bm_ppr"”, "bm_svr"”, "bm_randomforest”,
"bm_gaussianprocess”, "bm_cubist”, "bm_glm",
"bm_gbm", "bm_pls_pcr”, "bm_ffnn", "bm_mars"”
),
learner_pars = list(

bm_ppr = list(
nterms = c(2,4),
sm.method = "supsmu”

),

bm_svr = list(
kernel = "rbfdot”,
C =c(1,5),
epsilon = .01

),

bm_glm = list(
alpha = c(1, 0)

),

bm_randomforest = list(
num.trees = 500

),

bm_gbm = list(
interaction.depth = 1,
shrinkage = c(.01, .005),
n.trees = c(100)

model_weighting 13

),

bm_mars = list(
nk = 15,
degree = 3,
thresh = .001

),

bm_ffnn = list(
size = 30,
decay = .01

),

bm_pls_pcr = list(
method = c("kernelpls”, "simpls"”, "cppls")

),

bm_gaussianprocess = list(
kernel = "vanilladot”,
tol = .01

),

bm_cubist = list(
committees = 50,
neighbors = 0@

)

model_weighting Model weighting

Description

This is an utility function that takes the raw error of models and scales them into a 0-1 range
according to one of three strategies:

Usage
model_weighting(x, trans = "softmax"”, ...)
Arguments
X A object describing the loss of each base model
trans Character value describing the transformation type. The available options are

softmax, linear and erfc. The softmax and erfc provide a non-linear trans-
formation where the weights decay exponentially as the relative loss of a given
model increases (with respect to all available models). The linear transformation
is a simple normalization of values using the max-min method.

Further arguments to normalize and proportion functions \(na.rm = TRUE\)

14 predict

Details

erfc using the complementary Gaussian error function
softmax using a softmax function
linear A simple normalization using max-min method

These tranformations culminate into the final weights of the models.

Value

An object describing the weights of models

See Also

Other weighting base models: EMASE (), build_committee(), get_top_models(), model_recent_performance(),
select_best()

predict Predicting new observations using an ensemble

Description

Initially, the predictions of the base models are collected. Then, the predictions of the loss to be
incurred by the base models E_hat (estimated by their associate meta models) are computed. The
weights of the base models are then estimated according to E_hat and the committee of top models.
The committee is built according to the lambda and omega parameters. Finally, the predictions are
combined according to the weights and the committee setup.

Usage

S4 method for signature 'ADE'
predict(object, newdata)

S4 method for signature 'DETS'
predict(object, newdata)

S4 method for signature 'base_ensemble'
predict(object, newdata)
Arguments

object an object of class ADE-class;

newdata new data to predict

predict

Examples

###H#H#H# Predicting with an ADE ensemble
specs <- model_specs(
learner = c("bm_glm", "bm_mars"),

learner_pars = NULL

)

data("water_consumption”)

dataset <- embed_timeseries(water_consumption, 5)
train <- dataset[1:1000,]

test <- dataset[1001:1500,]

model <- ADE(target ~., train, specs)

preds <- predict(model, test)

Not run:
#i#HHH# Predicting with a DETS ensemble
specs <- model_specs(

learner = c("bm_svr”, "bm_glm", "bm_mars"),

learner_pars = NULL

)

data("water_consumption™)

dataset <- embed_timeseries(water_consumption, 5)

train <- dataset[1:700,]

test <- dataset[701:1000,]

model <- DETS(target ~., train, specs, lambda = 50, omega
preds <- predict(model, test)

End(Not run)

Not run:

#i#HH#H Predicting with a base ensemble

model <- ADE(target ~., train, specs)

basepreds <- predict(model@base_ensemble, test)

End(Not run)

.2)

15

16 tsensembler

tsensembler Dynamic Ensembles for Time Series Forecasting

Description

This package implements ensemble methods for time series forecasting tasks. Dynamically com-
bining different forecasting models is a common approach to tackle these problems.

Details

The main methods in tsensembler are in ADE-class and DETS-class:

ADE Arbitrated Dynamic Ensemble (ADE) is an ensemble approach for dynamically combining
forecasting models using a metalearning strategy called arbitrating. A meta model is trained
for each base model in the ensemble. Each meta-learner is specifically designed to model the
error of its associate across the time series. At forecasting time, the base models are weighted
according to their degree of competence in the input observation, estimated by the predictions
of the meta models

DETS Dynamic Ensemble for Time Series (DETS) is similar to ADE in the sense that it adaptively
combines the base models in an ensemble for time series forecasting. DETS follows a more
traditional approach for forecaster combination. It pre-trains a set of heterogeneous base mod-
els, and at run-time weights them dynamically according to recent performance. Like ADE,
the ensemble includes a committee, which dynamically selects a subset of base models that
are weighted with a non-linear function

The ensemble methods can be used to predict new observations or forecast future values of a
time series. They can also be updated using generic functions (check see also section).

