Version 2.7.0
Date 2025-04-10

Package ‘this.path’

April 10, 2025

License MIT + file LICENSE
Title Get Executing Script's Path

Description Determine the path of the executing script. Compatible
with several popular GUIs: 'Rgui', 'RStudio’, 'Positron’,
'VSCode', 'Jupyter', 'Emacs', and Rscript' (shell). Compatible
with several functions and packages: 'source()',

'sys.source()', 'debugSource()' in 'RStudio’,
'compiler::loadcmp()', 'utils::Sweave()', 'box::use()’,
'knitr::knit()', 'plumber::plumb()', 'shiny::runApp()’,
'package:targets', and 'testthat::source_file()".

Author Iris Simmons [aut, cre]

Maintainer Iris Simmons <ikwsimmo@gmail.com>

Depends R (>=2.15)

Suggests utils, jsonlite, microbenchmark, rprojroot

Enhances compiler, box, knitr, plumber, shiny, targets, testthat

URL https://github.

com/ArcadeAntics/this.path

BugReports https://github.com/ArcadeAntics/this.path/issues

ByteCompile TRUE
Biarch TRUE
BuildManual TRUE
Type Package

Contents

this.path-package

basename?2 . .
check.path . .
Enhances . .

https://github.com/ArcadeAntics/this.path
https://github.com/ArcadeAntics/this.path/issues

2 this.path-package

OSYPE .« o o e e 12
pathjoin e 13
pathesplit. L 13
relpath L 14
set.gui.path L L e 16
setjupyter.path L 18
set.sys.path L e e e 19
shFILE e 26
startup_files e e e 27
this.path e 28
trythis.path . . . L . oL e e e e 34

Index 36

this.path-package Get Script’s Path
Description

Determine the path of the executing script.

Compatible with several popular GUIs:

e ‘Rgui’

* ‘RStudio’ (including background jobs)
* ‘Positron’

e ‘VSCode’ + ‘REditorSupport’

e ‘Jupyter’

* ‘Emacs’ + ‘ESS’

e ‘Rscript’ (shell)

Compatible with several functions and packages:

e source()

* sys.source()

e debugSource() in ‘RStudio’
e compiler::loadcmp()

e utils::Sweave()

* box::use()

e knitr::knit()

e plumber: :plumb()

* shiny::runApp()

* package:targets

e testthat::source_file()

https://posit.co/products/open-source/rstudio/
https://docs.posit.co/ide/user/ide/guide/tools/jobs.html
https://github.com/posit-dev/positron
https://code.visualstudio.com/
https://code.visualstudio.com/docs/languages/r
https://jupyter.org/
https://www.gnu.org/software/emacs/
https://ess.r-project.org/
https://support.posit.co/hc/en-us/articles/205612627-Debugging-with-the-RStudio-IDE
https://posit.co/products/open-source/rstudio/
https://CRAN.R-project.org/package=targets

this.path-package 3

Details

The most important functions from package:this.path are this.path(), this.dir(), here(),
and this.proj():

this.path() returns the normalized path of the script in which it is written.

this.dir() returns the directory of this.path().
* here() constructs file paths against this.dir().

e this.proj() constructs file paths against the project root of this.dir ().
New additions include:

e LINENO() returns the line number of the executing expression.

* shFILE() looks through the command line arguments, extracting ‘FILE’ from either of the
following: ‘~f” ‘FILE’ or ‘--file=FILE’

* set.sys.path() implements this.path() for any source()-like functions outside of the
builtins.

e with_init.file() allows this.path() and related to be used in a user profile.
package:this.path also provides functions for constructing and manipulating file paths:

* path.join(), basename2(), and dirname2() are drop in replacements for file.path(),
basename(), and dirname () which better handle drives and network shares.

* splitext(), removeext(), ext(), and ext<-() split a path into root and extension, remove
a file extension, get an extension, or set an extension for a file path.

* path.split(), path.split.1(), and path.unsplit() split the path to a file into compo-
nents.

* relpath(), rel2here(), and rel2proj() turn absolute paths into relative paths.

Note
This package started from a stack overflow posting:
https://stackoverflow.com/questions/1815606/determine-path-of-the-executing-script/64129649#64 129649

If you like this package, please consider upvoting my answer so that more people will see it! If you
have an issue with this package, please use bug. report(package = "this.path") to report your
issue.

Author(s)

Iris Simmons [aut, cre]

Maintainer: Iris Simmons <ikwsimmo @ gmail.com>

https://stackoverflow.com/questions/1815606/determine-path-of-the-executing-script/64129649#64129649

4 basename2

basename?2 Manipulate File Paths

Description

basename2 () removes all of the path up to and including the last path separator (if any).

dirname2() returns the part of the path up to but excluding the last path separator, or "." if there
is no path separator.

