Package ‘tmod’

March 31, 2023
Type Package

Title Feature Set Enrichment Analysis for Metabolomics and
Transcriptomics

Version 0.50.13
Maintainer January Weiner <january.weiner@gmail.com>

Description Methods and feature set definitions for feature or gene set
enrichment analysis in transcriptional and metabolic profiling data.
Package includes tests for enrichment based on ranked lists of features,
functions for visualisation and multivariate functional analysis. See Zyla et al (2019)
<doi:10.1093/bioinformatics/btz447>.

URL https://tmod.online, https://github.com/january3/tmod/,
https://january3.github.io/tmod/

License GPL (>=2.0)

Depends R (>=2.10)

LazyData false

VignetteBuilder knitr

Imports
beeswarm,tagcloud, XML, methods,plotwidgets,RColorBrewer,gplots,tibble,pheatmap,ggplot2,tidyr,purrr,rlang,tidyselect,

Suggests testthat,knitr,rmarkdown,dplyr,pander,cowplot

RoxygenNote 7.2.0

Encoding UTF-8

NeedsCompilation no

Author January Weiner [aut, cre] (<https://orcid.org/0000-0003-1438-7819>)
Repository CRAN

Date/Publication 2023-03-31 12:50:02 UTC

https://doi.org/10.1093/bioinformatics/btz447
https://tmod.online
https://github.com/january3/tmod/
https://january3.github.io/tmod/
https://orcid.org/0000-0003-1438-7819

2

R topics documented:

R topics documented:

Index

tmod-package e e e e 3
cell_signatures e 3
check_tmod_gs e e 4
EgambiaResults 4
CIZENZENE . . .« . vt o e e e e e e e e e e e e e e e e e e e 5
evidencePlot L. e 6
filterGS e e e 8
getGeNes 9
getModuleMembers L 10
ggEvidencePlot 10
ggPanelplot e 11
hgEnrichmentPlot 13
makeTmodFromDataFrame 14
makeTmodGS e e 16
modCorPlot e 17
mOodCOTS e e e e e e e e e e e 18
MOdGIOUPS o o o e e e e e e e 19
modjaccard 20
modmetabo L e e e 20
modOverlaps e 21
peaplot. . . .o e e e e 22
pvalEffectPlot 23
ShOoWGENe e e e e e 25
simplePie 26
tmod-data e e e e 27
tmod2DataFrame e e 28
tmod2tmodGS L e 28
tmodAUC e e e e 29
tmodDecideTests e 30
tmodImportMSigDB 32
tmodLEA e 33
tmodLEASummary e 33
tmodLimmaDecideTests 34
tmodLimmaTest e e e 35
tmodLimmaTopTable 37
tmodPal e e 38
tmodPanelPlot e e e 38
tmodPCA e e e 41
tmodSummary e 43
tmodTagcloud 44
tmodULtest e e e e e e e e e e e e e 46
tmod_1dS L e e 49
UPSEL . . o o o e e 50
VACCINALION o i e e e e e e e e e e e e 52

tmod-package 3

tmod-package Transcriptional Module Analysis

Description

Transcriptional Module Analysis

Details

The primary role of this package is to provide published module assignments between genes and
transcriptional modules, as well as tools to analyse and visualize the modules.

See Also

tmodHGtest, tmodUtest

cell_signatures Cell type signatures

Description

Cell type signatures

Format

An object of class tmodGS

Details

* CellMarker: Zhang X, Lan Y, Xu J, Quan F, Zhao E, Deng C, Luo T, Xu L, Liao G, Yan M, Ping
Y. CellMarker: a manually curated resource of cell markers in human and mouse. Nucleic acids
research. 2019 Jan 8;47(D1):D721-8.

* CIBERSORT: Newman AM, Liu CL, Green MR, Gentles AJ, Feng W, Xu Y, Hoang CD, Diehn M,
Alizadeh AA. Robust enumeration of cell subsets from tissue expression profiles. Nature methods.
2015 May;12(5):453-7.

* PanglaoDB: Franzén O, Gan LM, Bjorkegren JL. PanglaoDB: a web server for exploration of
mouse and human single-cell RNA sequencing data. Database. 2019 Jan 1;2019.

Source

CIBERSORT, CellMarkers, PanglaoDB

Examples

to use cell signatures, type

data(cell_signatures)

data(vaccination)

gl <- vaccination$GeneName[order(vaccination$qval.F.D1) 1]
tmodCERNOtest(gl, mset=cell_signatures)

EgambiaResults

check_tmod_gs Check an object of class tmodGS

Description

Check an object of class tmodGS

Usage

check_tmod_gs(object)

Arguments
object an object of class tmodGS
EgambiaResults Gene expression in TB patients and Healthy controls
Description

Gene expression in TB patients and Healthy controls

Details

This data set has been constructed from the gene expression data set accessible in the Gene Expres-
sion Omnibus (GEO) at the accession number GSE28623. Ten healthy donors (NID, non-infected
donors) and 10 tubercolosis patients (TB) have been randomly selected from the full data set, and
top 25 genes with the highest IQR have been selected for further analysis. Genes without an Entrez

gene (EG) identifier have likewise been omitted.

The Egambia object is a data frame. The first three columns are the gene symbol, gene name and
Entrez gene (EG) identifier. The remaining columns correspond to the gene expression data.

eigengene 5

Examples

Not run:

The data set has been generated as follows:
get the data set from GEO
library(GEOquery)

gambia <- getGEO(”GSE28623")[[11]]

Convert to limma and normalize
library(limma)

e <- new("EListRaw"”, list(E= exprs(gambia), genes=fData(gambia), targets= pData(gambia)))
e.bg <- backgroundCorrect(e, method= "normexp")

en <- normalizeBetweenArrays(e.bg, method= "q")

en <- avereps(en, ID=en$genes$NAME)

en <- en[en$genes$CONTROL_TYPE == "FALSE", 1]
en$targets$group <- factor(gsub(” whole blood RNA *",

nn

, en$targets$description))

Fill in Entrez Gene IDs

library(org.Hs.eg.db)

en$genes$EG <- ""

sel <- en$genes$REFSEQ %in% ls(org.Hs.egREFSEQ2EG)

en$genes$EG[sel] <- mget(as.character(en$genes$REFSEQ[sel]), org.Hs.egREFSEQ2EG)

Filter by IQR and missing EG's
igrs <- apply(en$E, 1, IQR)
en2 <- en[igrs > quantile(igrs, 0.75) & en$genes$EG != ""]

Select 10 random samples from NID and TB groups

en2 <- en2[, c(sample(which(en2$targets$group == "NID"), 10),
sample(which(en2$targets$group == "TB"), 10)) 1]

colnames(en2$E) <- en2$targets$group

Egambia <- cbind(en2$genes[, c("GENE_SYMBOL", "GENE_NAME", "EG") 1, en2$E)

End(Not run)

eigengene Calculate the eigengene of a module from a data set

Description

Calculate the eigengene of a module from a data set

Usage
eigengene(x, g, mset = NULL, k = 1)

Arguments

X data; genes in rows, samples in columns

g genes — a vector gene IDs corresponding to annotation in modules

6 evidencePlot

mset —a module set; eigengenes will be calculated for each module in the set
k which component defines the eigengene (default: 1)
Details

The eigengene of a module is here defined as the first principal component of a PCA on the gene
expression of all genes from a module.

Value

A numeric matrix with rows corresponding to modules. If there was not a sufficient number of
genes in a module corresponding to the data set, the row will contain only NA’s.

Examples

data(Egambia)

data(tmod)

x <- Egambial , -c(1:3)]

ifns <- tmod[grep(”"[Iilnterferon”, tmodgsTitle)]
eigv <- eigengene(x, Egambia$GENE_SYMBOL, ifns)
plot(eigv["LI.M127", 1, eigv["DC.M1.2",1)

which interferon modules are correlated
cor(eigv)

evidencePlot Create an evidence plot for a module

Description

Create an evidence plot for a module

Usage
evidencePlot(
1,
m)
mset = "all”,
rug = TRUE,
roc = TRUE,

filter = FALSE,
unique = TRUE,

add = FALSE,
col = "black”,
col.rug = "#eeeeee",

gene.labels = NULL,
gene.colors = NULL,
gene.lines = 1,

evidencePlot

gl.cex =
style
lwd =
1ty =
rug.size =

T,
1’

1,
roc

n

’

0.2,

legend = NULL,

Arguments

1

m

mset
rug

roc
filter
unique
add

col
col.rug

gene. labels

gene.colors

gene.lines

gl.cex

style

Iwd
1ty

rug.size

legend

Details

sorted list of HGNC gene identifiers

character vector of modules for which the plot should be created
Which module set to use (see tmodUtest for details)

if TRUE, draw a rug-plot beneath the ROC curve

if TRUE, draw a ROC curve above the rug-plot

if TRUE, genes not defined in the module set will be removed

if TRUE, duplicates will be removed

if TRUE, the plot will be added to the existing plot

a character vector color to be used

a character value specifying the color of the rug

if TRUE, gene names are shown; alternatively, a named character vector with
gene labels to be shown, or NULL (default) for no labels (option evaluated only
if rug is plotted)

NULL (default) or a character vectors indicating the color for each gene. Either
a named vector or a vector with the same order of genes as ‘I°.

a number or a vector of numbers; line width for marking the genes on the rug
(default=1). If the vector is named, the names should be gene ids.

