Package 'tmvmixnorm'

October 14, 2022

Type Package

Title Sampling from Truncated Multivariate Normal and t Distributions

Version 1.1.1

Maintainer Ting Fung (Ralph) Ma <tingfung.ma@wisc.edu>

Description Efficient sampling of truncated multivariate (scale) mixtures of normals under linear inequality constraints is nontrivial due to the analytically intractable normalizing constant. Meanwhile, traditional methods may subject to numerical issues, especially when the dimension is high and dependence is strong. Algorithms proposed by Li and Ghosh (2015) <doi:10.1080/15598608.2014.996690> are adopted for overcoming difficulties in simulating truncated distributions. Efficient rejection sampling for simulating truncated univariate normal distribution is included in the package, which shows superiority in terms of acceptance rate and numerical stability compared to existing methods and R packages. An efficient function for sampling from truncated multivariate normal distribution subject to convex polytope restriction regions based on Gibbs sampler for conditional truncated uni-

variate distribution is provided. By extending the sampling method, a function for sampling truncated multivariate Student's t distribution is also developed. Moreover, the proposed method and computation remain valid for high dimensional and strong dependence scenarios. Empirical results in Li and Ghosh (2015) <doi:10.1080/15598608.2014.996690> illustrated the superior performance in terms of various criteria (e.g. mixing and integrated autocorrelation time).

License GPL-2

Encoding UTF-8

LazyData true

Depends R (>= 3.2.0)

Imports stats, MASS

RoxygenNote 7.0.2

NeedsCompilation no

Author Ting Fung (Ralph) Ma [cre, aut], Sujit K. Ghosh [aut], Yifang Li [aut]

Repository CRAN

Date/Publication 2020-09-18 18:00:02 UTC

R topics documented:

ltuvn
xp_acc_opt
xp_rej
alfnorm_acc
alfnorm_rej
mp
$mp \ acc \ \dots \$
form acc
orm_rej
- $ -$
tmvn
tmvt
tuvn
$\inf \operatorname{acc} \dots $
min_ace
mm_rej
13

Index

dtuvn

Density function of truncated univariate normal distribution

Description

dtuvn calculates the probability density function (pdf) of truncated univariate normal distribution.

Usage

dtuvn(x, mean, sd, lower, upper)

Arguments

Х	value at which density is desired.
mean	mean of the underlying univariate normal distribution.
sd	standard deviation of the underlying univariate normal distribution.
lower	lower bound for truncation.
upper	upper bound for truncation.

Value

dtuvn returns the density (with same dimension and type as x) of truncated univariate normal distribution.

Examples

```
dtuvn(x= -3:3, mean=0, sd=1 ,lower= -2, upper=2)
```

exp_acc_opt

Description

exp_acc_opt calculates the acceptance rate of translated-exponential rejection sampling for the truncation interval (a,b).

Usage

exp_acc_opt(a, b)

Arguments

а	lower bound for truncation.
b	upper bound for truncation.

Examples

set.seed(1203)
exp_acc_opt(1,2)

exp_rej Translated-exponential rejection sampling	
---	--

Description

exp_rej is used for translated-exponential rejection sampling.

Usage

exp_rej(a, b = Inf, lam = "default")

Arguments

а	lower bound
b	upper bound
lam	lambda for translated-exponential only

Value

exp_rej returns a list x: sampled value; and acc: total number of draw used.

Examples

```
set.seed(1)
exp_rej(a=1, b=Inf)
```

halfnorm_acc

Acceptance rate of half-normal rejection sampling

Description

halfnorm_acc calculates the acceptance rate of half-normal rejection sampling for the truncation interval (a,b).

Usage

halfnorm_acc(a, b)

Arguments

а	lower bound for truncation.
b	upper bound for truncation.

Examples

```
set.seed(1203)
halfnorm_acc(1,2)
```

halfnorm_rej Half-normal rejection sampling

Description

halfnorm_rej is used for half-normal rejection sampling.

Usage

halfnorm_rej(a, b)

Arguments

а	lower bound
b	upper bound

4

imp

Value

halfnorm_rej returns a list x: sampled value; and acc: total number of draw used.

