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Abstract

This vignette serves as the online appendix for the manuscript “Flexible Regression for Correlated

and Censored Ecological Data with Mixed-Effects Additive Transformation Models”. It presents details

on the estimation and inference in the titular model class, four example analyses that use these models

to reanalyze ecological phenomena from recently published studies, as well as a small simulation exercise

to verify the correctness of the implementation.

S1 Estimation and inference

In this section, we give a brief summary on maximum likelihood estimation and inference in mixed-

effects additive transformation models. The model can be written in its general form as

P (Yi ≤ y | xi, zi,γ) = F
(
h(y) + f1(x1i) + f2(x2i, x3i) + · · ·+ x⊤

+iβ + z⊤
i γ

)
γ ∼ Nq(0,Σ), (S1)

with F (·) inverse link function and h(y) baseline transformation function. Each smooth term (fj(·))
can be represented with the help of basis functions fj(xji) = bj(xi)

⊤δj . Penalties on the δj parameters

can be added to the model to prevent overfitting in the general form of λjδ
⊤
j Sjδj . λj is the smooth-

ing parameter that controls the amount of penalty imposed on the jth term and thus controls the

smoothness of fj(·), while the penalty matrix Sj defines how exactly the parameters δj are penalized.

The log-likelihood of Model S1 can be formulated with the help of appropriate penalty terms for

the smooth effects as well as the random effects

ℓ(ϑ,β,Σ,λ) = ℓ⋆(ϑ,β,γ, δ)− 1

2

J∑
j=1

λjδ
⊤
j Sjδj −

1

2
γ⊤Σ−1γ + c, (S2)

where ℓ⋆(ϑ,β,γ, δ) =
∑N

i=1 ℓ
⋆
i (ϑ,β,γ, δ) is the unpenalized or conditional (on the vector of ran-

dom effects and penalized coefficients) log-likelihood, which can be written as the sum of the log-

likelihood contributions of the individual observations, assuming conditional independence. λ de-

notes the vector of smoothing parameters corresponding to f1(·), f2(·), . . . , fJ(·) smooth terms, and

δ =
(
δ⊤1 , δ

⊤
2 , . . . , δ

⊤
J

)⊤
. The covariance matrix of the stacked vector of random effects (Σ) is positive

definite and typically has a block structure, which can be leveraged in the calculations. The term c is

a constant, which does not depend on the parameters (either fixed or random) of the model.
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The conditional log-likelihood contributions of the observations, given that they are exactly ob-

served can be written as

ℓ⋆i (ϑ,β,γ, δ) = logF ′ (h(yi) + f1(x1i) + f2(x2i, x3i) + · · ·+ x⊤
+iβ + z⊤

i γ
)
+ log h′(yi)

where F ′(·) and h′(·) are the derivative functions of F (·) and h(·), respectively. Because we directly

parameterize the cumulative distribution function of the outcome in Equation S1, it is straightforward

to express the log-likelihood contributions of randomly censored observations:

ℓ⋆i (ϑ,β,γ, δ) = log
(
P (Yi ≤ ȳi | xi, zi,γ)− P

(
Yi ≤

¯
yi | xi, zi,γ

))
, (S3)

for an interval-censored observation on
¯
yi ≤ yi < ȳi. The contribution of left (−∞ < yi < ȳi) and right-

censored (
¯
yi ≤ yi < ∞) observations can be expressed by setting the second part of this expression to

0 and the first part to 1, respectively.

Likelihood-based inference in the family of mixed-effects transformation models is presented by

Tamási and Hothorn (2021). The estimation procedure described there is directly applicable in the

setting with penalized smooth additive terms utilizing their mixed model representation (Ruppert

et al., 2003, Wand, 2003). In the case of some smoothing bases, a reparameterization is necessary

to fit into a mixed model-based estimation framework (Wood, 2004, Appendix and Fahrmeir et al.,

2013, Chapter 8). The marginal log-likelihood function of the model can be efficiently evaluated by

integrating over the vector of random effects using the Laplace approximation (see Section S2 for

details). In the mixed-effects representation, the smoothing parameters can be estimated as variance

components of the mixed model via maximum likelihood or restricted maximum likelihood (REML).

Frequentist inference for the penalized smooth terms can be based on the joint covariance matrix

estimate of fixed and random parameters using the generalized delta method (Kristensen et al., 2016).

This estimate approximates the mean squared error of the random effects predictions (Zheng and

Cadigan, 2021), and it is also in agreement with results derived in a Bayesian setting for independent

hierarchical models (Kass and Steffey, 1989).

The effective degrees of freedom (EDF) of the individual smooth terms give an approximation of

the effective number of parameters used in modeling these penalized smooth functions. Following

Wood et al. (2016) and Wood (2017, Section 6.11), the EDFs can be estimated by summing up

the appropriate elements of the diagonal of the matrix V I, where V is the joint variance-covariance

matrix of all unpenalized (i.e., fixed-effects) and penalized (random) parameters. The matrix I is

the negative Hessian of the unpenalized log-likelihood (ℓ⋆(ϑ,β,γ, δ) in Equation S2), evaluated at the

vector of parameter estimates.

S2 Computational details

tramME offers several methods to approximate the baseline transformation function (h(y) in Equa-

tion S1) of additive mixed-effects transformation models (see Tamási and Hothorn, 2021, for the

available options). Similarly to Hothorn et al. (2018), the Bernstein polynomial basis (Farouki, 2012)

is used for a general and flexible parameterization for continuous outcomes:

h(y) = aBs,M (y)⊤ϑ =
1

M + 1

M∑
m=0

ϑm

(
M

m

)
ỹm(1− ỹ)M−m,

where aBs,M (y) denotes the set of order M polynomials in Bernstein form, and ỹ equals to y scaled

to the interval [0, 1]. In practice, the exact order of the polynomials in Bernstein form usually does

not have a large effect on the results beyond a minimal value. Hothorn (2020) discusses the choice of
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order in fixed effects-only transformation models and recommends choosing M between 5 and 10. In

the application of the main article, we used the order of 6 as a default.