Text cex (magnification) for gene labels

"roc" for receiver-operator characteristic curve (default), and "gsea" for GSEA-
style (Kaplan-Meier like plot)

line width (see par())
line type (see par())

fraction of the plot that should show the rug. If rug.size is 0, rug is not drawn. If
rug.size is 1, ROC curve is not drawn.

position of the legend. If NULL, no legend will be drawn

Further parameters passed to the plotting function

This function creates an evidence plot for a module, based on an ordered list of genes. By default,
the plot shows the receiving operator characteristic (ROC) curve and a rug below, which indicates
the distribution of the module genes in the sorted list.

8 filterGS

Several styles of the evidence plot are possible: * roc (default): a receiver-operator characteristic
like curve; the area under the curve corresponds to the effect size (AUC) * roc_absolute: same as
above, but the values are not scaled by the total number of genes in a module * gsea * enrichment:
the curve shows relative enrichment at the given position

See Also

[tmod-package()], [hgEnrichmentPlot()]

Examples

artificially enriched list of genes
set.seed(123)

data(tmod)

bg <- sample(tmod$gv)

fg <- getGenes("LI.M127", as.list=TRUE)[[1]1]
fg <- sample(c(fg, bg[1:10001))

1 <- unique(c(fg, bg))

evidencePlot(l, "LI.M127")

evidencePlot(l, filter=TRUE, "LI.M127")

filterGS Filter by genes belonging to a gene set from a data frame

Description

Filter a data frame or vector by genes belonging to a gene set

Usage

filterGS(genes, gs, mset = "all")

showModule(x, genes, gs, mset = "all”, extra = NULL)

Arguments
genes a character vector with gene IDs
gs a character vector corresponding to the IDs of the gene sets to be shown
mset Module set to use; see "tmodUtest" for details
X a data frame or a vector
extra no longer used.
Details

filterGS filters a vector of gene IDs based on whether the IDs belong to a given set of gene sets,
returning a logical vector.

The showModule function is deprecated and will be removed in future.

getGenes 9

Value

filterGS returns a logical vector of length equal to genes, with TRUE indicating that the given gene
is a member of the gene sets in ‘gs*.

Examples

data(Egambia)

LI.M127 type I interferon response

sel <- filterGS("LI.M127", Egambia$GENE_SYMBOL)
head(Egambia[sel, 1)

getGenes Get genes belonging to a gene set

Description

Get genes belonging to a gene set

Usage

getGenes(gs = NULL, genes = NULL, fg = NULL, mset = "all”, as.list = FALSE)

Arguments
gs gene set IDs; if NULL, returns all genes from all gene sets
genes character vector with gene IDs. If not NULL, only genes from this parameter
will be considered.
fg genes which are in the foreground set
mset gene set to use (default: all tmod gene sets)
as.list should a list of genes rather than a data frame be returned
Details

Create a data frame mapping each module to a comma separated list of genes. If genelist is provided,
then only genes in that list will be shown. An optional column, "fg" informs which genes are in the
"foreground" data set.

Value

data frame containing module to gene mapping, or a list (if as.list == TRUE

10 ggEvidencePlot

getModuleMembers Return the contents of a gene set

Description

Return the contents of a gene set

Usage

getModuleMembers(x, mset = "all")

Arguments
X a character vector of gene set names
mset optional, a gene set collection
Details

This function returns the selected gene sets from a collection.

Value

A list of gene sets

Examples

show the interferon related modules
getModuleMembers(c(”LI.M127", "LI.M158.0", "LI.M158.0"))
getModuleMembers("LI.M127")

ggEvidencePlot Create an evidence plot for a module (ggplot2 version)

Description

Create an evidence plot for a module (ggplot2 version)

Usage
ggEvidencePlot(
1,
m7
mset = NULL,

filter = FALSE,
unique = TRUE,
gene.labels = NULL,
gene.colors = NULL

ggPanelplot 11

Arguments
1 sorted list of HGNC gene identifiers
m character vector of modules for which the plot should be created
mset Which module set to use (see tmodUtest for details)
filter if TRUE, genes not defined in the module set will be removed
unique if TRUE, duplicates will be removed
gene.labels if TRUE, gene names are shown; alternatively, a named character vector with
gene labels to be shown, or NULL (default) for no labels (option evaluated only
if rug is plotted)
gene.colors NULL (default) or a character vectors indicating the color for each gene. Either
a named vector or a vector with the same order of genes as ‘I°.
ggPanelplot Create a tmod panel plot using ggplot
Description

Create a tmod panel plot using ggplot

Usage

ggPanelplot(
res,
sgenes = NULL,
auc_thr = 0.5,
q_thr = 9.05,
filter_row_q = 0.01,
filter_row_auc = 0.65,
g_cutoff = 1e-12,
cluster = TRUE,
id_order = NULL,
effect_size = "auto",
colors = c("red”, "grey”, "blue"),
label_angle = 45,
add_ids = TRUE,

mset = NULL
)
Arguments
res a list with tmod results (each element of the list is a data frame returned by a
tmod test function)
sgenes a list with summaries of significantly DE genes by gene set. Each a element of

the list is a matrix returned by tmodDecideTests. If NULL, the bars on the plot
will be monochromatic.

12 ggPanelplot

auc_thr gene sets enrichments with AUC (or other effect size) below ‘auc_thr* will not
be shown
g_thr gene sets enrichments with q (adjusted P value) above ‘q_thr‘ will not be shown

filter_row_q Gene sets will only be shown if at least in one contrast q is smaller than ‘fil-
ter_row_q°

filter_row_auc Gene sets will only be shown if at least in one contrast AUC (or other effect size
if specified) is larger than ‘filter_row_auc*

g_cutoff Any q value below ‘q_cutoff* will be considered equal to ‘q_cutoff*
cluster whether to cluster the IDs by similarity
id_order character vector specifying the order of IDs to be shown. This needs not to

contain all IDs shown, but whatever IDs are in this vector, they will be shown
on top in the given order.

effect_size name of the column which contains the effect sizes; by default, the name of this
column is taken from the "effect_size" attribute of the first result table.

colors character vector with at least 1 (when sgenes is NULL) or 3 (when sgenes is not
NULL) elements

label_angle The angle at which column labels are shown

add_ids add IDs of gene sets to their titles on the plot

mset an object of the type ’tmodGS’. If the option ‘cluster* is TRUE, the mset object

is used to cluster the gene sets. By default, the built-in transcription modules are
used. See details.

Details

Panel plot is a kind of a heatmap. This is the most compact way of representing the results of
several gene set enrichment analyses. Each row of a panel plot shows the result for one gene set,
and each column shows corresponds to one analysis. For example, if one tests gene set enrichment
for a number of different contrasts, then each contrast will be represented in a separate column.

Each cell of a panel plot shows both the effect size and the p-value. The p-value is encoded as trans-
parency: the enrichments with a lower p-value have stronger colors. The size of the bar corresponds
to the effect size, however it is defined. For example, in case of the tmodCERNOtest, tmodZtest or
tmodUtest it is the area under curve, AUC.

In addition, the bars may also encode information about the number of up- or down-regulated genes.
For this, an object must be created using the function tmodDecideTests. This object provides infor-
mation about which genes in a particular gene set are regulated in which direction.

The order of the gene sets displayed is, by default, determined by clustering the gene sets based on
their overlaps. For this to work, ggPanelplot must know about what genes are contained in which
gene sets. This is provided by the parameter ‘mset‘. By default (when mset is NULL) this is the
built-in list of gene sets. If, however, the results of gene set enrichment come from a different set of
gene sets, you need to specify it with the mset parameter. See Examples.

Value

The object returned is a ggplot2 object which can be further modified the usual way.

hgEnrichmentPlot

See Also
[tmodDecideTests()], [tmodPanelPlot()]

Examples

prepare a set of results

data(Egambia)

genes <- Egambia$GENE_SYMBOL

exprs <- Egambial , -1:-4]

group <- gsub("\\..x" "" colnames(exprs))

test differential expression using limma

design <- cbind(Intercept=rep(1, 30), TB=rep(c(@,1), each= 15))

Not run:

library(limma)

fit <- eBayes(1mFit(Egambial,-c(1:3)]1, design))

tt <- topTable(fit, coef=2, number=Inf, genelist=Egambial,1:3])

res <- tmodCERNOtest (tt$GENE_SYMBOL)

show the results using a panel plot

ggPanelplot(list(limma=res))

add information about the significant genes

sgenes <- tmodDecideTests(tt$GENE_SYMBOL, 1lfc=tt$logFC, pval=tt$adj.P.Val)
names(sgenes) <- "limma”

ggPanelplot(list(limma=res), sgenes=sgenes)

we will now compare the results of enrichments for different types of
differential expression tests on the data

res_utest <- apply(exprs, 1, function(x) wilcox.test(x ~ group)$p.value)
res_ttest <- apply(exprs, 1, function(x) t.test(x ~ group)$p.value)

Calculate the gene set enrichment analysis results for each of the
different types of tests

res_tmod <- list()

res_tmod$limma <- res

res_tmod$utest <- tmodCERNOtest(genes[order(res_utest)])
res_tmod$ttest <- tmodCERNOtest(genes[order(res_ttest)])
ggPanelplot(res_tmod)

Using the ‘mset‘ parameter

First, we generate results using a different set of gene sets
data(cell_signatures)

res_cs <- tmodCERNOtest(tt$GENE_SYMBOL, mset=cell_signatures)

the following will triger a warning that no clustering is possible
because ggPanelplot doesn't have the information about the gene set
contents

ggPanelplot(list(res=res_cs))

if we use the mset parameter, clustering is available
ggPanelplot(list(res=res_cs), mset=cell_signatures)

