
Package ‘triversity’
October 14, 2022

Title Diversity Measures on Tripartite Graphs

Version 1.0

Author Robin Lamarche-Perrin [aut, cre]

Maintainer Robin Lamarche-Perrin <Robin.Lamarche-Perrin@lip6.fr>

Description Computing diversity measures on tripartite graphs. This package first imple-
ments a parametrized family of such diversity measures which apply on probability distribu-
tions. Sometimes called ``True Diversity'', this family contains famous measures such as the rich-
ness, the Shannon entropy, the Herfindahl-Hirschman index, and the Berger-Parker index. Sec-
ond, the package allows to apply these measures on probability distributions resulting from ran-
dom walks between the levels of tripartite graphs. By defining an initial distribu-
tion at a given level of the graph and a path to follow between the three levels, the probabil-
ity of the walker's position within the final level is then computed, thus providing a particular in-
stance of diversity to measure.

Depends R (>= 3.2.3), Matrix, data.tree

License GPL-3 | file LICENSE

Encoding UTF-8

RoxygenNote 6.0.1

NeedsCompilation no

Repository CRAN

Date/Publication 2017-10-11 17:30:09 UTC

R topics documented:
get_conditional_diversity_from_transition . 2
get_distribution_from_path . 3
get_diversity_from_distribution . 4
get_diversity_from_path . 5
get_transition_from_path . 7
get_tripartite . 8
tripartite_example . 9
triversity . 10

Index 12

1

2 get_conditional_diversity_from_transition

get_conditional_diversity_from_transition

Compute the conditional diversity of a transition matrix.

Description

get_conditional_diversity_from_transition computes the geometric means of diversity val-
ues associated to the lines of the input transition matrix, while weighting these values according
to an optional input distribution. This hence allows to compute conditional diversity values
associated to the matrix.

Usage

get_conditional_diversity_from_transition(transition, distribution = NULL,
order = NULL, measure = NULL)

Arguments

transition A matrix of floats in [0,1], with all lines summing to 1, giving the transition
matrix from which the conditional diversity values are computed.

distribution A vector of floats in [0,1] and summing to 1 giving the probability distribu-
tion that is used to weight the diversity values when computing their geometric
means. It should hence contain as many values as there are rows in the input
transition. If not specified, this distribution is assumed uniform.

order A vector of positive floats (possibly including Inf) giving the orders of the di-
versity measures to be computed. If neither order nor measure is specified, a
predefined list of 8 diversity measures is computed.

measure A vector of strings giving the names of the diversity measures to compute. Pos-
sible values are richness, entropy, herfindahl, and bergerparker.

Value

A vector of positive floats giving the conditional diversity values of the input transition matrix,
that is the geometric means of the diversity values associated to its rows.

Examples

transition <- matrix (c (1/3, 1/3, 1/3, 0.9, 0.1, 0), nrow=2, ncol=3, byrow=TRUE)
get_conditional_diversity_from_transition (transition, order=c(0,Inf), measure='entropy')
get_conditional_diversity_from_transition (transition, distribution=c(0.75,0.25))

get_distribution_from_path 3

get_distribution_from_path

Compute the probability distribution associated to a random walk fol-
lowing a path between the levels of a tripartite graph.

Description

get_distribution_from_path computes the probability distribution of a random walk within the
different levels of the input tripartite graph. It starts at a given level with an initial probability
distribution, then randomly follows the links of the graph between the different levels according to
the input path, then stops at the last specified level.

Usage

get_distribution_from_path(tripartite, path, initial_distribution = NULL,
initial_node = NULL)

Arguments

tripartite A tripartite graph obtained by calling the get_tripartite function.

path A vector of integers in {1, 2, 3} giving the path of the random walk between
the different levels of the input tripartite graph. This path can be as long
as wanted. Two successive levels should always be adjacent, that is the random
walk cannot go from level 1 to level 3 (or conversely) without first going through
level 2.

initial_distribution

A vector of floats in [0,1] and summing to 1 giving the probability distribution
to start with at the first level of the input path. It should hence contain as
many values as there are nodes in the corresponding level. If not specified,
this distribution is assumed uniform.

initial_node A string giving the name of a node in the first level of the input path. This node
is then considered to have probability one, thus being equivalent to specifying an
initial_distribution with only zeros except for one node. If not specified,
no such node is defined and the initial distribution is assumed uniform.

Value

A vector of floats in [0,1] and summing to 1 giving the probability distribution of the random walk
when arriving at the last level, after having followed the input path within the different levels of the
graph.