Examples

```
set.seed(1)
halfnorm_rej(a=1, b=Inf)
```

imp	Rejection sampling of standardized truncated univariate normal dis-
	tribution

Description

imp contains a general function for rejection sampling of standardized truncated univariate normal distribution in (a,b).

Usage

imp(a, b)

Arguments

а	lower bound for truncation.
b	upper bound for truncation (must be > a).

Value

imp returns a list x: sampled value; and acc: total number of draw used.

Examples

```
imp(1,Inf) # Case 1: [a,infty)
imp(-1,1) # Case 2: 0 in [a,b], a<0<b
imp(1,2) # Case 3: [a,b], a>=0
```

imp_acc

Description

imp_acc calculates the acceptance rate of truncated univariate standardized normal distribution rejection sampling for the truncation interval (a,b).

Usage

imp_acc(a, b)

Arguments

а	lower bound for truncation.
b	upper bound for truncation.

Examples

imp_acc(1,Inf) # Case 1: [a,infty)
imp_acc(-1,1) # Case 2: 0 in [a,b], a<0<b
imp_acc(1,2) # Case 3: [a,b], a>=0

norm_acc

Acceptance rate of normal rejection sampling

Description

norm_acc calculates the acceptance rate of normal rejection sampling for the truncation interval (a,b).

Usage

norm_acc(a, b)

Arguments

а	lower bound for truncation.
b	upper bound for truncation.

Examples

set.seed(1203)
norm_acc(1,2)

norm_rej

Description

norm_rej is used for normal rejection sampling.

Usage

norm_rej(a, b = Inf)

Arguments

а	lower bound
b	upper bound

Value

norm_rej returns a list x: sampled value; and acc: total number of draw used.

Examples

```
set.seed(1)
norm_rej(a=1, b=Inf)
```

p	t	u	v	n	

Distribution function of truncated univariate normal distribution

Description

ptuvn calculates the cumulative distribution function (cdf) of truncated univariate normal distribution.

Usage

```
ptuvn(x, mean, sd, lower, upper)
```

Arguments

х	value at which cdf is desired.
mean	mean of the underlying univariate normal distribution.
sd	standard deviation of the underlying univariate normal distribution.
lower	lower bound for truncation.
upper	upper bound for truncation.

Value

ptuvn returns the cumulative distribution function (with same dimension and type as x) of truncated univariate normal distribution.

Examples

ptuvn(x= -3:3, mean=0, sd=1 ,lower= -2, upper=2)

rtmvn

Random number generation for truncated multivariate normal distribution subject to linear inequality constraints

Description

rtmvn simulates truncated multivariate (p-dimensional) normal distribution subject to linear inequality constraints. The constraints should be written as a matrix (D) with lower and upper as the lower and upper bounds for those constraints respectively. Note that D can be non-full rank, which generalize many traditional methods.

Usage

```
rtmvn(
 n,
 Mean,
 Sigma,
 D = diag(1, length(Mean)),
  lower,
 upper,
  int = NULL,
 burn = 10,
  thin = 1
```

Arguments

)

n	number of random samples desired (sample size).
Mean	mean vector of the underlying multivariate normal distribution.
Sigma	positive definite covariance matrix of the underlying multivariate normal distribution.
D	matrix or vector of coefficients of linear inequality constraints.
lower	vector of lower bounds for truncation.
upper	vector of upper bounds for truncation.
int	initial value vector for Gibbs sampler (satisfying truncation), if NULL then deter- mine automatically.
burn	burn-in iterations discarded (default as 10).
thin	thinning lag (default as 1).

rtmvt

Value

r tmvn returns a (n*p) matrix (or vector when n=1) containing random numbers which approximately follows truncated multivariate normal distribution.