End(Not run)

hgEnrichmentPlot Create a visualisation of enrichment

14 makeTmodFromDataFrame

Description

Create a visualisation of enrichment

Usage

hgEnrichmentPlot(fg, bg, m, mset = "all"”, ...)
Arguments

fg the foreground set of genes

bg the background set of genes (gene universe)

m gene set for which the plot should be created

mset Which module set to use (see tmodUtest for details)

additional parameters to be passed to the plotting function

Details

This functions creates a barplot visualizing the enrichment of a module in the foreground (fg) set as
compared to the background (bg) set. It is the counterpart

See Also

tmod-package, [evidencePlot()]

Examples

set.seed(123)

data(tmod)

bg <- tmod$gv

fg <- getGenes("LI.M127", as.list=TRUE)[[11]1]
fg <- sample(c(fg, bg[1:100]))
hgEnrichmentPlot(fg, bg, "LI.M127")

makeTmodFromDataFrame Convert a data frame to a tmod object

Description

Convert a data frame to a tmod object

makeTmodFromDataFrame 15

Usage

makeTmodFromDataF rame(
df,
feature_col = 1,
module_col = 2,
title_col = NULL,
extra_module_cols = NULL,
extra_gene_cols = NULL

)
Arguments
df A data frame
feature_col Which column contains the feature (gene) IDs
module_col Which column contains the module (gene set) IDs
title_col Description of the modules (if NULL, the description will be taken from the

module_col)
extra_module_cols

Additional columns to include in the module data frame
extra_gene_cols

Additional gene columns to include in the genes data frame

Details

‘makeTmodFromFeatureDataFrame* converts mapping information from features (genes) to mod-
ules (gene sets). The data frame has a row for each feature-module pair.

‘makeTmodFromModuleDataFrame‘ converts mapping information from features (genes) to mod-
ules (gene sets). The data frame has a row for each module, and all gene IDs corresponding to a
module are stored as a comma separated string, e.g.

Vice versa, ‘tmod2DataFrame* converts a tmod object to a data frame.

Value

A tmod object

See Also
makeTmodGS, makeTmodGS

Examples

df <- data.frame(
gene_id=LETTERS[1:10],
geneset_id=rep(letters[1:2], each=5),
geneset_description=rep(paste@("Gene set ", letters[1:2]), each=5))
res <- makeTmodFromDataFrame(df,

feature_col="gene_id",

module_col="geneset_id",

title_col="geneset_description”)

16

makeTmodGS

makeTmodGS

S3 class for tmod gene set collections

Description

S3 class for tmod gene set collections

Usage

makeTmodGS (gs2gene, gs

= NULL, weights = NULL, info = NULL)

makeTmod(modules, modules2genes, genes2modules = NULL, genes = NULL)

as_tmodGS(x, check_sanity = FALSE)

S3 method for
print(x, ...)

S3 method for
length(x)

S3 method for
x[i]

S3 method for
x[i]

Arguments

class

class

class

class

gs2gene, modules2genes

A list with module IDs as names. Each member of the list is a character vector
with IDs of genes contained in that module

'tmodGS'

'tmodGS'

'tmodGS'

"tmod'

gs, modules [Optional] A data frame with at least columns ID and Title
weights [Optional] a named numeric vector of weights for each gene set
info [Optional] a list containing meta-information about the gene set collection
genes2modules, genes
Ignored
X a tmodGS or tmod object

check_sanity whether the tmodGS object should be tested for correctness

further arguments passed to ‘print()*

i indices specifying elements to extract or replace

modCorPlot 17

Details

An object of class tmod contains the gene set annotations (‘tmod$gs‘), a character vector of gene
identifiers (‘tmod$gv‘) and a mapping between gene sets and gene identifiers (‘tmod$gs2gv‘). Op-
tionally, a vector of numeric weights of the same length as ‘gs2gv‘ may be provided (‘tmod$weights®).

Furthermore, it may contain additional information about the gene set (‘tmodS$info®).

‘tmod$gs‘ is a data frame which must contain the column "ID". Additional optional columns ‘Title*
and ‘Description‘ are recognized by some functions. Any further columns may contain additional
information on the gene sets. The number of rows of that data frame is equal to the number of gene
sets in a gene set collection.

Each element of the tmod$g2m list corresponds to the respective row of the ‘tmod$gs‘ data frame.
Each element is an integer vector containing the positions of the gene identifiers in the ‘tmod$gv*
character vector.

Objects of class tmodGS should be constructed by calling the function makeTmodGS(). This func-
tion check the validity and consistency of the provided objects.

The makeTmod function remains for compatibility with previous versions of the package. It pro-
duces the objects of the new class tmodGS, however.

See the package vignette for more on constructing custom module sets.

See Also

tmod-data

Examples

A minimal example

gs <- data.frame(ID=letters[1:3], Title=LETTERS[1:31])

gszgv <_ 1iSt(a=C("g1 II’ Ilgzll), b:c(”g3”’ Ilg4ll)’ C=C("g1 IIy Ilgzll’ Ilg4ll))
mymset <- makeTmodGS(gs2gene=gs2gv, gs=gs)

str(mymset)

modCorPlot Plot a correlation heatmap for modules

Description

Plot a correlation heatmap for modules

Usage

modCorPlot(
modules,
mset = NULL,
heatmap_func = pheatmap,
labels = NULL,
stat = "jaccard”,

18 modcors

upper.cutoff = NULL,

)
Arguments
modules either a character vector with module IDs from mset, or a list which contains the
module members
mset Which module set to use. Either a character vector ("LI", "DC" or "all", default:

all) or an object of class tmod (see "Custom module definitions" below)
heatmap_func function drawing the heatmap
labels Labels for the modules (if NULL, labels will be retrieved from ‘mset*)

stat Type of statistics to return. "jaccard": Jaccard index (default); "number": num-
ber of common genes; "soerensen": Soerensen-Dice coefficient; "overlap": Szymkiewicz-
Simpson coefficient.

upper.cutoff Specify upper cutoff for the color palette
Any further parameters are passed to the heatmap function (by default, [pheatmap()].

Value

Returns the return value of heatmap_func (by default, a pheatmap object).

modcors Module correlation

Description

Calculate the correlation between modules

Usage
modcors(x, g, mset = NULL, ...)
Arguments
X a data set, with variables (e.g. genes) in rows and samples in columns
g a vector of variable idenitifiers which correspond to the definition of modules
mset a module set
any further parameters will be passed to the cor() function
Details

The correlation between modules are defined as correlation coefficient between the modules eigen-
genes. These are based on a particular gene expression data set.

This function is a simple wrapper combining eigengene() and cor().

modGroups 19

Value

a matrix of module correlation coefficients

modGroups Find group of modules

Description

Find group of modules based on shared genes

Usage
modGroups (modules, mset = NULL, min.overlap = 2, stat = "number”)
Arguments
modules Either a list of modules or character vector.
mset ‘Which module set to use. Either a character vector ("LI", "DC" or "all", default:
all) or an object of class tmod (see "Custom module definitions" below)
min.overlap Minimum number of overlapping items if stat == number, minimum jaccard
index if stat == jaccard etc.
stat Type of statistics to return. "jaccard": Jaccard index (default); "number": num-
ber of common genes; "soerensen": Soerensen-Dice coefficient; "overlap": Szymkiewicz-
Simpson coefficient.
Details

Split the modules into groups based on the overlapping items.

The first argument, modules, is either a character vector of module identifiers from ‘mset‘ (NULL
mset indicates the default mset of tmod) or a list. If it is a list, then each element is assumed to be a
character vector with module IDs.

Examples

mymods <- list(A=c(1, 2, 3), B=c(2, 3, 4, 5), C=c(5, 6, 7))
modGroups (mymods)

20 modmetabo

modjaccard Jaccard index for modules

Description

Jaccard index for modules

Usage

modjaccard(mset = NULL, g = NULL)

Arguments
mset set of modules for which to calculate the Jaccard index. If NULL, the default
tmod module set will be used.
g a list of genes. If NULL, the list of genes from the mset will be used.
Details

For each pair of modules in mset, calculate the Jacard index between these modules.

Value

matrix with Jaccard index for each pair of modules in mset

modmetabo Modules for metabolic profiling

Description

Feature and data sets for metabolic profiling

Details

The module set "modmetabo" can be used with tmod to analyse metabolic profiling data. The
clusters defined in this set are based on hierarchical clustering of metabolic compounds from human
serum and have been published in a paper on metabolic profiling in tuberculosis by Weiner et al.
(2012).

For an example analysis, "tbmprof" is a data set containing metabolic profiles of serum isolated
from tuberculosis (TB) patients and healthy individuals. The tbmprof is a data frame containing
observations in rows and metabolite id’s (corresponding to the id’s in the modmetabo object). See
examples below.

modOverlaps 21

References

Weiner 3rd J, Parida SK, Maertzdorf J, Black GF, Repsilber D, Telaar A, Mohney RP, Arndt-
Sullivan C, Ganoza CA, Fae KC, Walzl G. Biomarkers of inflammation, immunosuppression and
stress are revealed by metabolomic profiling of tuberculosis patients. PloS one. 2012 Jul 23;7(7):e40221.