Likelihood-based estimation and inference in mixed-effects additive transformation models is im-

plemented by the R add-on package tramME (Tamási and Hothorn, 2021). The package utilizes existing

implementations of linear transformation models (mlt and tram packages by Hothorn, 2020) for the

user interface and to set up inputs for the estimation procedure. The penalized smooth terms are

defined with the help of the mgcv package (Wood, 2017), which provides functionality to reformulate

these terms to their mixed-effects representations as described by Wood (2004, Appendix). tramME uses

the Template Model Builder package (TMB, Kristensen et al., 2016) to evaluate the log-likelihood via

Laplace approximation and to calculate the gradients of it with automatic differentiation (glmmTMB,

by Brooks et al., 2017, uses the same underlying techniques). Consequently, model estimation and

inference in tramME is fast and efficient.

The user interface of tramME follows standard model specification conventions of the most popular

R packages (lme4, Bates et al., 2015, mgcv, Wood, 2017) to define mixed-effects additive transformation

models. Thus, transition from a gam, lmer, or glmermodel is very simple. For example, a mixed-effects

additive parametric proportional hazards model can be defined with the function call

R> ## tramME is available from CRAN:

R> ## install.packages("tramME")

R> library("tramME")

R> mc1 <- CoxphME( ### conditional proportional hazards

+ Time ~ ### response time intervals

+ Insects + ### fixed effects

+ Habitat +

+ Landscape +

+ s(Temperature, k = 20) + ### non-linear terms, as in mgcv

+ s(Elevation100, k = 20) +

+ (1 | PlotID), ### random intercept, as in lme4

+ data = carrion, ### data

+ log_first = TRUE, ### log(Time) before modeling

+ order = 6 ### order of Bernstein

+ )

S3 The rat carrion decomposition experiment

Our first example presents the reanalysis of the carrion decomposition data by Englmeier et al. (2022).

In the original study, the authors analyzed the environmental factors that affect the decomposition

process of small rodent carrion using data from an experiment, in which they placed rat carcasses

in different environments and recorded the time until complete decomposition. As we describe it in

the main article, the outcome variable (time until complete decomposition) is interval censored due

to the discrete follow-up. Figure S1 presents some examples of the censored outcomes in the dataset.

Segments with arrows denote right-censored observations, i.e., cases, where the total decomposition

did not occur by the time of the last visit. As these examples demonstrate, the sites were visited at

regular intervals, albeit we can see some variability in the lengths. The survival curves for specimen

with and without the presence of insects are shown in Figure S2. Based on this marginal view of the

data, i.e., without adjusting for other important factors and ignoring cluster-level heterogeneity, the

presence of insects accelerated the decomposition process. The 25th, 50th and 75th percentiles in the
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Figure S1: Censoring in the carrion decomposition dataset of Englmeier et al. (2022). Left panel :

Examples of censoring types. Segments with arrows denote right-censored observations, other

segments show interval-censored outcomes. Right panel : The distribution of the interval lengths

of interval-censored observations.
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Figure S2: Non-parametric survival probability estimates associated with the decomposition times

in groups where insect access was and was not allowed in the carrion decomposition experiment.

cases where insects were present were 16.5, 32.5, 36 days, respectively, while, without insects, the same

quantiles amounted to 31.5, 33.5, 40.5 days.

The main environmental variables we include in our model are the indicator for the presence of in-

sects (Insects), local (Habitat) and regional (Landscape) land use types, The average temperature on

each experimental plot was measured with thermologgers (Temperature), and the elevational gradient

was used as a surrogate for the long-term macroclimate (Elevation100). The plot-level unobserved

sources of variability were modeled by including random intercepts (grouping variable: PlotID). The
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outcome variable (Time) is a predefined Surv object that encodes the interval-censored decomposition

times.

R> head(carrion$Time, 10)

[1] [31, 51] [31, 51] [31, 51] [ 3, 30] [31, 51] [31, 51] [81, 95] [81, 95]

[9] [81, 95] [31, 47]

We estimate the following proportional-hazards mixed-effect additive transformation model for the

decomposition intervals

R> dcmp <- CoxphME(Time ~ Insects + Habitat + Landscape

+ + s(Temperature, k = 20) + s(Elevation100, k = 20)

+ + (1 | PlotID), data = carrion,

+ log_first = TRUE, order = 6)

R> summary(dcmp)

Additive Mixed-Effects Parametric Cox Regression Model

Formula:

Time ~ Insects + Habitat + Landscape + s(Temperature, k = 20) +

s(Elevation100, k = 20) + (1 | PlotID)

Fitted to dataset carrion

Fixed effects parameters:

=========================

Estimate Std. Error z value Pr(>|z|)

Insectsyes 1.0562 0.2493 4.24 2.3e-05 ***

Habitatarable field -0.8986 0.4947 -1.82 0.069 .

Habitatmeadow -0.1898 0.4665 -0.41 0.684

Habitatsettlement -0.8492 0.5699 -1.49 0.136

Landscapeagriculture -0.3964 0.4332 -0.92 0.360

Landscapeurban 0.0337 0.4373 0.08 0.938

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Smooth shift terms:

===================

edf

s(Temperature) 1

s(Elevation100) 1

Random effects:

===============
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Grouping factor: PlotID (144 levels)

Standard deviation:

(Intercept)

1.73

Log-likelihood: -314 (npar = 18)

The smooth terms can be evaluated and plotted with

R> plot(smooth_terms(dcmp), panel.first = grid())

As the results in Figure S3 show, the effects of temperature and elevation look fairly linear.
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Figure S3: Smooth effects of the continuous variables in the model of the decomposition times.

As a general check of the appropriateness of the estimated model, we can evaluate the marginal

distribution function or, as it is more commonly done in survival analysis, the marginal survivor

function of the outcomes at the observations in our dataset by integrating over the random effects

numerically.

Ŝ(ti | xi) = P̂(Ti > ti | xi) =

∫ +∞

−∞
P̂(Ti > ti | xi, γ)ϕ(γ) dγ.

Ŝ(ti | xi) denotes the fitted survivor function, which is straightforward to calculate from the mixed-

effects additive transformation model, due to its fully parametric approach to approximate the outcome

distribution. By evaluating − log(Ŝ(ti | xi)) at the observations in our dataset, we get the Cox-Snell

residuals (Klein and Moeschberger, 2003, Chapter 11), which are unit exponentially distributed under

the correct model.