Examples

data (tripartite_example)
tripartite <- get_tripartite (data=tripartite_example)

get_distribution_from_path (tripartite, path=c(2,1,2,3))

4 get_diversity_from_distribution

get_distribution_from_path (tripartite, path=c(2,1,2,3), initial_distribution=c(0.25,0,0.25,0.5))
get_distribution_from_path (tripartite, path=c(2,1,2,3), initial_node='i2')

get_diversity_from_distribution

Compute the diversity of a probability distribution.

Description

get_diversity_from_distribution computes diversity values associated to an input probability
distribution. The implemented diversity measures all belong to the parametrized family of "True
Diversity" measures. They can either be specified by their diversity order in [0,Inf[or by their
measure name when it corresponds to classical instances such as the richness, the Shannon entropy,
the Herfindahl-Hirschman index, or the Berger-Parker index.

Usage

get_diversity_from_distribution(distribution, order = NULL, measure = NULL)

Arguments

distribution A vector of floats in [0,1] and summing to 1 giving the probability distribution
whose diversity is measured.

order A vector of positive floats (possibly including Inf) giving the orders of the di-
versity measures to be computed. If neither order nor measure is specified, a
predefined list of 8 diversity measures is computed.

measure A vector of strings giving the names of the diversity measures to compute. Pos-
sible values are richness, entropy, herfindahl, and bergerparker.

Value

A vector of positive floats giving the diversity values of the input probability distribution.

Examples

distribution <- c (1/4, 1/2, 1/12, 2/12)

get_diversity_from_distribution (distribution)
get_diversity_from_distribution (distribution, order=c(0,Inf), measure='entropy')

get_diversity_from_path 5

get_diversity_from_path

Compute the diversity associated to a random walk following a path
between the levels of a tripartite graph.

Description

get_diversity_from_path computes diversity values of the probability distribution of a random
walk following a path between the different levels of the input tripartite graph. It starts at a
given level with an initial probability distribution, then randomly follows the links of the graph
between the different levels according to the input path, then stops at the last specified level. The
implemented diversity measures all belong to the parametrized family of "True Diversity" measures.
They can either be specified by their diversity order in [0,Inf[or by their measure name when
it corresponds to classical instances such as the richness, the Shannon entropy, the Herfindahl-
Hirschman index, or the Berger-Parker index.

Usage

get_diversity_from_path(tripartite, path, conditional_path = NULL,
initial_distribution = NULL, initial_node = NULL, order = NULL,
measure = NULL)

Arguments

tripartite A tripartite graph obtained by calling the get_tripartite function.

path A vector of integers in {1, 2, 3} giving the path of the random walk between
the different levels of the input tripartite graph. This path can be as long
as wanted. Two successive levels should always be adjacent, that is the random
walk cannot go from level 1 to level 3 (or conversely) without first going through
level 2.

conditional_path

A vector of integers in {1, 2, 3} eventually giving another path to compute
conditional diversity values instead of regular diversity values. When speci-
fied, this conditional path is first used to initiate the random walk. The re-
sulting probability distribution is then used to weight the individual diversity
values obtained on the input path when computing their geometric means (see
get_conditional_diversity_from_transition). This path can be as long
as wanted. The last level of the conditional path should be the same as the first
level of the input path. Moreover, two successive levels should always be adja-
cent, that is the random walk cannot go from level 1 to level 3 (or conversely)
without first going through level 2.

initial_distribution

A vector of floats in [0,1] and summing to 1 giving the probability distribution
to start with at the first level of the input path, or at the first level of the input
conditional_path if specified. It should hence contain as many values as there
are nodes in the corresponding level. If not specified, this distribution is assumed
uniform.

6 get_diversity_from_path

initial_node A string giving the name of a node in the first level of the input path, or
at the first level of the input conditional_path if specified. This node is
then considered to have probability one, thus being equivalent to specifying an
initial_distribution with only zeros except for one node. If not specified,
no such node is defined and the initial distribution is assumed uniform.

order A vector of positive floats (possibly including Inf) giving the orders of the di-
versity measures to be computed. If neither order nor measure is specified, a
predefined list of 8 diversity measures is computed.

measure A vector of strings giving the names of the diversity measures to compute. Pos-
sible values are richness, entropy, herfindahl, and bergerparker.

Value

A vector of positive floats giving the diversity values (or conditional diversity values) of the random
walk following the input path.