References

Cerqueira, Vitor; Torgo, Luis; Pinto, Fabio; and Soares, Carlos. "Arbitrated Ensemble for Time
Series Forecasting" to appear at: Joint European Conference on Machine Learning and Knowledge
Discovery in Databases. Springer International Publishing, 2017.

V. Cerqueira, L. Torgo, and C. Soares, “Arbitrated ensemble for solar radiation forecasting,” in
International Work-Conference on Artificial Neural Networks. Springer, 2017, pp. 720-732

Cerqueira, Vitor; Torgo, Luis; Oliveira, Mariana, and Bernhard Pfahringer. "Dynamic and Hetero-
geneous Ensembles for Time Series Forecasting.” Data Science and Advanced Analytics (DSAA),
2017 IEEE International Conference on. IEEE, 2017.

See Also

ADE-class for setting up an ADE model; and DETS-class for setting up an DETS model; see
also update_weights and update_base_models to check the generic function for updating the
predictive models in an ensemble.

tsensembler

Examples

Not run:

data("water_consumption”)
embedding time series into a matrix
dataset <- embed_timeseries(water_consumption, 5)

splitting data into train/test
train <- dataset[1:1000,]
test <- dataset[1001:1020,]

setting up base model parameters
specs <- model_specs(
learner = c("bm_ppr"”,"bm_glm", "bm_svr"”, "bm_mars"),
learner_pars = list(
bm_glm = list(alpha = c(@, .5, 1)),
bm_svr = list(kernel = c("rbfdot”, "polydot"),
C=c(1,3)),
bm_ppr = list(nterms = 4)
D)

building the ensemble
model <- ADE(target ~., train, specs)

forecast next value and update base and meta models
every three points;
in the other points, only the weights are updated
predictions <- numeric(nrow(test))
for (i in seqg_along(predictions)) {

predictions[i] <- predict(model, test[i,])@y_hat

if (1 %% 3 ==0) {

model <-
update_base_models(model,
rbind.data.frame(train, test[seq_len(i), 1))

model <- update_ade_meta(model, rbind.data.frame(train, test[seq_len(i), 1))
}
else
model <- update_weights(model, test[i, 1)
3

point_forecast <- forecast(model, h = 5)

setting up an ensemble of support vector machines
specs2 <-
model_specs(learner = c("bm_svr"),
learner_pars = list(
bm_svr = list(kernel = c("vanilladot”, "polydot”,
"rbfdot"),
C =c¢(1,3,6))

17

18 update_ade

)

model <- DETS(target ~., train, specs2)
preds <- predict(model, test)@y_hat

End(Not run)

update_ade Updating an ADE model

Description

update_ade is a generic function that combines update_base_models, update_ade_meta, and
update_weights.

Usage

update_ade(object, newdata, num_cores = 1)

S4 method for signature 'ADE'
update_ade(object, newdata, num_cores = 1)

Arguments
object a ADE-class object.
newdata data used to update the ADE model. This should be the data used to initially
train the models (training set), together with new observations (for example,
validation set). Each model is retrained using newdata.
num_cores A numeric value to specify the number of cores used to train base and meta
models. num_cores = 1 leads to sequential training of models. num_cores > 1
splits the training of the base models across num_cores cores.
See Also

ADE-class for building an ADE model; update_weights for updating the weights of the ensemble
(without retraining the models); update_base_models for updating the base models of an ensem-
ble; and update_ade_meta for updating the meta-models of an ADE model.

Other updating models: update_ade_meta(), update_weights()

update_ade_meta 19

Examples

specs <- model_specs(
learner = c("bm_svr”, "bm_glm", "bm_mars"),
learner_pars = NULL

)

data("water_consumption™)

dataset <- embed_timeseries(water_consumption, 5)
toy size for checks

train <- dataset[1:300,]

validation <- dataset[301:400,]

test <- dataset[401:500,]

model <- ADE(target ~., train, specs)

preds_val <- predict(model, validation)
model <- update_ade(model, rbind.data.frame(train, validation))

preds_test <- predict(model, test)

update_ade_meta Updating the metalearning layer of an ADE model

Description

The update_ade_meta function uses new information to update the meta models of an ADE-class
ensemble. As input it receives a ADE-class model object class and a new dataset for updating
the weights of the base models in the ensemble. This new data should have the same structure as
the one used to build the ensemble. Updating the base models of the ensemble is done using the
update_base_models function.