Interval-censored outcomes pose a technical difficulty in assessing the Cox-Snell residuals. In this

situation we can either evaluate the marginal survivor function at the upper and lower bounds of the

censoring intervals and assess the interval-censored version of the residuals, or we can apply the adjust-

ment proposed by Farrington (2000), which replaces these intervals with expected values under unit
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exponential distribution. To assess the distribution of the residuals, we estimate the cumulative hazard

function of the Cox-Snell residuals, which should be close to a straight line with unit slope through the

origin under the correct model. Figure S4 presents the distributions of the Cox-Snell residuals using

the two approaches to interval censoring. Neither of these plots signals serious departures from the

unit exponential distribution, which confirms the appropriateness of our regression model. Because the

marginal Cox-Snell residuals are not independent in our case, these plots only provide a crude visual

check of the model fits.
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Figure S4: Cox-Snell residuals of the carrion decomposition model. Panel A: Treating the resid-

uals as interval-censored and estimating the cumulative hazard function using the Turnbull non-

parametric maximum likelihood estimator. Panel B : Using the adjustment proposed by Farrington

(2000). The dashed lines correspond to the unit exponential distribution.

We can relax the assumption of proportional hazards by allowing for time-dependent covariate

effects. A transformation model with time-dependent effects for the Insects indicator can be estimated

as

R> dcmp2 <- CoxphME(Time | Insects ~ Habitat + Landscape

+ + s(Temperature, k = 20) + s(Elevation100, k = 20)

+ + (1 | PlotID), data = carrion,

+ log_first = TRUE, order = 6)

In Figure S5, we compare the effect estimates of the presence of insects (on the log-hazard scale)

from the proportional hazards and non-proportional hazards (time-varying effects) models. According

to these results, the proportional hazards assumption seems plausible.

S4 E. coli concentrations in streams with different grazing

periods

Hulvey et al. (2021) compare the concentration levels of Escherichia coli bacteria (most probable

number, MPN) in streams under three different rotational grazing regimes. In the additive mixed
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Figure S5: The effect of the presence of insects on the decomposition process from the proportional-

hazards and non-proportional hazards models.

model specifications they estimated, within-year variability was modeled, as functions of the day of

year (DOY), with cubic regression splines and between-year and location-level variability were captured

by random intercepts of pasture-specific year effects and separate stream effects. Note that although

the cyclic version of the cubic regression splines (bs = "cc" in mgcv and tramME) (Tamasi, 2024) would

be more appropriate for modeling the within-year trend, the original article used bs = ’cr’ and hence

we also stick with this basis in our reanalysis.

As a first step, we replicate the results of all model variants that Hulvey et al. (2021) investigated

in the original article with the R package gamm4 (Wood and Scheipl, 2020). In a second step, we

fit the same models using the software implementation of additive mixed transformation models in

package tramME, that is, using a linear transformation function (function tramME::LmME). We do expect

identical results in steps one and two, although the two implementions rely on two completely distinct

code bases. Thus, these results are only interesting from a quality assurance point of view. In the last

step, we relax the normal distributional assumption by allowing a nonlinear transformation function

(tramME::BoxCoxME function) and evaluate how the model fits change. We are primarily interested in

potential changes of the model interpretation induced by a shift from a normal to a distribution-free

model.

As Table S1 shows, we managed to reproduce the gamm4 results with tramME. Moreover, relaxing

the distributional assumption of the normal linear model resulted in stronger model fits in terms of

in-sample log-likelihood values.

R> ## specifications w/o random effects

R> mf <- c(log10(ecoli_MPN) ~ treatment + cattle +

+ s(DOY, bs = "cr", by = treatment),

+ log10(ecoli_MPN) ~ treatment + cattle + s(DOY, bs = "cr"),

+ log10(ecoli_MPN) ~ treatment + s(DOY, bs = "cr", by = treatment),

+ log10(ecoli_MPN) ~ cattle + s(DOY, bs = "cr"),

+ log10(ecoli_MPN) ~ treatment + s(DOY, bs = "cr"),

+ log10(ecoli_MPN) ~ s(DOY, bs = "cr"))
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R> names(mf) <- paste("Model", c(1:5, "Null"))

R> ecoli_res <- data.frame(matrix(NA, nrow = length(mf), ncol = 3))

R> colnames(ecoli_res) <- c("gamm", "LmME", "BoxCoxME")

R> rownames(ecoli_res) <- names(mf)

R> for (i in seq_along(mf)) {
+ m_gamm <- gamm4(mf[[i]], data = ecoli,

+ random = ~ (1 | year:stream:pasture) + (1 | stream),

+ REML = FALSE)

+ ecoli_res$gamm[i] <- logLik(m_gamm$mer)

+ mf2 <- update(mf[[i]], . ~ . + (1 | year:stream:pasture) + (1 | stream))

+ m_LmME <- LmME(mf2, data = ecoli)

+ if (m_LmME$opt$convergence == 0) ecoli_res$LmME[i] <- logLik(m_LmME)

+ m_BCME <- BoxCoxME(mf2, data = ecoli)

+ if (m_BCME$opt$convergence == 0) ecoli_res$BoxCoxME[i] <- logLik(m_BCME)

+ }

Table S1: Log-likelihood values of the fitted models presented by Hulvey et al. (2021, GAMM ),

replicated as mixed-effects additive transformation models assuming conditional normality (Addi-

tive normal transformation model) and extended as flexible (non-normal) mixed-effects additive

transformation models (Additive non-normal transformation model).

GAMM
Additive normal

transformation model

Additive non-normal

transformation model

Model 1 -339.23 -339.23 -320.94

Model 2 -343.66 -343.66 -324.54

Model 3 -368.33 -368.33 -349.10

Model 4 -347.70 -347.70 -328.25

Model 5 -367.15 -367.15 -347.27

Model Null -373.76 -373.76 -353.50

Let us focus on the most complicated specification, Model 1,

R> update(mf[[1]], . ~ . + (1 | year:stream:pasture) + (1 | stream))

log10(ecoli_MPN) ~ treatment + cattle + s(DOY, bs = "cr", by = treatment) +

(1 | year:stream:pasture) + (1 | stream)

and compare the effect estimates from the normal model to its non-parametric counterpart. But first,

notice that by changing the transformation from h(y) = ϑ0 + ϑ1y to h(y) = a(y)⊤ϑ, we change the

scale on which the coefficients and the smooth terms are interpreted. In the normal additive mixed

model, the coefficient of a fixed effect captures the change in the expectation of the outcome when

increasing the respective predictor by one unit (keeping everything else unchanged). In the non-normal

transformation model with Φ as the inverse link, the coefficients capture similar effects but on a latent

scale defined by the transformation h(Y ).