Examples

data (tripartite_example)
tripartite <- get_tripartite (data=tripartite_example)

COMPUTING DIFFERENT DIVERSITY VALUES FOR A GIVEN PATH

Herfindahl-Hirschman index of nodes in level 3 wrt nodes in level 1
get_diversity_from_path (tripartite, path=c(1,2,3), measure='herfindahl')
1 / get_diversity_from_path (tripartite, path=c(1,2,3), order=2)

Shannon entropy of nodes in level 3 wrt nodes in level 1
get_diversity_from_path (tripartite, path=c(1,2,3), measure='entropy')
log2 (get_diversity_from_path (tripartite, path=c(1,2,3), order=1))

Some other diversity values of nodes in level 3 wrt nodes in level 1
get_diversity_from_path (tripartite, path=c(1,2,3), order=c(1,2,Inf),

measure=c('richness','bergerparker'))

Eight of the main diversity values of nodes in level 3 wrt nodes in level 1
get_diversity_from_path (tripartite, path=c(1,2,3))

SPECIFYING THE INITIAL DISTRIBUTION

Diversity of nodes in level 3 wrt nodes in level 1 (with non-uniform weights)
get_diversity_from_path (tripartite, path=c(1,2,3), initial_distribution=c(0.75,0.25))

Individual diversity of nodes in level 3 wrt node 'u1' in level 1
get_diversity_from_path (tripartite, path=c(1,2,3), initial_node='u1')
get_diversity_from_path (tripartite, path=c(1,2,3), initial_distribution=c(1,0))

COMPUTING THE MEAN OF INDIVIDUAL DIVERSITES

get_transition_from_path 7

Mean of individual diversities of nodes in level 3 wrt nodes in level 2 (with
uniform weights)
get_diversity_from_path (tripartite, path=c(2,3), conditional_path=c(2))

Mean of individual diversities of nodes in level 3 wrt nodes in level 2 (weighted
according to the path from level 1 to level 2, with a uniform distribution in level 1)
get_diversity_from_path (tripartite, path=c(2,3), conditional_path=c(1,2))

Mean of individual diversities of nodes in level 3 wrt nodes in level 2 (weighted
according to the path from level 1 to level 2, with only node 'u1' in level 1)
get_diversity_from_path (tripartite, path=c(2,3), conditional_path=c(1,2),

initial_node='u1')

get_transition_from_path

Compute the transition matrix of a random walk following a path be-
tween the levels of a tripartite graph.

Description

get_transition_from_path computes the transition matrix of a random walk following a path
between the different levels of the input tripartite graph.

Usage

get_transition_from_path(tripartite, path)

Arguments

tripartite A tripartite graph obtained by calling the get_tripartite function.

path A vector of integers in {1, 2, 3} giving the path of the random walk between
the different levels of the input tripartite graph. This path can be as long
as wanted. Two successive levels should always be adjacent, that is the random
walk cannot go from level 1 to level 3 (or conversely) without first going through
level 2.

Details

Note that the tripartite graph structure implemented in this package stores in memory any com-
puted transition matrix to avoid redundant computation in the future. Hence, the first execution of
get_transition_from_path, or of any other function that builds on it, can be much slower than
latter calls. The transition matrices are stored within a data.tree in the input tripartite variable
(see tripartite$transitions).

8 get_tripartite

Value

A matrix of floats in [0,1], with all lines summing to 1, giving the transition matrix of the random
walk following the input path.

Examples

data (tripartite_example)
tripartite <- get_tripartite (data=tripartite_example)

get_transition_from_path (tripartite, c(2,1,2,3))

get_tripartite Build a properly-structured tripartite graph from raw data.

Description

get_tripartite builds a properly-structured tripartite graph from a file or from a data.frame
containing raw data. This object can then be used by the other functions of this package. The
structure of the input data and of the resulting structure is detailed below.

Usage

get_tripartite(filename = NULL, data = NULL)

Arguments

filename A string giving the path to the file containing the raw data.

The input file should contain at least four columns, separated by spaces. Each
row gives a link between two nodes belonging to two different levels of the
tripartite graph. The first column gives the level of the first node (any integer in
{1, 2, 3}) and the second column gives its name (any character string). Similarly,
the third and fourth columns give the level and the name of the second node.
Note that no link is allowed between level 1 and level 3. The file can eventually
contain a fifth column giving the weights of the links (any positive integer or
float value).

data A data.frame containing the raw data.

This data.frame should have the same structure than the one described above
for the case of an input file: four columns indicating the levels and the names of
the two nodes constituting the link, and an optional fifth column for its weight.
At least filename or data should be specified, but not both at the same time.

tripartite_example 9

Value

A properly-structured tripartite graph that can be used by the other functions of the triversity
package.

The resulting object encodes the names of the nodes at the three levels of the tripartite graph, as
well as the transition matrices of random walks following different paths between levels (encoded
as sparse matrices of floats in [0,1], with all rows summing to 1). These transition matrices are then
used by functions such as get_distribution_from_path to compute the probability distributions
of such random walks, or such as get_diversity_from_path to compute the diversity of these
distributions.