See Also

tmod-data

Examples

data(modmetabo) # module definitions
data(tbmprof) # example data set
ids <- rownames(tbmprof)

tb <- factor(gsub("\\..x" 6 "" ids))

use Wilcoxon test to calculate significant differences

wex <- apply(tbmprof, 2, function(x) wilcox.test(x ~ tb)$p.value)
wcx <- sort(wcx)

tmodCERNOtest (names(wcx), mset=modmetabo)

modOverlaps Calculate overlaps of the modules

Description

Calculate overlaps of the modules

Usage

modOverlaps(modules = NULL, mset = NULL, stat = "jaccard")

Arguments
modules either a character vector with module IDs from mset, or a list which contains the
module members
mset Which module set to use. Either a character vector ("LI", "DC" or "all", default:
all) or an object of class tmod (see "Custom module definitions" below)
stat Type of statistics to return. "jaccard": Jaccard index (default); "number": num-

ber of common genes; "soerensen": Soerensen-Dice coefficient; "overlap": Szymkiewicz-

Simpson coefficient.

22 pcaplot

Details

For a set of modules (aka gene sets) determine the similarity between these. You can run modOver-
laps either on a character vector of module IDs or on a list. In the first case, the module elements
are taken from ‘mset‘, and if that is NULL, from the default tmod module set.

Alternatively, you can provide a list in which each element is a character vector. In this case, the
names of the list are the module IDs, and the character vectors contain the associated elements.

The different statistics available are: * "number": total number of common genes (size of the over-
lap) * "jaccard": Jaccard index, i.e. % (number of common elements divided by the total num-

. . . 2.|ANB
ber of unique elements); * "soerensen": Soerensen-Dice coefficient, defined as | A‘I i B“ — number

of common genes in relation to the total number of elements (divided by two, such that the maxi-
mum is 1) (number of common elements divided by the average size of both gene sets) * "overlap":
Szymkiewicz-Simpson coefficient, defined as % — this is the number of common genes
scaled by the size of the smaller of the two gene sets (number of common elements divided by the

size of the smaller gene set)

pcaplot Plot a PCA object returned by prcomp

Description

Plot a PCA object returned by prcomp

Usage
pcaplot(
pca,
components = 1:2,
group = NULL,
col = NULL,
pch = 19,
cex = 2,

legend = NULL,

Arguments
pca PCA object returned by prcomp
components a vector of length two indicating the components to plot
group a factor determining shapes of the points to show (unless overriden by pch=...)
col Color for plotting (default: internal palette)
pch Type of character to plot (default: 19)
cex size of the symbols used for plotting
legend draw a legend? If legend is a position (eg. "topright"), then a legend is drawn.

If NULL or if the group parameter is NULL, then not.
any further parameters will be passed to the plot() function (e.g. col, cex, ...)

pvalEffectPlot

Details

23

This is a simplistic function. A much better way is to use the pca2d function from the pca3d

package.

Value

If group is NULL, then NULL; else a data frame containing colors and shapes matching each group

pvalEffectPlot

Create an effect size / p-value plot

Description

Create a heatmap-like plot showing information about both effect size and p-values.

Usage

pvalEffectPlot(

e,
P,

pval.thr = 90.01,

pval.cutoff = 1e-06,
row.labels = NULL,
col.labels = NULL,

plot.func = NULL,

grid = "at",

grid.color = "#33333333",

plot.cex =1,
text.cex = 1,

col.labels.style = "top",
symmetrical = FALSE,
legend.style = "auto",

min.e = NULL,
max.e = NULL
)
Arguments
e
p
pval.thr

pval.cutoff

row.labels

col.labels

matrix with effect sizes

matrix with probabilities

The p-value must be this or lower in order for a test result to be visualized
On visual scale, all p-values below pval.cutoff will be replaced by pval.cutoff

Labels for the modules. This must be a named vector, with module IDs as vector
names. If NULL, module titles from the analyses results will be used.

Labels for the columns. If NULL, names of the elements of the list x will be
used.

24

pvalEffectPlot

plot.func Optionally, a function to be used to draw the dots. See "Details"

grid Style of a light-grey grid to be plotted; can be "none", "at" and "between"

grid.color Color of the grid to be plotted (default: light grey)

plot.cex a numerical value giving the amount by which the plot symbols will be magin-
fied

text.cex a numerical value giving the amount by which the plot text will be magnified,
or a vector containing three cex values for row labels, column labels and legend,
respectively

col.labels.style
Style of column names: "top" (default), "bottom", "both", "none"

symmetrical effect sizes are distributed symmetrically around O (default: FALSE)

legend.style Style of the legend: "auto" — automatic; "broad": pval legend side by side with
effect size legend; "tall": effect size legend above pval legend; "none" — no
legend.

min.e, max.e scale limits for the effect size

Details

pvalEffectPlot shows a heatmap-like plot. Each row corresponds to one series of tests (e.g. one
module), and each column corresponds to the time points or conditions for which a given analysis
was run. Each significant result is shown as a red dot. Size of the dot corresponds to the effect size
(or any arbitrary value), and intensity of the color corresponds to the log10 of p-value.

Just like a heatmap corresponds to a single numeric matrix, the pvalue / effect plot corresponds to
two matrices: one with the effect size, and another one with the p-values. Each cell in the matrix
corresponds to the results of a single statistical test.

For example, a number of genes or transcriptional modules might be tested for differential expres-
sion or enrichment, respectively, in several conditions.

By default, each test outcome is represented by a dot of varying size and color. Alternatively, a
function may be specified with the parameter *plot.func’. It will be called for each test result to be
drawn. The plot.func function must take the following arguments:

* row, coleither row / column number or the id of the row / column to plot; NULL if drawing
legend

* X, yuser coordinates of the result to visualize

* w, hwidth and height of the item to plot

¢ eEnrichment — a relative value between 0 and 1, where 0 is the minimum and 1 is the maximum
enrichment found

* pP-value — an absolute value between 0 and 1

For the purposes of drawing a legend, the function must accept NULL p-value or a NULL enrich-
ment parameter.

Value

Invisibly returns a NULL value.

showGene

25

showGene A combined beeswarm / boxplot

Description

A combined beeswarm / boxplot

Usage
showGene (
data,
group,
main = "",
pch = 19,
xlab = "",
ylab = "log2 expression”,
las = 2,
pwcol = NULL,
)
Arguments
data a vector of numeric values to be plotted
group factor describing the groups
main title of the plot
pch character to plot the points
xlab, ylab x and y axis labels
las see par()
pwcol colors of the points (see beeswarm)
any additional parameters to be passed to the beeswarm command
Details

This is just a simple wrapper around the beeswarm() and boxplot() commands.

Examples

data(Egambia)
E <- as.matrix(Egambial,-c(1:3)1])
showGene (E["20799",], rep(c("CTRL", "TB"), each=15))

26 simplePie

simplePie Simple Pie Chart

Description

The simplePie function draws a simple pie chart at specified coordinates with specified width, height
and color. The simpleRug function draws a corresponding rug plot, while simpleBoxpie creates a
"rectangular pie chart" that is considered to be better legible than the regular pie.

Usage
simplePie(x, y, w, h, v, col, res = 100, border = NA)

simpleRug(x, y, w, h, v, col, border = NULL)

simpleBoxpie(x, y, w, h, v, col, border = NA, grid = 3)

Arguments
X,y coordinates at which to draw the plot
w, h width and height of the plot
v sizes of the slices
col colors of the slices
res resolution (number of polygon edges in a full circle)
border color of the border. Use NA (default) or NULL for no border
grid boxpie only: the grid over which the areas are distributed. Should be roughly
equal to the number of areas shown.
Details

simplePie() draws a pie chart with width w and height h at coordinates (x,y). The size of the slices
is taken from the numeric vector v, and their color from the character vector col.

Examples

demonstration of the three widgets
plot.new()

par(usr=c(9,3,90,3))

x <= ¢c(7, 5, 11)

col <- tmodPal()

b <- "black”

simpleRug(@.5, 1.5, 0.8, 0.8, v=x, col=col, border=b)
simplePie(1.5, 1.5, 0.8, 0.8, v=x, col=col, border=b)
simpleBoxpie(2.5, 1.5, 0.8, 0.8, v=x, col=col, border=b)

using pie as plotting symbol

tmod-data 27

plot(NULL, xlim=1:2, ylim=1:2, xlab="", ylab="")
col <- c("#cc000099", "#0000cc99")
for(i in 1:125) {
X <= runif(1) + 1
y <= runif(1) + 1
simplePie(x, y, 0.05, 0.05, c(x,y), col)
}

square filled with box pies

n<-10

w <- h <= 1/(n+1)

plot.new()

for(i in 1:n) for(j in 1:n)
simpleBoxpie(1/nx(i-1/2), 1/nx(j-1/2), w, h,
v=runif(3), col=tmodPal())

tmod-data Default gene expression module data

Description

Gene expression module data from Chaussabel et al. (2008) and Li et al. (2014)

Details

The tmod package includes one data set of class tmod which can be loaded with data(tmod). This
data set is derived from two studies (see package vignette for details). By default, enrichment
analysis with tmod uses this data set; however, it is not loaded into user workspace by default.

References

Chaussabel, Damien, Charles Quinn, Jing Shen, Pinakeen Patel, Casey Glaser, Nicole Baldwin,
Dorothee Stichweh, et al. 2008. "A Modular Analysis Framework for Blood Genomics Studies:
Application to Systemic Lupus Erythematosus." Immunity 29(1):150-64.

Li, Shuzhao, Nadine Rouphael, Sai Duraisingham, Sandra Romero-Steiner, Scott Presnell, Carl
Davis, Daniel S Schmidt, et al. 2014. "Molecular Signatures of Antibody Responses Derived from
a Systems Biology Study of Five Human Vaccines." Nature Immunology 15(2):195-204.