To cast the effect estimates from the two models to a common scale, we can calculate the probabilistic

indices (PI, Thas et al., 2012). To simplify the notation, first, we will now focus on the simple, fixed
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effects-only case with a single predictor:

P(Y ≤ y | X = x) = Φ (h(y)− βx)

The PI is the probability that one outcome (Y ⋆) is larger than the other (Y ), given the same covariate

values (X) except for one, which is larger with one unit (X⋆). In our simplified example, this means

P (Y < Y ⋆ | X = x,X⋆ = x+ 1) = P (h(Y ) < h(Y ⋆) | X = x,X⋆ = x+ 1)

= P
(
h(Y )− h(Y ⋆) + β√

2
<

β√
2

)
= Φ

(
β√
2

)
.

The third line follows from the fact that, in a transformation model with Φ(·) as the inverse link, h(Y )

and h(Y ⋆) are independent, normally distributed random variables with unit variance and a mean

difference of β. Notice that the PI does not depend on the transformation function. When random

effects are present in the model, the PI is conditional on the cluster.

In the case of transformation models with non-linear additive terms the probabilistic index is a

function of the covariate. In the simplest form of an additive transformation model with probit link,

we have

P(Y ≤ y | X = x) = Φ (h(y)− f(x))

and the PI is

PI(x) = P (Y < Y ⋆ | X = x,X⋆ = x+ 1) = Φ

(
f(x+ 1)− f(x)√

2

)
.

By transforming the effect estimates to the probability scale, Figure S6 compares the smooth terms

from the normal and non-normal versions of Model 1, while the first two blocks of Table S2 contrasts

the fixed effects estimates. The results are very close to each other, which suggests that the original

log-normal model is actually appropriate. As a built-in visual normality check, we can compare the

fitted transformation functions of the normal and non-normal transformation models. The linear

function corresponds to a conditional normal distribution in Figure S7. This result further confirms

the appropriateness of the normal additive model in this specific example.
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Figure S6: The comparison of the smooth terms from the normal and non-normal (probit link)

mixed-effects additive transformation models (specification Model 1).

The outcome variable (MPN per 100 ml) was measured with the Quanti-Tray System, which can

detect E. coli concentrations up to a maximum of 2,419.6 MPN without dilution. This means that
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Figure S7: Baseline transformation functions from the normal and non-normal mixed-effects ad-

ditive transformation models.

there is an effective upper detection limit on the outcome, i.e., the 25 observations with the value of

2,419.6 are right censored. The authors of the original article mention this fact, but they do not take

into account in the subsequent analyses. Because random censoring can be easily handled in tramME,

we will rerun the model taking the upper limit into account.

R> fm1c <- update(fm1, Surv(log10(ecoli_MPN), event = ecoli_MPN < 2419.6) ~ .)

R> ecoli_m1_cens <- BoxCoxME(fm1c, data = ecoli)

R> summary(ecoli_m1_cens)

Non-Normal (Box-Cox-Type) Linear Additive Mixed-Effects Regression Model

Formula:

Surv(log10(ecoli_MPN), event = ecoli_MPN < 2419.6) ~ treatment +

cattle + s(DOY, bs = "cr", by = treatment) + (1 | year:stream:pasture) +

(1 | stream)

Fitted to dataset ecoli

Fixed effects parameters:

=========================

Estimate Std. Error z value Pr(>|z|)

treatmentmedium -0.680 0.230 -2.95 0.0032 **

treatmentshort -0.772 0.317 -2.44 0.0148 *

cattlePresent 1.108 0.149 7.42 1.2e-13 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Smooth shift terms:

===================
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edf

s(DOY):treatmentlong 4.38

s(DOY):treatmentmedium 4.55

s(DOY):treatmentshort 4.30

Random effects:

===============

Grouping factor: year:stream:pasture (32 levels)

Standard deviation:

(Intercept)

0.431

Grouping factor: stream (12 levels)

Standard deviation:

(Intercept)

0.000154

Log-likelihood: -358 (npar = 18)

The fitted non-linear terms are compared to the original (normal linear) estimates in Figure S8 and

the fixed effects are presented in the third block of Table S2.

Table S2: Estimates of the parametric fixed-effects terms on the probability scale (PI: probabilistic

index) from the normal, non-normal and non-normal (with censoring taken into account) models,

respectively.

Normal Non-normal Non-normal, censored

PI 95% CI PI 95% CI PI 95% CI

treatment = medium 0.32 0.22—0.44 0.33 0.22—0.45 0.32 0.21—0.44

treatment = short 0.29 0.16—0.45 0.30 0.17—0.46 0.29 0.16—0.46

cattle = present 0.79 0.72—0.84 0.78 0.72—0.84 0.78 0.72—0.84

Because the transformation model approximates the conditional distribution of the outcome, in

theory, we do not even have to take the base 10 logarithm of the E. coli most probable numbers

(MPN) on the left-hand side of the model formula. tramME should be able to approximate the most

likely transformation.

R> f_nontr <- update(fm1, Surv(ecoli_MPN, event = ecoli_MPN < 2419.6) ~ .)

R> ecoli_nontr <- BoxCoxME(f_nontr, data = ecoli, log_first = TRUE)

R> summary(ecoli_nontr)

Non-Normal (Box-Cox-Type) Linear Additive Mixed-Effects Regression Model
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Figure S8: The comparison of the smooth terms from the original model (normal linear) and the

non-normal (probit link) extension where censoring is also taken into account.

Formula:

Surv(ecoli_MPN, event = ecoli_MPN < 2419.6) ~ treatment + cattle +

s(DOY, bs = "cr", by = treatment) + (1 | year:stream:pasture) +

(1 | stream)

Fitted to dataset ecoli

Fixed effects parameters:

=========================

Estimate Std. Error z value Pr(>|z|)

treatmentmedium -0.680 0.230 -2.95 0.0032 **

treatmentshort -0.772 0.317 -2.44 0.0148 *

cattlePresent 1.108 0.149 7.42 1.2e-13 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Smooth shift terms:

===================

edf

s(DOY):treatmentlong 4.38

s(DOY):treatmentmedium 4.55

s(DOY):treatmentshort 4.30

Random effects:

===============

Grouping factor: year:stream:pasture (32 levels)

Standard deviation:

(Intercept)

0.431
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Grouping factor: stream (12 levels)

Standard deviation:

(Intercept)

0.000439

Log-likelihood: -2027 (npar = 18)

Notice that we set log first = TRUE in the function call, to take the natural logarithm of the

outcome before setting up the Bernstein bases. This usually helps the approximation in the case of

positive right-skewed outcomes. With this, we basically estimate the same model as the original, but

with the natural logarithm instead of base-ten. Because of this difference, the log-likelihood values

are also different, but the fixed effects and variance components parameter estimates, as well as the

smooth terms are essentially the same as in the case of the model ecoli m1 cens.