Usage

update_ade_meta(object, newdata, num_cores = 1)

S4 method for signature 'ADE'
update_ade_meta(object, newdata, num_cores = 1)

Arguments
object a ADE-class object.
newdata data used to update the meta models. This should be the data used to initially
train the meta-models (training set), together with new observations (for exam-
ple, validation set). Each meta model is retrained using newdata.
num_cores A numeric value to specify the number of cores used to train base and meta

models. num_cores = 1 leads to sequential training of models. num_cores > 1
splits the training of the base models across num_cores cores.

20 update_base_models

See Also

ADE-class for building an ADE model; update_weights for updating the weights of the ensemble
(without retraining the models); and update_base_models for updating the base models of an
ensemble.

Other updating models: update_ade(), update_weights()

Examples

Not run:

specs <- model_specs(

learner = c("bm_svr"”, "bm_glm", "bm_mars"),
learner_pars = NULL

)

data("water_consumption”)

dataset <- embed_timeseries(water_consumption, 5)
train <- dataset[1:1000,]

validation <- dataset[1001:1200,]

test <- dataset[1201:1500,]

model <- ADE(target ~., train, specs)

preds_val <- predict(model, validation)
model <- update_ade_meta(model, rbind.data.frame(train, validation))

preds_test <- predict(model, test)

End(Not run)

update_base_models Update the base models of an ensemble

Description

This is a generic function for updating the base models comprising an ensemble.

Usage
D

update_base_models(object, newdata, num_cores

S4 method for signature 'ADE'
update_base_models(object, newdata, num_cores = 1)

S4 method for signature 'DETS'
update_base_models(object, newdata, num_cores = 1)

update_base_models 21

Arguments
object an ensemble object, of class DETS-class or ADE-class;
newdata new data used to update the models. Each base model is retrained, so newdata
should be the past data used for initially training the models along with any
further available observations.
num_cores A numeric value to specify the number of cores used to train base and meta
models. num_cores = 1 leads to sequential training of models. num_cores > 1
splits the training of the base models across num_cores cores.
Details

update_base_models function receives a model object and a new dataset for retraining the base
models. This new data should have the same structure as the one used to build the ensemble.

See Also

ADE-class for the ADE model information, and DETS-class for the DETS model information;
update_ade_meta for updating the meta models of an ADE ensemble. See update_weights for
the method used to update the weights of the ensemble. Updating the weights only changes the
information about the recent observations for computing the weights of the base models, while
updating the model uses that information to retrain the models.

Examples

data("water_consumption”)

dataset <- embed_timeseries(water_consumption, 5)
toy size for checks execution time

train <- dataset[1:300,]

test <- dataset[301:305,]

specs <- model_specs(c("bm_ppr"”,"bm_glm","bm_mars"), NULL)
model <- ADE(target ~., train, specs)
predictions <- numeric(nrow(test))
for (i in seq_along(predictions)) {
predictions[i] <- predict(model, test[i,])@y_hat
model <-
update_base_models(model,

rbind.data.frame(train, test[seq_len(i), 1))
3

fizizisd
specs2 <- model_specs(c("bm_ppr","bm_randomforest”,"bm_svr"), NULL)
modeldets <- DETS(target ~., train, specs2)

predictions <- numeric(nrow(test))
predict new data and update models every three points

22 update_weights

in the remaining points, the only the weights are updated
for (i in seg_along(predictions)) {
predictions[i] <- predict(modeldets, test[i,])@y_hat

if (i %% 3 == 0)
modeldets <-
update_base_models(modeldets,
rbind.data.frame(train, test[seq_len(i), 1))

else
modeldets <- update_weights(modeldets, test[seqg_len(i), 1)
3
update_weights Updating the weights of base models
Description

Update the weights of base models of a ADE-class or DETS-class ensemble. This is accomplished
by using computing the loss of the base models in new recent observations.