See Also

tmod-class, modmetabo

Examples

list of first 10 modules
data(tmod)

tmod

tmod$MODULES[1:10,]
tmod[1:10]

28 tmod2tmodGS

tmod2DataFrame Convert a tmod module set into a data frame

Description

Convert a tmod module set into a data frame

Usage
tmod2DataFrame(
mset,
rows = "modules”,
module_col = "module_id",
feature_col = "feature_id",
sep = n , n
)
Arguments
mset a tmod object (e.g. generated by makeTmod)
rows if "modules", then there will be a row corresponding to each module (gene set);
if "features”, then there will be a row corresponding to each gene.
module_col Name of the column with module (gene set) IDs
feature_col Name of the column with feature (gene) IDs
sep separator used to collate module IDs (if rows=="features") or feature IDs (if
rows=="modules")
See Also

makeTmodGS, makeTmod

tmod2tmodGS Convert the old tmod objects to the tmodGS objects

Description

Convert the old tmod objects to the tmodGS objects

Usage
tmod2tmodGS (x)

Arguments

X an object of class tmod

tmodAUC 29

Details
The old tmod representation was very inefficient. This function converts the objects to a new repre-
sentation which is both allowing faster computations and more memory efficient.

Value

Returns an object of class tmodGS.

tmodAUC Calculate AUC

Description

Calculate AUC

Usage

tmodAUC (
1:
ranks,
modules = NULL,
stat = "AUC",
recalculate.ranks = TRUE,
filter = FALSE,

mset = "all”
)
Arguments
1 List of gene names corresponding to rows from the ranks matrix
ranks a matrix with ranks, where columns correspond to samples and rows to genes
from the 1 list
modules optional list of modules for which to make the test
stat Which statistics to generate. Default: AUC

recalculate.ranks

Filtering and removing duplicates will also remove ranks, so that they should be
recalculated. Use FALSE if you don’t want this behavior. If unsure, stay with
TRUE

filter Remove gene names which have no module assignments

mset Which module set to use. "LI", "DC" or "all" (default: "all")

tmodDecideTests

Details

tmodAUC calculates the AUC and U statistics. The main purpose of this function is the use in
randomization tests. While tmodCERNOtest and tmodUtest both calculate, for each module, the
enrichment in a single sorted list of genes, tmodAUC takes any number of such sorted lists. Or,
actually, sortings — vectors with ranks of the genes in each replicate.

Note that the input for this function is different from tmodUtest and related functions: the ordering
of I and the matrix ranks does not matter, as long as the matrix ranks contains the actual rankings.
Each column in the ranks matrix is treated as a separate sample.

Also, the ‘nodups‘ parameter which is available (and TRUE by default) for other tests cannot be
used here. This means that the AUCs calculated here might be slightly different from the AUCs
calculated with default parameters in tests such as the [tmodCERNOtest()]. Use ‘nodups=FALSE*
with [tmodCERNOtest()] to obtain identical results as with ‘tmodAUC".

Value

A matrix with the same number of columns as "ranks" and as many rows as there were modules to
be tested.

See Also

tmod-package

Examples

data(tmod)

1 <- tmod_ids(tmod)
ranks <- 1:length(l)

res <- tmodAUC(l, ranks)
head(res)

tmodDecideTests Count the Up- or Down-regulated genes per module

Description

For each module in a set, calculate the number of genes which are in that module and which are
significantly up- or down-regulated.

Usage

tmodDecideTests(
g,
1fc = NULL,
pval = NULL,
1fc.thr = 0.5,
pval.thr = 0.05,
labels = NULL,

tmodDecideTests

31

filter.unknown = FALSE,

mset = "all”

Arguments

g
1fc

pval

1fc.thr
pval.thr

labels

filter.unknown

mset

Details

a character vector with gene symbols
a numeric vector or a matrix with log fold changes

a numeric vector or a matrix with p-values. Must have the same dimensions as
Ifc

log fold change threshold
p-value threshold

Names of the comparisons. Either NULL or a character vector of length equal
to the number of columns in Ifc and pval.

If TRUE, modules with no annotation will be omitted

Which module set to use. Either a character vector ("LI", "DC" or "all", default:
LI) or a list (see "Custom module definitions" below)

This function can be used to decide whether a module, as a whole, is up- or down regulated. For
each module, it calculates the number of genes which are up-, down- or not regulated. A gene is
considered to be up- regulated if the associated p-value is smaller than pval.thr and the associated
log fold change is greater than Ifc.thr. A gene is considered to be down- regulated if the associated
p-value is smaller than pval.thr and the associated log fold change is smaller than Ifc.thr.

Note that unlike decideTests from limma, tmodDecideTests does not correct the p-values for multi-
ple testing — therefore, the p-values should already be corrected.

Value

A list with as many elements as there were comparisons (columns in Ifc and pval). Each element of
the list is a data frame with the columns "Down", "Zero" and "Up" giving the number of the down-,
not- and up-regulated genes respectively. Rows of the data frame correspond to module IDs.

See Also

tmodSummary, tmodPanelPlot, tmodDecideTestsLimma

32 tmodImportMSigDB

tmodImportMSigDB Import data from MSigDB

Description

Import data from an MSigDB file in either XML or GMT format

Usage

tmodImportMSigDB(
file = NULL,
format = "xml",
organism = "Homo sapiens”,
fields = c("STANDARD_NAME", "CATEGORY_CODE", "SUB_CATEGORY_CODE", "EXACT_SOURCE",
"EXTERNAL_DETAILS_URL")

)
Arguments

file The name of the file to parse

format Format (either "xml" or "gmt")

organism Select the organism to use. Use "all" for all organisms in the file (only for "xml"

format; default: "Homo sapiens")

fields Which fields to import to the MODULES data frame (only for "xml" format)

Details

This command parses a file from MSigDB. Both XML and the MSigDB-specific "GMT" format
are supported (however, the latter is discouraged, as it contains less information).

Value

A tmod object

Examples

Not run:

First, download the file "msigdb_v7.5.1.xml"

from http://www.broadinstitute.org/gsea/downloads. jsp
msig <- tmodImportMSigDB("msigdb_v7.5.1.xml")

End(Not run)

tmodLEA 33

tmodLEA Leading Edge Analysis

Description

For each module, return a list of genes on the leading edge

Usage
tmodLEA(Ll, modules, mset = "all", nodups = TRUE, filter = FALSE)

Arguments
1 list of genes
modules character vector of module IDs for which to run the LEA
mset Which module set to use. Either a character vector ("LI", "DC" or "all", default:
LI) or an object of class tmod
nodups Remove duplicate gene names in 1 and corresponding rows from ranks
filter Remove gene names which have no module assignments
Details

Given a vector of ordered gene identifiers and a vector of module IDs, for each module, return the
genes which are on the up-slope of the GSEA-style evidence plot. That is, return the genes that are
driving the enrichment.

tmodLEASummary Summary stats of a leading edge analysis

Description

Summary stats of a leading edge analysis

Usage
tmodLEASummary(lea, genes = FALSE, labels = NULL, mset = NULL)

Arguments
lea result of ‘tmodLEA*
genes if TRUE, the gene identifiers of the leading edge (joined by commas) will be
appended.
labels labels to add to the result; if NULL, the labels will be taken from ‘mset*
mset Which module set to use. Either a character vector ("LI", "DC" or "all", default:

all) or an object of class tmod (see "Custom module definitions" below)

34

Value

tmodLimmaDecideTests

data frame with summary stats

tmodLimmaDecideTests Up- and down-regulated genes in modules based on limma object

Description

For each module in mset and for each coefficient in f$coefficients, this function calculates the
numbers of significantly up- and down-regulated genes.

Usage
tmodLimmaDecideTests(
f,
genes,
1fc.thr = 0.5,

pval.thr = 0.05,
filter.unknown = FALSE,
adjust.method = "BH",

mset = "all”

Arguments

.F

genes

1fc.thr
pval.thr
filter.unknown

adjust.method

mset

Details

result of linear model fit produced by limma functions ImFit and eBayes

Either the name of the column in f$genes which contains the gene symbols
corresponding to the gene set collection used, or a character vector with gene
symbols

log fold change threshold
p-value threshold
If TRUE, modules with no annotation will be omitted

method used to adjust the p-values for multiple testing. See p.adjust(). De-
fault:BH.

Which module set to use (see tmodUtest for details)

For an f object returned by eBayes(), tmodLimmaDecideTests considers every coefficient in this
model (every column of f$coefficients). For each such coefficient, tmodLimmaDecideTests calcu-
lates, for each module, the number of genes which are up- or down-regulated.

In short, tmodLimmaDecideTests is the equivalent of tmodDecideTests, but for limma objects re-
turned by eBayes().

tmodLimmaTest 35

Value

A list with as many elements as there were coefficients in f. Each element of the list is a data frame
with the columns "Down", "Zero" and "Up" giving the number of the down-, not- and up-regulated
genes respectively. Rows of the data frame correspond to module IDs. The object can directly be
used in tmodPanelPlot as the pie parameter.

See Also

tmodDecideTests, tmodLimmaTest, tmodPanelPlot

Examples

Not run:
data(Egambia)
design <- cbind(Intercept=rep(1, 30), TB=rep(c(@,1), each= 15))
if(require(limma)) {
fit <- eBayes(lmFit(Egambial,-c(1:3)], design))
ret <- tmodLimmaTest(fit, Egambia$GENE_SYMBOL)
pie <- tmodLimmaDecideTests(fit, Egambia$GENE_SYMBOL)
tmodPanelPlot(ret, pie=pie)
}

End(Not run)

tmodLimmaTest Run tmod enrichment tests directly on a limma object

Description

Order the genes according to each of the coefficient found in a limma object and run an enrichment
test on the ordered list.