In summary, after bringing the estimates to the same scale, the results of the additive mixed effects

model did not change much in this specific example by switching to the transformation model approach.

The originally applied base 10 logarithm falls very close to the fitted “most likely transformation”, i.e.,

taking the logarithm of the outcome was sufficient to achieve (close) conditional normality. This could

be verified through comparing the baseline transformation functions of the normal and non-normal

models, which can also serve as a visual check on conditional normality. Moreover, the number of

censored outcomes was relatively small in the sample, so taking the censoring properly into account

did not result in large differences, either. However, as the example demonstrated, transformation

models are flexible enough to accommodate these properties of the response of interest (non-normality

and censoring) automatically, without the need to apply ad hoc transformations or to implement

new estimation procedures. In this sense, tramME::BoxCoxME provides a simple way of checking the

impact of the more restrictive assumptions hard-wired in gamm4::gamm4 on model interpretation and

of handling censoring properly in the estimation procedure.

S5 Sea urchin removal experiment

Andrew and Underwood (1993) analyzed the percentage cover of filamentous algae under four sea

urchin removal treatments (Control/33%/66%/Removal). The algae colonization was measured on

five quadrants located on several larger patches, so there is a clear grouped structure in the data.

Douma and Weedon (2019) reanalyzed the data as a demonstration for the usage of mixed-effects

models for zero-inflated beta regression. Here, we fit mixed-effects transformation models to the data

and compare the results to zero-inflated mixed-model estimates obtained from glmmTMB (Brooks et al.,

2017, 2024). Figure S9 presents the empirical cumulative distribution functions of the outcome under

the four treatments. Note the large number of zeros, especially in the control group.

First, we fit a zero-inflated beta regression model with random intercepts for the patches. The

probability of observing zero values is allowed to vary with the treatment.

R> urchin_zib <- glmmTMB(pALGAE ~ TREAT + (1 | PATCH), ziformula = ~ TREAT,

+ data = andrew, family = beta_family())

As an alternative to the traditional beta regression approach, we estimate a mixed-effects continuous

outcome logistic regression.
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Figure S9: Empirical CDFs of the algae cover proportions under the four treatments.

R> urchin_tram <- ColrME(

+ Surv(pALGAE, pALGAE > 0, type = "left") ~ TREAT + (1 | PATCH),

+ bounds = c(-0.1, 1), support = c(-0.1, 1), data = andrew,

+ order = 6)

R> summary(urchin_tram)

Mixed-Effects Continuous Outcome Logistic Regression Model

Formula:

Surv(pALGAE, pALGAE > 0, type = "left") ~ TREAT + (1 | PATCH)

Fitted to dataset andrew

Fixed effects parameters:

=========================

Estimate Std. Error z value Pr(>|z|)

TREAT0.33 -2.04 1.31 -1.56 0.1178

TREAT0.66 -2.49 1.31 -1.90 0.0571 .

TREATremoval -4.10 1.34 -3.06 0.0022 **

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Random effects:

===============
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Grouping factor: PATCH (16 levels)

Standard deviation:

(Intercept)

1.48

Log-likelihood: -26.3 (npar = 11)

To allow for a jump in the conditional CDF of the outcome, we expand its bound and treat the

zero observations as left-censored. This way, we can place a point mass on zero, i.e., introduce a jump

at 0 (see Figure S10).
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Figure S10: Visual demonstration of how a discrete jump is introduced in the CDF by extending

the support and treating the edge cases as censored.

Because the zero-inflated beta model is a mixture of two models, the interpretation of its results

is cumbersome. It is not clear which parameters, or combinations of parameters, one needs to inspect

to contrast the effects of the various treatments. Moreover, extra steps are needed to calculate the

marginal effects of the covariates. In contrast, the mixed-effects transformation model only contains a

single set of fixed effects parameters and their interpretation is straightforward: For example, the odds

of observing higher proportions of algae cover under the 33% removal treatment is about exp(−β̂0.33) =

7.71 times higher compared to the control group.

To assess the fits of the two models we can marginalize the conditional distributions by integrating

over the random effects numerically, and compare against the ECDFs. As Figure S11 shows, both

model overestimate the dispersion in the control group.

Systematic differences in the outcome variability in the treatment groups occur in many situations

(Douma andWeedon, 2019). By modeling the dispersion separately, we can incorporate such differences

in the beta regression model.

R> urchin_zib_disp <- glmmTMB(pALGAE ~ TREAT + (1 | PATCH),

+ ziformula = ~ TREAT, dispformula = ~ TREAT,

+ data = andrew, family = beta_family())
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Figure S11: Fitted marginal distributions of algae cover proportion from the zero-inflated beta

regression and the mixed-effects transformation model, respectively. The step functions show the

empirical cumulative distribution functions in the four treatment groups.

In the mixed-effects linear transformation model, we stratify to the treatment group to allow for

separate transformation functions.

R> urchin_tram_strat <- ColrME(

+ Surv(pALGAE, pALGAE > 0, type = "left") | 0 + TREAT ~ 1 + (1 | PATCH),

+ bounds = c(-0.1, 1), support = c(-0.1, 1), data = andrew,

+ order = 6, control = optim_control(iter.max = 1e3, eval.max = 1e3,

+ rel.tol = 1e-9))

R> summary(urchin_tram_strat)

Stratified Mixed-Effects Continuous Outcome Logistic Regression Model

Formula:

Surv(pALGAE, pALGAE > 0, type = "left") | 0 + TREAT ~ 1 + (1 |

PATCH)

Fitted to dataset andrew

Fixed effects parameters:

=========================

No estimated shift coefficients.

Random effects:

===============

Grouping factor: PATCH (16 levels)

Standard deviation:

(Intercept)

1.51
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Log-likelihood: -22.9 (npar = 29)

As Figure S12 illustrates, the two models fit the data much better. However, the cost of this

flexibility is that we cannot reduce the group comparisons to inference on a small set of parameters

anymore.