Usage

basename2(path, expand = TRUE)
dirname2(path, expand = TRUE)

Arguments

path character vector, containing path names.

expand logical. Should tilde (see path.expand) be expanded?
Details

Trailing path separators are removed before dissecting the path, and for dirname2() any trailing
file separators are removed from the result.

Value

A character vector of the same length as path.

Behaviour on Windows

If path is an empty string, then both dirname2() and basename2() return an emty string.
\ and / are accepted as path separators, and dirname2() does NOT translate the path separators.
Recall that a network share looks like "//host/share” and a drive looks like "d:".

For a path which starts with a network share or drive, the path specification is the portion of the

string immediately afterward, e.g. "/path/to/file" is the path specification of "//host/share/path/to/file"
and "d:/path/to/file"”. For a path which does not start with a network share or drive, the path

specification is the entire string.

The path specification of a network share will always be empty or absolute, but the path specification
of adrive does not have to be, e.g. "d: file" is a valid path despite the fact that the path specification
does not start with "/".

If the path specification of path is empty oris " /", then dirname2 () will return path and basename2 ()
will return an empty string.

check.path 5

Behaviour under Unix-alikes

If path is an empty string, then both dirname2() and basename2() return an emty string.
Recall that a network share looks like "//host/share”.

For a path which starts with a network share, the path specification is the portion of the string imme-
diately afterward, e.g. "/path/to/file" is the path specification of "//host/share/path/to/file".
For a path which does not start with a network share, the path specification is the entire string.

If the path specification of path is empty oris " /", then dirname2 () will return path and basename2 ()
will return an empty string.

Examples

path <- c("/usr/1ib", "/usr/", "usr", "/", ".", "..")
x <- cbind(path, dirname = dirname2(path), basename = basename2(path))
print(x, quote = FALSE, print.gap = 3)

check.path Check ’this.path()’ is Functioning Correctly

Description

Add check.path("path/to/file") to the start of your script to initialize this.path() and check
that it is returning the expected path.

Usage

check.path(...)
check.dir(...)

check.proj(...)

Arguments

further arguments passed to path. join() which must return a character string;
the path you expect this.path() or this.dir() to return. The specified path
can be as deep as necessary (just the basename, the last directory and the base-
name, the last two directories and the basename, ...), but do not use an abso-
lute path. this.path() makes R scripts portable, but using an absolute path
in check.path() or check.dir() makes an R script non-portable, defeating a
major purpose of this package.

Details

check.proj() is a specialized version of check.path() that checks the path up to the project root.

Value

if the expected path / / directory matches this.path() // this.dir (), then TRUE invisibly, other-
wise an error is thrown.

6 Enhances

Examples
I have a project called 'd_cead'
##
Within this project, I have a folder called 'code'
where I place all of my scripts.
##
One of these scripts is called 'provrun.R'
H##
So, at the top of that R script, I could write:
#
#
this.path::check.path("d_cead”, "code", "provrun.R")
#
or:
#
this.path::check.path("d_cead/code/provrun.R")

Enhances Functions That Enhance the Use of Other Packages

Description

These functions improve the user experience of other packages.

Usage

enchances 'package:box'

with_script_path(expr, file, local = FALSE, n = @, envir = parent.frame(n + 1),
matchThisEnv = getOption("topLevelEnvironment”),
srcfile = if (n) sys.parent(n) else 0)

enchances 'package:rprojroot'

make_fix_file(criterion, local = FALSE, n = @, envir = parent.frame(n + 1),
matchThisEnv = getOption("topLevelEnvironment"),
srcfile = if (n) sys.parent(n) else 0)

Arguments
expr an expression to evaluate after setting the current script in package:box; most
commonly a call to box: :use().
file a character string giving the pathname of the file.
criterion argument passed to rprojroot: :find_root().

local, n, envir, matchThisEnv, srcfile
See ?this.path().

Details

with_script_path() improves the experience of package:box; it sets the current script in pack-
age:box to file or this.path() using box::set_script_path(), then evaluates its argument,
most commonly a package:box import statement.

make_fix_file() improves the experience of package:rprojroot; it looks for a project root start-
ing with this.dir (), then makes a function that constructs file paths against said project root.

https://CRAN.R-project.org/package=box
https://CRAN.R-project.org/package=rprojroot

ext 7

Value

for with_script_path(), the result of evaluating expr.

for make_fix_file(), a function with formals (..., .. = @) that returns a character vector.