Usage

tmodLimmaTest (
f,
genes,
sort.by = "msd”,
tmodFunc = tmodCERNOtest,
coef = NULL,

36 tmodLimmaTest

Arguments
f result of linear model fit produced by limma functions ImFit and eBayes
genes Either the name of the column in f$genes which contains the gene symbols
corresponding to the gene set collection used, or a character vector with gene
symbols
sort.by How the gene names should be ordered: "msd" (default), "pval" or "lfc"
tmodFunc The function to run the enrichment tests. Either tmodCERNO¢test or tmodUtest
coef If not NULL, only run tmod on these coefficients
Further parameters passed to the tmod test function
Details

For each coefficient in the fit returned by the eBayes / ImFit functions from the limma package,
tmodLimmaTest will order the genes run an enrichment test and return the results.

The ordering of the genes according to a certain metric is the fundament for gene enrichment anal-
ysis. tmodLimmaTest allows three orderings: p-values, "MSD" and log fold changes. The default
MSD ("minimal significant difference") is the lower boundary of the 95 confidence interval for pos-
itive log fold changes, and 0 minus the upper boundary of the 95 better than ordering by p-value or
by log fold change. See discussion in the package vignette.

Value

A list with length equal to the number of coeffients. Each element is the value returned by tmod test
function. The list can be directly passed to the functions tmodSummary and tmodPanelPlot.

See Also

tmodCERNO¢test, tmodUtest, tmodPlotPanel, tmodSummary

Examples

Not run:
data(Egambia)
design <- cbind(Intercept=rep(1, 30), TB=rep(c(@,1), each= 15))
if(require(limma)) {
fit <- eBayes(ImFit(Egambial,-c(1:3)], design))
ret <- tmodLimmaTest(fit, genes=Egambia$GENE_SYMBOL)
tmodSummary(ret)
tmodPanelPlot(ret)
3

End(Not run)

tmodLimmaTopTable 37

tmodLimmaTopTable tmod’s replacement for the limma topTable function

Description

Produce a data frame for all or for selected coefficients of a linear fit object, including log fold
changes, g-values, confidence intervals and MSD.

Usage

tmodLimmaTopTable(
f,
genelist = NULL,
coef = NULL,
adjust.method = "BH",
confint = 0.95

)
Arguments
f result of linear model fit produced by limma functions ImFit and eBayes
genelist A data frame or a character vector with additional information on the genes /
probes
coef Which coefficients to extract

adjust.method Which method of p-value adjustment; see "p.adjust()"

confint Confidence interval to be calculated

Details

Produce a data frame for all or for selected coefficients of a linear fit object, including log fold
changes, g-values, confidence intervals and MSD. For each coefficient, these four columns will be
created in the output file, with the name consisting of a prefix indicating the type of the column
("msd", "logFC", "qval", "SE", "ci.L", "ci.R") and the name of the coefficient.

Value

A data frame with all genes.

See Also

tmodLimmaTest

38 tmodPanelPlot

tmodPal A selection of color palettes

Description

Return a preset selection of colors, adjusted by alpha

Usage

tmodPal(n = NULL, set = "friendly"”, alpha = 0.7, func = FALSE)

Arguments
n Number of colors to return (default: all for "friendly", 3 for everything else)
set Which palette set (see Details).
alpha 0 for maximum transparency, 1 for no transparency.
func if TRUE, the returned object will be a function rather than a character vector
Details

A few palettes have been predefined in tmod, and this function can be used to extract them. The
following palettes have been defined: * friendly — a set of distinct, colorblind-friendly colors * bwr,
rwb, ckp, pkc — gradients (b-blue, r-red, w-white, c-cyan, k-blacK, p-purple) By default, either all
colors are returned, or, if it is a gradient palette, only three.

Value

Either a character vector, or, when the func parameter is TRUE, a function that takes only one
argument (a single number)

tmodPanelPlot Plot a summary of multiple tmod analyses

Description

Plot a summary of multiple tmod analyses

tmodPanelPlot

Usage

tmodPanelPlot (

39

X,
pie = NULL,

clust = "qval”,

select = NULL,
filter.empty.cols = FALSE,
filter.empty.rows = TRUE,
filter.unknown = TRUE,
filter.rows.pval = 0.05,
filter.rows.auc = 0.5,
filter.by.id = NULL,
col.labels = NULL,
col.labels.style = "top",
row.labels = NULL,
row.labels.auto = "both”,

pval.thr = 10*-2,
pval.thr.lower = 10"-6,
plot.func = NULL,

grid = "at",

pie.colors = c("#000QQFF", "#cccccc", "#FF0000"),
plot.cex = 1,

text.cex = 1,

pie.style = "auto",

min.e = 0.5,
max.e = 1,

legend.style = "auto”,
)
Arguments

X either a list, in which each element has been generated with a tmod test function,
or the result of the tmodSummary function

pie a list of data frames with information for drawing a pie chart

clust whether, in the resulting data frame, the modules should be ordered by clustering
them with either g-values ("qval") or the effect size ("effect"). If "sort" or NULL,
the modules are sorted alphabetically by their ID. If "keep", then the order of the
modules is kept.

select a character vector of module IDs to show. If clust == "keep", then in that partic-
ular order.

filter.empty.cols

If TRUE, all elements (columns) with no enrichment below pval.thr in any row
will be removed

filter.empty.rows

If TRUE, all modules (rows) with no enrichment below pval.thr in any column
will be removed

40

tmodPanelPlot

filter.unknown If TRUE, modules with no annotation will be omitted
filter.rows.pval

Rows in which no p value is below this threshold will be omitted
filter.rows.auc

Rows in which no AUC value is above this threshold will be omitted

filter.by.id if provided, show only modules with IDs in this character vector

col.labels Labels for the columns. If NULL, names of the elements of the list x will be
used.
col.labels.style

Style of column names: "top" (default), "bottom", "both", "none"
row.labels Labels for the modules. This must be a named vector, with module IDs as vector
names. If NULL, module titles from the analyses results will be used.
row.labels.auto
Automatic generation of row labels from module data: "both" or "auto" (default,
ID and title), "id" (only ID), "title" (only title), "none" (no row label)
pval.thr Results with p-value above pval.thr will not be shown

pval.thr.lower Results with p-value below pval.thrlower will look identical on the plot

plot.func Optionally, a function to be used to draw the dots. See "pvalEffectPlot"

grid Style of a light-grey grid to be plotted; can be "none", "at" and "between"

pie.colors character vector of length equal to the cardinality of the third dimension of the
pie argument. By default: blue, grey and red.

plot.cex a numerical value giving the amount by which the plot symbols will be magin-
fied

text.cex a numerical value giving the amount by which the plot text will be magnified,
or a vector containing three cex values for row labels, column labels and legend,
respectively

pie.style Can be "auto" (default), "dot", "symdot", "pie", "boxpie", "rug" (see Details)

min.e, max.e scale limits for the effect size (default: 0.5 and 1.0)

legend.style Style of the legend: "auto" — automatic; "broad": pval legend side by side with
effect size legend; "tall": effect size legend above pval legend

Any further arguments will be passed to the pvalEffectPlot function (for exam-
ple, grid.color)

Details

This function is useful if you run an analysis for several conditions or time points and would like to
summarize the information on a plot. You can use lapply() to generate a list with tmod results and
use tmodPanelPlot to visualize it.

tmodPanelPlot shows a heatmap-like plot. Each row corresponds to one module, and columns
correspond to the time points or conditions for which the tmod analyses were run. Each significantly
enriched module is shown as a red dot. Size of the dot corresponds to the effect size (for example,
AUC in the CERNO test), and intensity of the color corresponds to the g-value.

By default, tmodPanelPlot visualizes each the results of a single statistical test by a red dot, or blue
and red dots if the effect sizes are both negative and positive. However, it is often interesting to

tmodPCA 41

know how many of the genes in a module are significantly up- or down regulated. tmodPanelPlot
can draw a pie chart based on the optional argument "pie". The argument must be a list of length
equal to the length of x. Note also that the names of the pie list must be equal to the names of
x. Objects returned by the function tmodDecideTests can be directly used here. The rownames of
either the data frame or the array must be the module IDs.

Value

a data frame with a line for each module encountered anywhere in the list X, two columns describing
the module (ID and module title), and two columns(effect size and q value) for each element of list
X.

See Also

tmodDecideTests, tmodSummary, pvalEffectPlot, simplePie

Examples

data(Egambia)
E <- Egambial,-c(1:3)]
pca <- prcomp(t(E), scale.=TRUE)

Calculate enrichment for first 5 PCs
gs <- Egambia$GENE_SYMBOL
gn.f <- function(r) {

0 <- order(abs(r), decreasing=TRUE)

tmodCERNOtest(gs[o],

gval=0.01)

3
x <- apply(pca$rotation[,3:4], 2, gn.f)
tmodPanelPlot(x, text.cex=0.7)

tmodPCA PCA plot annotated with tmod

Description

Generate a PCA plot on which each dimension is annotated by a tag cloud based on tmod enrichment
test.

Usage

tmodPCA(
pca,
loadings
genes,
tmodfunc = "tmodCERNOtest”,
plotfunc = pcaplot,
mode = "simple”,

NULL,

42

tmodPCA

components = c(1, 2),
plot.params = NULL,

filter =

TRUE,

simplify = TRUE,
legend = FALSE,

maxn = NULL,
plot = TRUE,

Arguments

pca

loadings
genes

tmodfunc
plotfunc

mode

components

plot.params
filter

simplify
legend

maxn

plot

Details

Object returned by prcomp or a matrix of PCA coordinates. In the latter case, a
loading matrix must be provided separately.