0.0 0.2 0.4 0.6 0.8 1.0

0.75

0.80

0.85

0.90

0.95

1.00

treatment = control

pALGAE

pr
ob

0.0 0.2 0.4 0.6 0.8 1.0

0.5

0.6

0.7

0.8

0.9

1.0

treatment = 0.33

pALGAE

pr
ob

0.0 0.2 0.4 0.6 0.8 1.0

0.4

0.5

0.6

0.7

0.8

0.9

1.0

treatment = 0.66

pALGAE
pr

ob

0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

treatment = removal

pALGAE

pr
ob

Stratified linear transformation model Zero−inflated beta with dispersion model ECDF

Figure S12: Fitted marginal distributions of algae cover proportion from the zero-inflated beta re-

gression with dispersion model and the stratified mixed-effects transformation model, respectively.

The step functions show the empirical cumulative distribution functions in the four treatment

groups.

Figures S11 and S12 demonstrate the flexibility of the distribution-free approach of transformation

models compared to the parametric alternative. This is also reflected in the log-likelihood values

(Table S3).

Table S3: Log-likelihood values of the four model specifications for the sea urchin removal experi-

ment.

logL Number of parameters

Zero-inflated beta without dispersion model -33.60 10

Zero-inflated beta with dispersion model -30.93 13

Linear transformation model -26.27 11

Stratified linear transformation model -22.86 29

In summary, although the shift-scale beta regression model is not a special case of a transformation

model and one thus cannot expect identical results with a specific parameterisation of tramME::ColrME,

the simpler transformation model (with one instead of two linear predictors) produced a better model

fit (when comparing the in-sample log-likelihoods).

S6 Mosquito control trial

Juarez et al. (2021) presented the results of a cluster randomized crossover trial that assessed the

efficacy of Autocidal Gravid Ovitrap (AGO) as a tool for against the mosquito species Aedes aegypti.
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The outcome of interest was the number of female mosquitoes collected on glue boards that were

placed either inside or outside of the selected houses in various neighborhoods. Within-year patterns

in mosquito counts as well as the coverage of the treatment in different areas were modeled with

non-linear smooths, while unobserved household and community level effects were captured by nested

random effects. The original article presented the results of a conditional Poisson and a negative

binomial model. We reproduce these results with gamm4, and also estimate a mixed-effects additive

transformation model for count data with “expit” inverse link function. Detailed exposition of count

transformation models is given by Siegfried and Hothorn (2020). For fitting such a model, we will use

the following custom-made ’CotramME’ model class implementing the likelihood for count data via

interval censoring (Siegfried and Hothorn, 2020), which is currently not part of the tramME package.

R> ## Additive count transformation model

R> ## See ?cotram::cotram for the documentation

R> CotramME <- function(formula, data,

+ method = c("logit", "cloglog", "loglog", "probit"),

+ log_first = TRUE, plus_one = log_first, prob = 0.9,

+ ...) {
+ method <- match.arg(method)

+ rv <- all.vars(formula)[1]

+ stopifnot(is.integer(data[[rv]]), all(data[[rv]] >= 0))

+ data[[rv]] <- data[[rv]] + as.integer(plus_one)

+ sup <- c(-0.5 + log_first, quantile(data[[rv]], prob = prob))

+ bou <- c(-0.9 + log_first, Inf)

+ data[[rv]] <- as.Surv(R(data[[rv]], bounds = bou))

+ fc <- match.call()

+ fc[[1L]] <- switch(method, logit = quote(ColrME), cloglog = quote(CoxphME),

+ loglog = quote(LehmannME), probit = quote(BoxCoxME))

+ fc$method <- NULL

+ fc$plus_one <- NULL

+ fc$prob <- NULL

+ fc$log_first <- log_first

+ fc$bounds <- bou

+ fc$support <- sup

+ fc$data <- data

+ out <- eval(fc, parent.frame())

+ out$call$data <- match.call()$data

+ class(out) <- c("CotramME", class(out))

+ out

+ }
R> mosquito_tram <- CotramME(AEAfemale ~ Year + Income*Placement

+ + s(Week) + s(CovRate200) + (1|HouseID)

+ + (1|Community), offset = -log(daystrapping), data = AGO,

+ method = "logit", order = 5, log_first = TRUE, prob = 0.9)

Table S4 compares the log-likelihood values of the three model versions. In terms of in-sample

model fit, as measured by the log-likelihood value, both the negative binomial and the transformation

model perform much better than the Poisson GAMM. The results suggest slight improvement in the

model fit when we relax the conditional distribution assumption of the negative binomial GAMM and
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follow the distribution-free transformation model approach.

Table S4: Log-likelihood values of the fitted Poisson and negative binomial GAMMs reproduced

from Juarez et al. (2021) along with the log-likelihood of an additive transformation model for

count data.

Log-likelihood

Poisson GAMM -6875.73

Negative binomial GAMM -4883.26

Additive count transformation model -4873.07

We will now concentrate on comparing the estimates from the negative binomial and the count

transformation models. Note that the scales on which the parameters are interpreted are different

in the two models: While in the negative binomial model, the parametric and smooth terms affect

the log of the conditional mean of the outcome, in the transformation model with “logit” link (i.e.,

“expit” inverse link), they are interpreted on the log-odds scale. Unlike in the example application

of Section S4, we cannot easily transform the negative binomial parameters to the probability scale.

Although the magnitudes of the effect estimates of the two models are not directly comparable, their

directions, significance and the general shapes of the smooths can be contrasted.

Figure S13 compares the smooth estimates of the GAMM from gamm4 and the transformation model

from tramME. Although the within-year time patterns (s(Week)) from the two models are almost iden-

tical (on different scales), the difference of the smooth estimates of the coverage rate (s(CovRate200))

is marked. The general shapes of the smooths are similar, but the negative binomial GAMM penal-

izes it more, which is also reflected in the EDFs: 2.96 and 17.49 for the negative binomial and count

transformation models, respectively.

Because the parametric and smooth terms of the two models are defined on different scales, the

magnitudes of the effect estimates are not directly comparable. As Table S5 shows, the directions of

the effects match and neither model finds evidence that the main effect of middle income is different

from zero.

