Package ‘tm.plugin.dc’

October 14, 2022
Version 0.2-10
Date 2020-11-29
Title Text Mining Distributed Corpus Plug-in

Description A plug-in for the text mining framework tm to support text mining
in a distributed way. The package provides a convenient interface for
handling distributed corpus objects based on distributed list objects.

License GPL (>=2)

Depends DSL (>=0.1-7), tm (>=0.7)
Suggests XML

Imports NLP, slam (>= 0.1-22), utils
NeedsCompilation no

Author Ingo Feinerer [aut],
Stefan Theussl [aut, cre]

Maintainer Stefan Theussl <Stefan.Theussl@R-project.org>
Repository CRAN
Date/Publication 2020-11-29 14:00:03 UTC

R topics documented:

DistributedCorpus
Revisions e
TermDocumentMatrix.DCorpus
tm_map.DCorpus

Index

DistributedCorpus

DistributedCorpus Distributed Corpus

Description

Data structures and operators for distributed corpora.

Usage
DCorpus(X,
readerControl = list(reader = reader(x),
language = "en"),
storage = NULL, keep = TRUE, ...)

S3 method for class 'DCorpus’

as.VCorpus(x)

as.DCorpus(x, storage = NULL, ...)
Arguments
X for DCorpus, a Source object. At the moment only DirSource is supported. For
as.VCorpus() and as.DCorpus(), an object to be coerced to a VCorpus/DCorpus.
Currently coercion from/to classic tm corpora (VCorpus) is implemented.
readerControl A list with the named components reader representing a reading function ca-
pable of handling the file format found in x, and language giving the text’s
language (preferably as IETF language tags, see language in package NLP).
storage The storage subsystem to use with the DCorpus. Currently two types of storages
are supported: local disk storage using the Local File System (LFS) and the
Hadoop Distributed File System (HDFS). Default: "LFS’.
keep Should revisions be used when operating on the DCorpus? Default: TRUE
Optional arguments for the reader.
Details

When constructing a distributed corpus the input source is extracted via the supplied reader and
stored on the given file system (argument storage). While the data set resides on the correspond-
ing storage (e.g., HDFS), only a symbolic representation is held in R (a so-called DList) which
allows to access the corpus via corresponding (DList) methods. Since the available memory for
the distributed corpus is only restricted by available disk space in the given storage (and not main
memory like in a standard tm corpus) by default we also store a set of so-called revisions, i.e.,
stages of the (processed) corpus. Revisions can be turned off later on using the keepRevisions()
replacement function.\

The constructed corpus object inherits from a tm Corpus and has several slots containing meta

information:

meta Corpus Meta Data contains corpus specific meta data in form of tag-value pairs.

Revisions 3

dmeta Document Meta Data of class data.frame contains document specific meta data for the
corpus. This is mainly available to be compatible with standard tm corpus definitions but not
yet actually used in the distributed scenario.

keep A logical indicating whether revisions representing stages e.g., in a preprocessing chain
should be kept or not.
Value

An object inheriting from DCorpus and Corpus.

Author(s)

Ingo Feinerer and Stefan Theussl

See Also

Corpus for basic information on the corpus infrastructure employed by package tm.

Examples

Similar to example in package 'tm'

reut21578 <- system.file("texts"”, "crude", package = "tm")
dc <- DistributedCorpus(DirSource(reut21578),
readerControl = list(reader = readReut21578XMLasPlain))
dc

Coercion

data("crude”)
as.DistributedCorpus(crude)
as.VCorpus(dc)

Revisions Revisions of a Distributed Corpus

Description

Each modification of the documents in the corpus results in a new stage, i.e., revision of the corpus.
To allow fast switching between multiple revisions all modifications may be kept on the file system.
The function setRevision() allows to go back to any stage in the history of the corpus. The
function keepRevisions() shows if revisions are turned on or off; the corresponding replacement
function is used to set the desired behavior.

Usage

getRevisions(corpus)
removeRevision(corpus, revision)
setRevision(corpus, revision)
keepRevisions(corpus)
‘keepRevisions<-*(corpus, value)

4 TermDocumentMatrix.DCorpus

Arguments

corpus A distributed corpus of class DCorpus.

revision The revision which is to be set as active or removed.

value A logical indicating whether revisions should be kept or not.
Value

Whereas getRevisions() returns a list of character strings naming all available revisions, setRevision()
returns the distributed corpus with the given revision marked as active. The function keepRevisions()
returns a logical indicating whether revisions are used or not.

Examples

provide data on storage
data("crude")

dc <- as.DCorpus(crude)

do some preprocessing

dc <- tm_map(dc, content_transformer(tolower))
retrieve available revisions
revs <- getRevisions(dc)

revs

go back to original revision
setRevision(dc, revs[2])
keepRevisions(dc)
keepRevisions(dc) <- FALSE

TermDocumentMatrix.DCorpus
Term-Document Matrix from Distributed Corpora

Description

Constructs a term-document matrix given a distributed corpus.

Usage

S3 method for class 'DCorpus’
TermDocumentMatrix(x, control = list())

Arguments
X A distributed corpus.
control A named list of control options. The component weighting must be a weighting

function capable of handling a TermDocumentMatrix. It defaults to weightTf
for term frequency weighting. All other options are delegated internally to a
termFreq call.

tm_map.DCorpus 5

Value

An object of class TermDocumentMatrix containing a sparse term-document matrix. The attribute
Weighting contains the weighting applied to the matrix.

See Also

The documentation of termFreq gives an extensive list of possible options.

TermDocumentMatrix

Examples

data("crude”)
tdm <- TermDocumentMatrix(as.DCorpus(crude),

list(stopwords = TRUE, weighting = weightTfIdf))
inspect(tdm[149:152,1:5])

tm_map.DCorpus Transformations on Distributed Corpora

Description

Interface to apply transformation functions to distributed corpora. See tm_map in tm for more

information.
Usage
S3 method for class 'DCorpus’
tm_map(x, FUN, ...)
Arguments
X A distributed corpus of class DCorpus.
FUN a transformation function taking a text document as input and returning a text

document. The function content_transformer can be used to create a wrapper
to get and set the content of text documents.

arguments to FUN.

Value

A DCorpus with FUN applied to each document in x. If revisions are enabled, the original documents
contained in x can be retrieved via getting back to the corresponding revision using the function
setRevision().

See Also

getTransformations for available transformations in package tm.

6 tm_map.DCorpus

Examples

data("crude”)
tm_map(as.DCorpus(crude), content_transformer(tolower))

Index

as.DCorpus (DistributedCorpus), 2

as.DistributedCorpus
(DistributedCorpus), 2

as.VCorpus.DCorpus (DistributedCorpus),
2

content_transformer, 5
Corpus, 2, 3

DCorpus (DistributedCorpus), 2
DirSource, 2
DistributedCorpus, 2

DList, 2

getRevisions (Revisions), 3
getTransformations, 5

keepRevisions, 2
keepRevisions (Revisions), 3
keepRevisions<- (Revisions), 3

language, 2

removeRevision (Revisions), 3
Revisions, 3

setRevision (Revisions), 3
Source, 2

TermDocumentMatrix, 5
TermDocumentMatrix.DCorpus, 4
termFreq, 4, 5

tm_map, 5

tm_map.DCorpus, 5

	DistributedCorpus
	Revisions
	TermDocumentMatrix.DCorpus
	tm_map.DCorpus
	Index