A matrix with loadings

A character vector with gene identifiers

Name of the tmod enrichment test function to use. Either
Function for plotting the PCA plot. See Details

Type of the plot to generate; see Details. tmodCERNOtest or tmodUtest (tmod-
HGtest is not suitable)

integer vector of length two: components which components to show on the
plot. Must be smaller than the number of columns in pca.

A list of parameters to be passed to the plotting function. See Details

Whether "uninteresting" modules (with no annotation) should be removed from
the tag cloud

Whether the names of the modules should be simplified
whether a legend should be shown

Maximum number of gene set enrichment terms shown on the plot (if NULL —
default — all terms will be shown)

if FALSE, no plot will be shown, but the enrichments will be calculated and
returned invisibly

Any further parameters passed to the tmod test function

There are three types of plots that can be generated (parameter "mode"): simple, leftbottom and
cross. In the "simple" mode, two enrichments are run, on on each component, sorted by absolute
loadings of the PCA components. Both "leftbottom" and "cross" run two enrichment analyses on
each component, one on the loadings sorted from lowest to largest, and one on the loadings sorted
from largetst to lowest. Thus, two tag clouds are displayed per component. In the "leftbottom"
mode, the tag clouds are displayed to the left and below the PCA plot. In the "cross" mode, the tag
clouds are displayed on each of the four sides of the plot.

By default, the plotting function is plotpca. You can define your own function instead of plotpca,
however, mind that in any case, there will be two parameters passed to it on the first two positions:
pca and components, named "pca" and "components” respectively.

tmodSummary 43

Value

A list containing the calculated enrichments as well as the return value from the plotting function

Examples

data(Egambia)

E <- as.matrix(Egambial,-c(1:3)1])

pca <- prcomp(t(E), scale.=TRUE)

group <- rep(c("CTRL", "TB"), each=15)

tmodPCA(pca,
genes=Egambia$GENE_SYMBOL,
components=4:3,
plot.params=list(group=group))

tmodSummary Create a summary of multiple tmod analyses

Description

Create a summary of multiple tmod analyses

Usage
tmodSummary (
X,
clust = NULL,

filter.empty = FALSE,
filter.unknown = TRUE,
select = NULL,
effect.col = NULL,
pval.col = "adj.P.Vval"

)
Arguments
X list, in which each element has been generated with a tmod test function
clust whether, in the resulting data frame, the modules should be ordered by clustering

them with either g-values ("qval") or the effect size ("effect"). If "sort" or NULL,
the modules are sorted alphabetically by their ID. If "keep", then the order of the
modules is kept.

filter.empty If TRUE, all elements (columns) with no significant enrichment will be removed
filter.unknown If TRUE, modules with no annotation will be omitted

select a character vector of module IDs to show. If clust == "keep", then in that partic-
ular order.
effect.col The name of the column with the effect size (if NULL, the default, the effect

size will be taken from the tmod results object attributes)

pval.col The name of the p-value column

44 tmodTagcloud

Details

This function is useful if you run an analysis for several conditions or time points and would like to
summarize the information in a single data frame. You can use lapply() to generate a list with tmod
results and use tmodSummary to convert it to a data frame.

Value

a data frame with a line for each module encountered anywhere in the list X, two columns describing
the module (ID and module title), and two columns(effect size and q value) for each element of list
X.

See Also

tmodPanelPlot

Examples

Not run:

data(Egambia)

E <- Egambial,-c(1:3)]

pca <- prcomp(t(E), scale.=TRUE)

Calculate enrichment for each component
gs <- Egambia$GENE_SYMBOL
gn.f <- function(r) {
tmodCERNOtest (gs[order(abs(r),
decreasing=TRUE)],

gval=0.01)
3
x <- apply(pcas$rotation, 2, gn.f)
tmodSummary (x)
End(Not run)
tmodTagcloud Tag cloud based on tmod results

Description

Plot a tag (word) cloud based on results from tmod enrichment.

Usage

tmodTagcloud(
results,
filter = TRUE,
simplify = TRUE,
tag.col = "Title",

tmodTagcloud 45
min.auc = 0.5,
max.qval = 0.05,
plot = TRUE,
weights.col = "auto”,
pval.col = "P.Value”,
maxn = NULL,
)
Arguments
results data frame produced by one of the tmod enrichment tests
filter Whether redundant and not annotated modules should be removed
simplify Whether module names should be simplified
tag.col Which column from results should be used as tags on the plot
min.auc Minimal AUC to show (default: 0.5)
max.qgval Maximal adjusted p value to show (default: 0.05)
plot Should the tag cloud be plotted or only returned
weights.col Which column from results should be used as weights for the tag cloud
pval.col Which column contains the P values which will be used to shade the tags
maxn Maximum number of gene set enrichment terms shown on the plot (if NULL —
default — all terms will be shown)
Any further parameters are passed to the tagcloud function
Details

The tags will be generated based on results from tmod or any other suitable data frame. The data
frame must contain two numeric columns, specified with "weights.col" and "pval.col", which will
be used to calculate the size and shade of the tags, respectively. Furthermore, it has to contain a
column with tags (parameter "tag.col", by default "Title").

Any data frame can be used as long as it contains the specified columns.

Value

Either NULL or whatever tagcloud returns

Examples

data(tmod)

fg <- getModuleMembers("LI.M127")[[11]

bg <- tmod$gv

result <- tmodHGtest(fg, bg)
tmodTagcloud(result)

46

tmodUtest

tmodUtest

Perform a statistical test of module expression

Description

Perform a statistical test of module expression

Usage

tmodUtest(

1,

modules = NULL,
gval = 0.05,
order.by = "pval”,
filter = FALSE,

mset = "all”,
cols = "Title",
useR = FALSE,
nodups = TRUE
)
tmodGeneSetTest(
1,
X,
modules = NULL,
gval = 0.05,

order.by = "pval”,
filter = FALSE,

mset = "all"”,
cols = "Title",
Nsim = 1000,
nodups = TRUE

)

tmodCERNOtest (
1,
modules = NULL,
gqval = 0.05,

)

order.by = "pval”,
filter = FALSE,
mset = "all”,

cols = "Title",
nodups = TRUE

tmodPLAGEtest (

1,

tmodUtest 47

X,

group,

modules = NULL,
gval = 0.05,
order.by = "pval”,
mset = "all”,

cols = "Title",
filter = FALSE,
nodups = TRUE

)

tmodZtest(
1,
modules = NULL,
gval = 0.05,

order.by = "pval”,
filter = FALSE,
mset = "all”,

cols = "Title",
nodups = TRUE

)
tmodHGtest (
fg,
bg,
modules = NULL,
qval = 0.05,

order.by = "pval”,
filter = FALSE,
mset = "all”,

cols = "Title",
nodups = TRUE

)
Arguments
1 sorted list of HGNC gene identifiers
modules optional list of modules for which to make the test
gval Threshold FDR value to report
order.by Order by P value ("pval") or none ("none")
filter Remove gene names which have no module assignments
mset Which module set to use. Either a character vector ("LI", "DC" or "all", default:
all) or an object of class tmod (see "Custom module definitions" below)
cols Which columns from the MODULES data frame should be included in resulsts
useR use the R wilcox. test function; slow, but with exact p-values for small samples

nodups Remove duplicate gene names in 1 and corresponding rows from ranks

48 tmodUtest
X Expression matrix for the tmodPLAGEtest; a vector for tmodGeneSetTest
Nsim for tmodGeneSetTest, number of replicates for the randomization test
group group assignments for the tmodPLAGEtest
fg foreground gene set for the HG test
bg background gene set for the HG test
Details

Performs a test on either on an ordered list of genes (tmodUtest, tmodCERNOtest, tmodZtest) or
on two groups of genes (tmodHGtest). tmodUtest is a U test on ranks of genes that are contained in
a module.

tmodCERNO¢test is also a nonparametric test working on gene ranks, but it originates from Fisher’s
combined probability test. This test weights genes with lower ranks more, the resulting p-values
better correspond to the observed effect size. In effect, modules with small effect but many genes
get higher p-values than in case of the U-test.

tmodPLAGEtest is based on the PLAGE, "Pathway level analysis of gene expression" published by
Tomfohr, Lu and Kepler (2005), doi 10.1186/1471-2105-6-225. In essence it is just a t-test run on
module eigengenes, but it performs really well. This approach can be used with any complex linear
model; for this, use the function eigengene(). See users guide for details.

tmodZtest works very much like tmodCERNOtest, but instead of combining the rank-derived p-
values using Fisher’s method, it uses the Stouffer method (known also as the Z-transform test).

tmodGeneSetTest is an implementation of the function geneSetTest from the limma package (note
that tmodUtest is equivalent to the limma’s wilcoxGST function).

For a discussion of the above three methods, read M. C. Whitlock, "Combining probability from
independent tests: the weighted Z-method is superior to Fisher’s approach”, J. Evol. Biol. 2005
(doi: 10.1111/.1420-9101.2005.00917.x) for further details.

tmodHGtest is simply a hypergeometric test.

In tmod, two module sets can be used, "LI" (from Li et al. 2013), or "DC" (from Chaussabel et al.
2008). Using the parameter "mset", the module set can be selected, or, if mset is "all", both of sets
are used.