Again, the models compared for this example are not nested and it is therefore hard to compare

them directly. The transformation model leads to a similar model interpretation as the model based

on the negative-binomial distribution. Model uncertainty was larger in the transformation model, at

Table S5: Point estimates and 95% confidence intervals of the parametric fixed effects terms from

the negative binomial and count transformation models of the mosquito control data by Juarez

et al. (2021). Note that the scale of the parameters are different and the effect sizes are not directly

comparable.

Negative binomial Count transformation

β̂ 95% CI β̂ 95% CI

Year = 2018 −0.20 −0.34 —−0.06 −0.35 −0.55 —−0.15

Income = middle −0.78 −1.69 — 0.13 −0.83 −2.02 — 0.36

Placement = out 2.37 2.22 — 2.52 3.01 2.79 — 3.24

Income = middle & Placement = out 0.38 0.13 — 0.64 0.51 0.16 — 0.86
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Figure S13: Smooth terms from the negative binomial and transformation models of the A. aegypti

counts. The dashed lines and the grey areas denote the 95% confidence intervals

least for the nonlinear effect of CovRate200, and thus one might wonder if the stricter distributional

assumption lead to overconfident model interpretation.

S7 Simulation experiments

The goals of the following simulation experiments are threefold. 1. First, we want to evaluate the loss

of model performance when using the flexible, distribution-free mixed-effects additive transformation

model approach in a scenario when a simple normal linear additive mixed model is appropriate. 2. We

are interested in comparing the performances of the normal and non-normal model under a highly

non-normal data-generating process. 3. Finally, we investigate the performance of the non-normal

transformation model in the case of interval-censored data.

We consider a normal and a non-normal data-generating process for simulating grouped data with

non-linear covariate effects. The conditional distributions corresponding to both of these can be written

in the general transformation model form:

P(Y ≤ y | x1, x2, γj) = Φ (h(y)− βx1 − f(x2)− γj) γ{1:J}
i.i.d.∼ N (0, σ),

where Φ denotes the CDF of the standard Gaussian distribution, βx1 is the parametric fixed-effect

term, f(x2) is a non-linear term and γj is the random intercept of the group j = 1 . . . J with σ standard

deviation. The data are simulated by numerically inverting the conditional distribution function.
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R> ##' @param n Numeric vector, number of observations in each group

R> ##' @param beta Numeric, effect size

R> ##' @param sfun Function with a numeric argument, non-linear smooth shift term

R> ##' @param sigma Numeric, SD of random intercepts

R> ##' @param hinv Function with a numeric argument, inverse transformation function

R> ##' @param link Function with a single numeric argument on [0, 1] link function

R> ##' @param scale Numeric, optional scaling constant on the transformation scale

R> ##' @param seed Seed for the random number generator

R> ##' @param two_sets Logical; generate both an estimation and a test sample

R> gen_smpl <- function(n, beta, sfun, sigma, hinv, link, scale = 1,

+ seed = NULL, two_sets = TRUE) {
+ ## -- setting up the seed

+ if (!exists(".Random.seed", envir = .GlobalEnv, inherits = FALSE))

+ runif(1)

+ if (is.null(seed))

+ RNGstate <- get(".Random.seed", envir = .GlobalEnv)

+ else {
+ R.seed <- get(".Random.seed", envir = .GlobalEnv)

+ set.seed(seed)

+ RNGstate <- structure(seed, kind = as.list(RNGkind()))

+ on.exit(assign(".Random.seed", R.seed, envir = .GlobalEnv))

+ }
+ if (two_sets) n <- rep(n, 2)

+ x1 <- runif(sum(n))

+ x2 <- runif(sum(n))

+ gr <- factor(rep(seq_along(n), n))

+ re <- rep(rnorm(length(n), mean = 0, sd = sigma), n)

+ lp <- x1 * beta + sfun(x2) + re

+ y <- hinv((link(runif(sum(n))) + lp) * scale)

+ if (two_sets) {
+ n <- sum(n) / 2

+ out <- list(est = data.frame(x1 = x1[1:n], x2 = x2[1:n], gr = gr[1:n],

+ y = y[1:n]),

+ test = data.frame(x1 = tail(x1, n), x2 = tail(x2, n),

+ gr = tail(gr, n), y = tail(y, n)))

+ } else {
+ out <- data.frame(x1 = x1, x2 = x2, gr = gr, y = y)

+ }
+ out

+ }

For the inverse baseline transformations and the non-linear shift term we set the following functional

forms:

h1(y) = y, h2(y) = Φ−1
(
Fχ2

3
(y)

)
, f(x) = ξ sin(πx),

with Φ−1(·) as the quantile function of the standard normal distribution and Fχ2
3
(·) is the distribution

function of the χ2-distribution with 3 degrees of freedom. By using a linear function, h1(y) as the trans-
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formation function, we assume a normal additive mixed-model. In contrast, setting h2(t) introduces

non-normality. In this case, the conditional distribution implied by the data-generating mechanism is

χ2 (df = 3) when the linear predictor is zero. In the simulations, we use β =
√
2Φ−1(0.7) so that the

effect size of the parametric fixed-effect term is 0.7 on the probabilistic index scale in both the normal

and the non-normal case (see Section S4 for details). Values of x1 and x2 are drawn from the uniform

distribution on the interval between 0 and 1 for each observation separately. The the parameters σ

and ξ are set to values that result in equal variances for the parametric (βx1), the non-linear (f(x2))

and the random-effects terms of the linear predictor on the transformation scale.

For the third question, to generate censored outcomes on an interval of a given length from contin-

uous data, we define the following function:

R> make_intcens <- function(x, length = 1) {
+ Surv(floor(x / length) * length, ceiling(x / length) * length,

+ type = "interval2")

+ }

In all scenarios, we simulate moderate-sized datasets with 100 subjects/groups (J = 100) and four

observations per each group. We repeat all simulations 500 times.

Our primary focus in these simulation experiments is on inference about the fixed-effects parameter

β and the general predictive performances of the model variants evaluated through the out-of-sample

log-likelihood. For the out-of-sample log-likelihood calculations, we integrate over the random inter-

cepts in the log-likelihood (i.e., the exponential of Equation S2) of a new set of observations and

evaluate it at the fitted values of the remaining parameters (coefficients corresponding to the baseline

transformation, the fixed effect and the smooth term as well as the variance component and smoothing

parameters).

S7.1 Normal data-generating process

To investigate our first question, we draw samples from the (conditionally) normal additive mixed

model (i.e., h(y) = h1(y) = y) and fit a mixed-effects additive transformation model (with standard

normal inverse link), as well as the correctly specified normal additive mixed model, to it.