Examples

```
# Example for full rank with strong dependence
d <- 3
rho <- 0.9
Sigma <- matrix(0, nrow=d, ncol=d)</pre>
Sigma <- rho^abs(row(Sigma) - col(Sigma))</pre>
D1 <- diag(1,d) # Full rank
set.seed(1203)
ans.1 <- rtmvn(n=1000, Mean=1:d, Sigma, D=D1, lower=rep(-1,d), upper=rep(1,d),
int=rep(0,d), burn=50)
apply(ans.1, 2, summary)
# Example for non-full rank
d <- 3
rho <- 0.5
Sigma <- matrix(0, nrow=d, ncol=d)</pre>
Sigma <- rho^abs(row(Sigma) - col(Sigma))</pre>
D2 <- matrix(c(1,1,1,0,1,0,1,0,1),ncol=d)</pre>
qr(D2)$rank # 2
set.seed(1228)
ans.2 <- rtmvn(n=100, Mean=1:d, Sigma, D=D2, lower=rep(-1,d), upper=rep(1,d), burn=10)
apply(ans.2, 2, summary)
```

rtmvt

Random number generation for truncated multivariate Student's t distribution subject to linear inequality constraints

Description

rtmvt simulates truncated multivariate (p-dimensional) Student's t distribution subject to linear inequality constraints. The constraints should be written as a matrix (D) with lower and upper as the lower and upper bounds for those constraints respectively. Note that D can be non-full rank, which generalizes many traditional methods.

Usage

```
rtmvt(n, Mean, Sigma, nu, D, lower, upper, int = NULL, burn = 10, thin = 1)
```

Arguments

n	number of random samples desired (sample size).
Mean	location vector of the multivariate Student's t distribution.
Sigma	positive definite dispersion matrix of the multivariate t distribution.
nu	degrees of freedom for Student-t distribution.
D	matrix or vector of coefficients of linear inequality constraints.
lower	lower bound vector for truncation.
upper	upper bound vector for truncation.
int	initial value vector for Gibbs sampler (satisfying truncation), if NULL then determine automatically.
burn	burn-in iterations discarded (default as 10).
thin	thinning lag (default as 1).

Value

rtmvt returns a (n*p) matrix (or vector when n=1) containing random numbers which follows truncated multivariate Student-t distribution.

Examples

```
# Example for full rank
d <- 3
rho <- 0.5
nu <- 10
Sigma <- matrix(0, nrow=d, ncol=d)
Sigma <- rho^abs(row(Sigma) - col(Sigma))
D1 <- diag(1,d) # Full rank
set.seed(1203)
ans.t <- rtmvt(n=1000, Mean=1:d, Sigma, nu=nu, D=D1, lower=rep(-1,d), upper=rep(1,d),
burn=50, thin=0)
apply(ans.t, 2, summary)
```

rtuvn	Random number generation for truncated univariate normal distribu-
	tion

Description

rtuvn simulates truncated univariate normal distribution within the interval.

unif_acc

Usage

rtuvn(n = 1, mean = 0, sd = 1, lower, upper)

Arguments

n	number of random samples desired (sample size).
mean	mean of the underlying univariate normal distribution.
sd	standard deviation of the underlying univariate normal distribution.
lower	lower bound for truncation.
upper	upper bound for truncation.

Value

rtuvn returns a vector of random number follows truncated univariate normal distribution.

Examples

```
set.seed(1203)
ans <- rtuvn(n=1000, mean=1, sd=2, lower=-2, upper=3)
summary(ans)
# Check if the sample matches with CDF by KS test
ks.test(ans,"ptuvn",1,2,-2,3)</pre>
```

unif_acc

Acceptance rate of uniform rejection sampling

Description

unif_acc calculates the acceptance rate of uniform rejection sampling for the truncation interval (a,b).

Usage

unif_acc(a, b)

Arguments

а	lower bound for truncation.
b	upper bound for truncation.

Examples

set.seed(1203)
unif_acc(1,2)

unif_rej

Description

unif_rej is used for uniform rejection sampling.

Usage

unif_rej(a, b)

Arguments

а	lower bound
b	upper bound

Value

unif_rej returns a list x: sampled value; and acc: total number of draw used.

Examples

set.seed(1)
unif_rej(a=1, b=2)

Index

dtuvn, 2
exp_acc_opt, 3
exp_rej, 3
halfnorm_acc, 4
halfnorm_rej, 4
imp, 5
imp_acc, 6
norm_acc, 6
norm_rej, 7
ptuvn, 7
rtmvn, 8
rtmvt, 9
rtuvn, 10
unif_acc, 11
unif_rej, 12