Value

The statistical tests return a data frame with module names, additional statistic (e.g. enrichment or
AUC, depending on the test), P value and FDR g-value (P value corrected for multiple testing using
the p.adjust function and Benjamini-Hochberg correction. The data frame has class *colorDF’ (see
package colorDF for details), but except for printing using colors on the terminal behaves just like
an ordinary data.frame. To strip the coloring, use [colorDF::uncolor()].

Custom module definitions

Custom and arbitrary module, gene set or pathway definitions can be also provided through the
mset option, if the parameter is a list rather than a character vector. The list parameter to mset must
contain the following members: "MODULES", "MODULES2GENES" and "GENES".

tmod_ids 49

"MODULES" and "GENES" are data frames. It is required that MODULES contains the following
columns: "ID", specifying a unique identifier of a module, and "Title", containing the description
of the module. The data frame "GENES" must contain the column "ID".

The list MODULES2GENES is a mapping between modules and genes. The names of the list must
correspond to the ID column of the MODULES data frame. The members of the list are character
vectors, and the values of these vectors must correspond to the ID column of the GENES data frame.

See Also

tmod-package

Examples

data(tmod)

fg <- tmod$MODULES2GENES[["LI.M127"]]
bg <- tmod$GENES$ID

result <- tmodHGtest(fg, bg)

A more sophisticated example

Gene set enrichment in TB patients compared to

healthy controls (Egambia data set)

Not run:

data(Egambia)

library(limma)

design <- cbind(Intercept=rep(1, 30), TB=rep(c(@,1), each= 15))
fit <- eBayes(ImFit(Egambial,-c(1:3)], design))

tt <- topTable(fit, coef=2, number=Inf, genelist=Egambial,1:3])
tmodUtest (tt$GENE_SYMBOL)

tmodCERNOtest (tt$GENE_SYMBOL)

End(Not run)

tmod_ids Query and set IDs of gene sets in a tmodGS object

Description

Query and set IDs (tmod_id) or Titles (tmod_title) of gene sets in a tmodGS object
Usage

tmod_ids(x)

tmod_ids(x) <- value

tmod_titles(x)

tmod_titles(x) <- value

50

Arguments
X an object of class tmodGS
value a character vector of unique IDs
Value

Returns character vector corresponding to xgsID

Examples

data(tmod)
mset <- tmod[c(”LI.M37.0", "LI.M75", "LI.M3")]
tmod_ids(mset)

upset

tmod_ids(mset) <- c("em”, "pstrem”, "bzdrem")
tmod_titles(mset) <- c("foo”, "bar"”, "baz")
mset$gs
upset Upset plot
Description

Upset plots help to interpret the results of gene set enrichment.

Usage

upset(
modules,
mset = NULL,
min.size = 2,
min.overlap = 2,
max.comb = 4,
min.group = 2,
value = "number”,
cutoff = NULL,
labels = NULL,

group.stat = "jaccard”,
group.cutoff = 0.1,
group = TRUE,

pal = brewer.pal(8, "Dark2"),
lab.cex =1

upset 51

Arguments

modules optional list of modules for which to make the test

mset ‘Which module set to use. Either a character vector ("LI", "DC" or "all", default:
all) or an object of class tmod (see "Custom module definitions" below)

min.size minimal number of modules in a comparison to show

min.overlap smallest overlap (number of elements) between two modules to plot

max.comb Maximum number of combinations to show (i.e., number of dots on every ver-
tical segment in the upset plot)

min.group Minimum number of modules in a group. Group with a smaller number of
members will be ignored. Change this value to 1 to see also modules which
could not be grouped.

value what to show on the plot: "number" (number of common elements; default),
"soerensen" (Sgrensen—Dice coefficient), "overlap" (Szymkiewicz—Simpson co-
efficient) or "jaccard" (Jaccard index)

cutoff Combinations with the ‘value* below cutoff will not be shown.

labels Labels for the modules. Character vector with the same length as ‘modules*

group.stat Statistics for finding groups (can be "number", "overlap", "soerensen" or "jac-

card"; see function modOverlaps)

group.cutoff cutoff for group statistics

group Should the modules be grouped by the overlap?
pal Color palette to show the groups.
lab.cex Initial cex (font size) for labels

Details

The plot consists of three parts. The main part shows the overlaps between the different modules
(module can be a gene set, for example). Each row corresponds to one module. Each column
corresponds to an intersection of one or more gene sets. Dots show which gene sets are in that
combination. Which combinations are shown depends on the parameters ‘min.overlap* (which is
the cutoff for the similarity measure specified by the ‘value‘ parameter), the parameter ‘min.group*
which specifies the minimum number of modules in a group and the parameter ‘max.comb* which
specifies the maximum number of combinations tested (too many combinations are messing the
plot).

Above the intersections, you see a plot showing a similarity measure of the intersected gene sets. By
default it is the number of module members (genes in case of a gene set), but several other measures
(e.g. the Jaccard index) are also implemented.

To the left are the module descriptions (parameter ‘label‘; if label is empty, the labels are taken
from the mset object provided or, if that is NULL, from the default tmod module set). The function
attempts to scale the text in such a way that all labels are visible.

By default, upset attempts to group the modules. This is done by defining a similarity measure (by
default the Jaccard index, parameter ‘group.stat‘) and a cutoff threshold (parameter ‘group.cutoff®).

Value

upset returns invisibly the identified module groups: a list of character vectors.

52 vaccination

See Also

[modGroups()], [modOverlaps()]

Examples

Not run:

data(Egambia)

design <- cbind(Intercept=rep(1, 30), TB=rep(c(@,1), each= 15))
library(limma)

fit <- eBayes(lmFit(Egambial,-c(1:3)], design))

tt <- topTable(fit, coef=2, number=Inf, genelist=Egambial,1:3])
res <- tmodCERNOtest(tt$GENE_SYMBOL)

upset(res$ID, group.cutoff=.1, value="jaccard")

End(Not run)

vaccination Transcriptomic responses to vaccination

Description

Transcriptomic responses to vaccination

Format

Data frame with one row per gene containing log fold changes and FDR (q values) for the Fluad
vaccine as compared to placebo on day 0, day 1, day 2 and day 3 after the vaccination.

Details

The data shows the time course of transcriptomic responses to influenza vaccination in healthy
volunteers. The source of the data is GEO project PRINA515032, associated with the following
paper:

Weiner, January, et al. "Characterization of potential biomarkers of reactogenicity of licensed an-

tiviral vaccines: randomized controlled clinical trials conducted by the BIOVACSAFE consortium."
Scientific reports 9.1 (2019): 1-14.

For the data set, 3000 genes with top variance were chosen.

Index

[.tmod (makeTmodGS), 16
[.tmodGS (makeTmodGS), 16

as_tmodGS (makeTmodGS), 16

cell_signatures, 3
check_tmod_gs, 4

Egambia (EgambiaResults), 4
EgambiaResults, 4
eigengene, 5
evidencePlot, 6

filterGS, 8

getGenes, 9
getModuleMembers, 10
ggEvidencePlot, 10
ggPanelplot, 11

hgEnrichmentPlot, 13
length. tmodGS (makeTmodGS), 16

makeTmod, 28

makeTmod (makeTmodGS), 16
makeTmodFromDataFrame, 14
makeTmodGS, 15, 16, 28
modCorPlot, 17

modcors, 18

modGroups, 19
modjaccard, 20
modmetabo, 20
modOverlaps, 21

pcaplot, 22
print.tmodGS (makeTmodGS), 16
pvalEffectPlot, 23

showGene, 25
showModule (filterGS), 8

53

simpleBoxpie (simplePie), 26
simplePie, 26
simpleRug (simplePie), 26

tbmprof (modmetabo), 20

tmod (tmod-data), 27
tmod-data, 27

tmod-package, 3
tmod2DataFrame, 28
tmod2tmodGS, 28

tmod_ids, 49

tmod_ids<- (tmod_ids), 49
tmod_titles (tmod_ids), 49
tmod_titles<- (tmod_ids), 49
tmodAUC, 29

tmodCERNOtest (tmodUtest), 46
tmodDecideTests, 30
tmodGeneSetTest (tmodUtest), 46
tmodHGtest, 3

tmodHGtest (tmodUtest), 46
tmodImportMSigDB, 32
tmodLEA, 33
tmodLEASummary, 33
tmodLimmaDecideTests, 34
tmodLimmaTest, 35
tmodLimmaTopTable, 37
tmodPal, 38

tmodPanelPlot, 38

tmodPCA, 41

tmodPLAGEtest (tmodUtest), 46
tmodSummary, 43
tmodTagcloud, 44
tmodUtest, 3, 46

tmodZtest (tmodUtest), 46

upset, 50

vaccination, 52

	tmod-package
	cell_signatures
	check_tmod_gs
	EgambiaResults
	eigengene
	evidencePlot
	filterGS
	getGenes
	getModuleMembers
	ggEvidencePlot
	ggPanelplot
	hgEnrichmentPlot
	makeTmodFromDataFrame
	makeTmodGS
	modCorPlot
	modcors
	modGroups
	modjaccard
	modmetabo
	modOverlaps
	pcaplot
	pvalEffectPlot
	showGene
	simplePie
	tmod-data
	tmod2DataFrame
	tmod2tmodGS
	tmodAUC
	tmodDecideTests
	tmodImportMSigDB
	tmodLEA
	tmodLEASummary
	tmodLimmaDecideTests
	tmodLimmaTest
	tmodLimmaTopTable
	tmodPal
	tmodPanelPlot
	tmodPCA
	tmodSummary
	tmodTagcloud
	tmodUtest
	tmod_ids
	upset
	vaccination
	Index