According to Figure S14, both the correctly specified additive model and the flexible transformation

model results in unbiased estimates for the β parameter, with no visible additional variability in the

case of the more general, distribution-free approach. The coverage rates of the 95% Wald confidence

intervals from the two models are very close to their nominal levels.

R> cvi <- get_res(sims1, what = function(x) {
+ ci <- x$beta + x$beta_se * qnorm(0.975) * c(-1, 1)

+ (ci[1] <= b) && (b < ci[2])

+ })
R> (cvr <- colMeans(cvi, na.rm = TRUE)) ## Coverage rate

LmME BoxCoxME

0.928 0.930

R> sqrt(cvr * (1 - cvr) / nrow(cvi)) ## Monte Carlo SE

LmME BoxCoxME

0.0116 0.0114
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Figure S14: Bias of the coefficient of the parametric fixed term in the case of the conditionally nor-

mal data-generating process. The results are presented on the probabilistic index scale. “Normal”

corresponds to the results from the normal additive mixed model, while “Non-normal” denotes the

distribution-free mixed-effects additive transformation model.

The Monte Carlo distributions of out-of-sample log-likelihood are presented in Figure S15. For each

simulated dataset for fitting the two models, we generated an independent evaluation dataset of the

same size and structure. We calculated the log-likelihood of this new data given the parameters fitted

to the estimation sample. The predictive performance of the two models are very close to each other,

with just slight reduction in the log-likelihood values for the more complex transformation model.

To visually assess, how well the mixed-effects additive transformation model approximates the

conditionally normal response distribution, we plot the fitted baseline transformation functions (ĥ(y)),

and compare to the true function h(y) = y (Figure S16).

S7.2 Non-normal data-generating process

In many applied regression problems, the assumption that the outcome is normally distributed, con-

ditionally on the predictors, is violated. Normal additive mixed models are still often used in these

cases, mainly due to the fact that the normal linear model can be remarkably robust to some violations

of the model assumptions (Schielzeth et al., 2020). In the next simulation experiment, we compare

the normal additive mixed model and non-normal mixed-effects transformation model based on the

inference on the parametric fixed term and out-of-sample predictive performance under a non-normal,

skewed data-generating process.

As an additional goal, we also investigate the performance of the transformation approach when

the outcome variable is interval-censored, i.e., none of the values are exactly observed, only up to

an interval. For each iteration in the Monte Carlo simulations, we generate a dataset with exactly

observed outcomes (from the conditionally non-normal data-generating process) and fit the normal

additive model and the non-normal transformation model to it. We then create the censored version

of the same variable by binning its values into intervals (of length two in our simulations) and define

the corresponding Surv object.
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Figure S15: Predictive performance of the normal additive mixed model and the mixed-effects

additive transformation model evaluated by the out-of-sample log-likelihood of an independently

generated dataset.
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Figure S16: Fitted baseline transformation functions from the mixed-effects additive transforma-

tion model under normal data-generating mechanism. The red line shows the true value.

25



R> dat <- gen_smpl(rep(4, 100), beta = b, sfun = sf, sigma = sig,

+ hinv = hi2, link = lnk, seed = 1, two_sets = FALSE)

R> head(dat$y) ## exact values

[1] 5.61 6.61 3.48 14.39 1.45 2.05

R> head(make_intcens(dat$y, length = 2)) ## interval-censored version

[1] [ 4, 6] [ 6, 8] [ 2, 4] [14, 16] [ 0, 2] [ 2, 4]

In the next step, we refit the transformation model using the interval-censored data, and compare

its results to the additive mixed model and the transformation model with exact responses. To ensure

the comparability of the out-of-sample predictions, we only transform the response in the estimation

sample, but not the evaluation sample, to interval-censored.

Figure S17 show the bias in the estimates of the coefficient β in the case of the two models and the

transformation model under interval-censored data. In the case of the (misspecified) normal additive

mixed-model, there is a sign of slight downward bias, while the transformation model gives unbiased

estimates for the parametric fixed-effects coefficient, irrespective of whether it uses the exact observa-

tions or their interval-censored version. The coverages of the 95% Wald confidence intervals are close

to their nominal levels in all cases.

R> cvi <- get_res(sims2, what = function(x) {
+ ci <- x$beta + x$beta_se * qnorm(0.975) * c(-1, 1)

+ (ci[1] <= b) && (b < ci[2])

+ })
R> (cvr <- colMeans(cvi, na.rm = TRUE)) ## Coverage rate

LmME BoxCoxME BoxCoxME_ic

0.950 0.950 0.938

R> sqrt(cvr * (1 - cvr) / nrow(cvi)) ## Monte Carlo SE

LmME BoxCoxME BoxCoxME_ic

0.00975 0.00975 0.01078

The differences between the normal and the distribution-free approaches are more marked in their

out-of-sample predictive performances. As Figure S18 shows, the normal additive mixed model per-

forms poorly compared to the transformation model, even in the interval-censored case, when the

observations in the estimation sample are not exactly observed.

Figure S19 presents the fitted smooth non-linear terms from the non-normal transformation model

in the case of the exactly observed and interval-censored scenarios. As the results show, the model is

able to recover the non-linear term even when the information on the outcome is limited to intervals.

In summary, the results of the simulation experiments presented above suggest that, at least in

the scenarios considered, the cost of using the distribution-free transformation model framework in

mixed-effects additive modeling is low, while it can improve the inference and predictive performance

when the distributional assumptions of the available alternatives are not met. Moreover, our results

confirm that the model provides reliable estimates when the outcome variable is censored.
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Figure S17: Bias of the coefficient of the parametric fixed term in the case of the conditionally

non-normal data-generating process. The results are presented on the probabilistic index scale.

“Normal” corresponds to the results from the normal additive mixed model, “Non-normal” denotes

the distribution-free mixed-effects additive transformation model and “Non-normal (IC)” show the

results of the transformation model under interval-censoring.
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Figure S18: Predictive performance of the normal additive mixed model and the mixed-effects

additive transformation model with exact (“Non-normal”) and interval-censored (“Non-normal

(IC)”) observations evaluated by the out-of-sample log-likelihood of an independently generated

dataset.
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Figure S19: Fitted non-linear effects from the mixed-effects additive transformation model with

exact observations (left panel) and interval-censored observations (right panel) under the non-

normal data-generating mechanism. The red curves show the true function.
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