Assuming the object returned by get_tripartite is stored in the tripartite variable, then:

• tripartite$nodes is a list of string vectors giving the names of the nodes constituting the
three levels of the tripartite graph (resp. tripartite$nodes$level1, tripartite$nodes$level2,
and tripartite$nodes$level3).

• tripartite$transitions is a data.tree whose nodes each contains the transition matrix of
the corresponding random walk. For example, tripartite$transitions$level1$level2$mat
gives the transition matrix from level 1 to level 2.

Examples

data (tripartite_example)
tripartite <- get_tripartite (data=tripartite_example)

tripartite$nodes$level1
tripartite$nodes$level2
tripartite$level1$level2$mat
tripartite

tripartite_example An example of dataframe encoding a small tripartite graph.

Description

tripartite_example is a data.frame containing raw data that encodes a small tripartite graph. It
has the proper format to be loaded by get_tripartite. It contains four columns. Each row gives
a link between two nodes belonging to two different levels of the tripartite graph. The first column
gives the level of the first node (any integer in {1, 2, 3}) and the second column gives its name (any
character string). Similarly, the third and fourth columns give the level and the name of the second
node. A fifth column could eventually be added to give the weights of the links (any positive integer
or float value).

Usage

data(tripartite_example)

10 triversity

Format

An object of class data.frame with 11 rows and 4 columns.

Examples

data (tripartite_example)
head (tripartite_example)

Load the data.frame into a proper data structure
tripartite <- get_tripartite (data=tripartite_example)

Get the names of the nodes in the second level of the tripartite graph
tripartite$nodes$level2

Get the transition matrix of a random walk going from the level 2 to level 1
tripartite$transitions$level2$level1$mat

triversity Compute diversity measures on tripartite graphs.

Description

triversity is an R package for the computation of diversity measures on tripartite graphs. First,
it implements a parametrized family of such diversity measures which apply on probability dis-
tributions. Sometimes called "True Diversity", this family contains famous measures such as the
richness, the Shannon entropy, the Herfindahl-Hirschman index, and the Berger-Parker index. Sec-
ond, the package allows to apply these measures on probability distributions resulting from random
walks between the levels of tripartite graphs. By defining an initial distribution at a given level of
the graph and a path to follow between the three levels, the probability of the walker’s position
within the final level is then computed, thus providing a particular instance of diversity to measure.

This package has been developed by researchers of the Complex Networks team, located within
the Computer Science Laboratory of Paris 6 (LIP6), for the AlgoDiv project founded by the French
National Agency of Research (ANR) under grant ANR-15-CE38-0001.

Links:

• AlgoDiv project: http://algodiv.huma-num.fr/

• Complex Networks team: http://www.complexnetworks.fr/

• LIP6: https://www.lip6.fr/

• ANR: http://www.agence-nationale-recherche.fr/

Contact:

• Robin Lamarche-Perrin: <Robin.Lamarche-Perrin@lip6.fr>
See also my webpage: https://www-complexnetworks.lip6.fr/~lamarche/

List of main collaborators:

• Robin Lamarche-Perrin (CNRS, ISC-PIF, LIP6)

http://algodiv.huma-num.fr/
http://www.complexnetworks.fr/
https://www.lip6.fr/
http://www.agence-nationale-recherche.fr/
https://www-complexnetworks.lip6.fr/~lamarche/

triversity 11

• Lionel Tabourier (UPMC, LIP6)

• Fabien Tarissan (CNRS, ISP, LIP6)

• Raphaël Fournier S’niehotta (CNAM, CÉDRIC)

• Rémy Cazabet (UdL, LIRIS)

Copyright 2017 © Robin Lamarche-Perrin

triversity is free software: you can redistribute it and/or modify it under the terms of the GNU
General Public License as published by the Free Software Foundation, either version 3 of the Li-
cense, or (at your option) any later version. It is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more de-
tails. You should have received a copy of the GNU General Public License along with this program.
If not, see http://www.gnu.org/licenses/.

http://www.gnu.org/licenses/

Index

∗ datasets
tripartite_example, 9

get_conditional_diversity_from_transition,
2, 5

get_distribution_from_path, 3, 9
get_diversity_from_distribution, 4
get_diversity_from_path, 5, 9
get_transition_from_path, 7
get_tripartite, 3, 5, 7, 8, 9

tripartite_example, 9
triversity, 10
triversity-package (triversity), 10

12

	get_conditional_diversity_from_transition
	get_distribution_from_path
	get_diversity_from_distribution
	get_diversity_from_path
	get_transition_from_path
	get_tripartite
	tripartite_example
	triversity
	Index