Usage
update_weights(object, newdata)

S4 method for signature 'ADE'
update_weights(object, newdata)

S4 method for signature 'DETS'
update_weights(object, newdata)

Arguments
object a ADE-class or DETS-class model object;
newdata new data used to update the most recent observations of the time series. At
prediction time these observations are used to compute the weights of the base
models
Note

Updating the weights of an ensemble is only necessary between different calls of the functions
predict or forecast. Otherwise, if consecutive know observations are predicted (e.g. a valida-
tion/test set) the updating is automatically done internally.

See Also

update_weights for the weight updating method for an ADE model, and update_weights for the
same method for a DETS model

Other updating models: update_ade_meta(), update_ade()

water_consumption 23

Examples

data("water_consumption™)
dataset <- embed_timeseries(water_consumption, 5)

toy size for checks
train <- dataset[1:300,]
test <- dataset[301:305,]

specs <- model_specs(c("bm_ppr”,"bm_glm",6 "bm_mars”), NULL)
same with model <- DETS(target ~., train, specs)
model <- ADE(target ~., train, specs)

if consecutive know observations are predicted (e.g. a validation/test set)
the updating is automatically done internally.
predictions1 <- predict(model, test)@y_hat

otherwise, the models need to be updated
predictions <- numeric(nrow(test))
predict new data and update the weights of the model
for (i in seqg_along(predictions)) {

predictions[i] <- predict(model, test[i,])@y_hat

model <- update_weights(model, test[i, 1)
3

#all.equal(predictionsl, predictions)

water_consumption Water Consumption in Oporto city (Portugal) area.

Description
A time series of classes xts and zoo containing the water consumption levels a specific delivery
point at Oporto town, in Portugal.

Usage

water_consumption

Format
The time series has 1741 values from Jan, 2012 to Oct, 2016 in a daily granularity.

consumption consumption of water, raw value from sensor

Source

https://www.addp.pt/home.php

https://www.addp.pt/home.php

24

xgb_predict_

xgbh_optimizer XGB optimizer

Description

XGB optimizer

Usage

xgh_optimizer(X, y, gsearch)

Arguments
X Covariates
y Target values
gsearch Grid search
xgh_predict_ asdasd
Description
asdasd
Usage

xgb_predict_(model, newdata)

Arguments

model mode

newdata S

Index

x datasets

water_consumption, 23

* updating models
update_ade, 18

update_ade_meta, 19

update_weights, 22
* weighting base models

model_recent_performance, 10
model_weighting, 13

ADE, 2, 22

base_ensemble, 5
bm_cubist, /1
bm_ffnn, 11
bm_gaussianprocess, 11
bm_gbm, 11
bm_glm, /1
bm_mars, 11
bm_pls_pcr, 12
bm_ppr, 11
bm_randomforest, /1
bm_svr, 11

build_base_ensemble, 5, 9

build_committee, /1, 14
cubist, /7
DETS, 6, 22

earth, 11
EMASE, 11, 14
embed, 8
embed_timeseries, 8

gausspr, 11

gbm, 11
get_top_models, 11, 14
glmnet, 11

ksvm, 11

25

learning_base_models, 9

meta_xgb_predict, 10
model_recent_performance, 10, 14
model_specs, 11
model_weighting, 11, 13

mvr, 12

nnet, /7

ppr, 11

predict, 4, 7, 14

predict,ADE-method (predict), 14

predict,base_ensemble-method (predict),
14

predict,DETS-method (predict), 14

predict.ade (predict), 14

predict.base (predict), 14

predict.dets (predict), 14

quickADE (ADE), 2
ranger, 11
select_best, 11, 14
tsensembler, 16

update_ade, 4, 18, 20, 22
update_ade, ADE-method (update_ade), 18
update_ade_meta, 4, 18, 19, 21, 22
update_ade_meta, ADE-method
(update_ade_meta), 19
update_base_models, 4, 7, 16, 18-20, 20
update_base_models, ADE-method
(update_base_models), 20
update_base_models,DETS-method
(update_base_models), 20
update_weights, 4, 7, 16, 18, 20-22, 22
update_weights, ADE-method
(update_weights), 22

26

update_weights,DETS-method
(update_weights), 22

water_consumption, 23

xgb_optimizer, 24
xgb_predict_, 24

INDEX

	ADE
	base_ensemble
	build_base_ensemble
	DETS
	embed_timeseries
	learning_base_models
	meta_xgb_predict
	model_recent_performance
	model_specs
	model_weighting
	predict
	tsensembler
	update_ade
	update_ade_meta
	update_base_models
	update_weights
	water_consumption
	xgb_optimizer
	xgb_predict_
	Index