Examples

this.path::with_script_path(
box: :use(

<import 1>,
<import 2>,
<...>
#
#

~—

replace 'rprojroot::is_r_package' with desired criterion
#
fix_file <- this.path::make_fix_file(rprojroot::is_r_package)

ext File Extensions

Description

splitext() splits an extension from a path.
removeext () removes an extension from a path.
ext () gets the extension of a path.

ext<-() sets the extension of a path.

Usage

splitext(path, compression = FALSE, expand = TRUE)
removeext(path, compression = FALSE, expand = TRUE)
ext(path, compression = FALSE, expand = TRUE)
ext(path, compression = FALSE, expand = TRUE) <- value

Arguments
path character vector, containing path names.
compression should compression extensions ".gz", " .bz2", and " . xz" be taken into account
when removing / / getting an extension?
expand logical. Should tilde (see path.expand) be expanded?
value a character vector, typically of length 1 or length(path), or NULL.
Details

Trailing path separators are removed before dissecting the path.

Except for path <- NA_character_, it will always be true that path == paste@(removeext(path),
ext(path)).

8 here

Value
for splitext(), a matrix with 2 rows and length(path) columns. The first row will be the roots
of the paths, the second row will be the extensions of the paths.
for removeext () and ext(), a character vector the same length as path.

for ext<-(), the updated object.

Examples

splitext(character(@))
splitext("")

splitext("file.ext")

path <- c("file.tar.gz", "file.tar.bz2", "file.tar.xz")
splitext(path, compression = FALSE)
splitext(path, compression = TRUE)

path <- "this.path_2.7.0.tar.gz"
ext(path) <- ".png"
path

path <- "this.path_2.7.0.tar.gz"
ext(path, compression = TRUE) <- ".png"
path

here Construct Path to File, Starting With Script’s Directory

Description

here() constructs file paths starting with this.dir ().
this.proj() constructs file paths starting with the project root of this.dir().

reset.proj() resets the path cache of this.proj(). This can be useful if you create a new project
that you would like to be detected without restarting your R session.

Usage
here(..., local = FALSE, n = 0,
envir = parent.frame(n + 1),
matchThisEnv = getOption("topLevelEnvironment”),
srcfile = if (n) sys.parent(n) else @, .. = 0)
this.proj(..., local = FALSE, n = 0,

envir = parent.frame(n + 1),
matchThisEnv = getOption("”topLevelEnvironment”),
srcfile = if (n) sys.parent(n) else 0)

reset.proj()

alias for 'here'
ici(..., local = FALSE, n = 0,

here 9

envir = parent.frame(n + 1),
matchThisEnv = getOption("topLevelEnvironment"),
srcfile = if (n) sys.parent(n) else 0, .. = 0)

Arguments

further arguments passed to path.join().

local, n, envir, matchThisEnv, srcfile
See ?this.path().

the number of directories to go back.

Details

For this.proj(), the project root has the same criterion as here: :here(), but unlike here: :here(),
this.proj() supports sub-projects and multiple projects in use at once. Additionally, this.proj()
is independent of working directory, whereas here: :here() relies on the working directory being
set somewhere within the project when package:here is loaded. Arguably, this makes it better than
here: :here().

Value

A character vector of the arguments concatenated term-by-term.

Examples

tmpdir <- tempfile(pattern = "dir")
dir.create(tmpdir)

writeLines("this file signifies that its directory is the project root”,
this.path::path.join(tmpdir, ".here"))

FILE.R <- this.path::path.join(tmpdir, "src"”, "R", "scriptl1.R")
dir.create(this.path::dirname2(FILE.R), recursive = TRUE)
this.path:::.writeCode({
this.path::this.path()
this.path::this.proj()
use 'here' to run another script located nearby
this.path::here("script2.R")
or maybe to read input from a file
this.path::here(.. = 2, "input”, "datal.csv")
but sometimes it is easier to use the project root
this allows you to move the R script up or down

a directory without changing the .. number
this.path::this.proj("input”, "datal.csv")
3}, FILE.R)

source(FILE.R, echo = TRUE)

unlink(tmpdir, recursive = TRUE)

10 LINENO

LINENO Line Number of Executing Expression

Description

Get the line number of the executing expression.

Usage

LINENO(n = @, envir = parent.frame(n + 1),
matchThisEnv = getOption("”topLevelEnvironment"),
srcfile = if (n) sys.parent(n) else 0)

Arguments

n, envir, matchThisEnv, srcfile
See ?this.path().

Details

LINENO() only works if the expressions have a srcref.

Scripts run with Rscript do not store their srcref, even when getOption("keep.source”) is
TRUE.

For source() and sys. source(), make sure to supply argument keep. source = TRUE directly, or
set options "keep.source” and "keep.source.pkgs” to TRUE.

For debugSource() in ‘RStudio’, it has no argument keep. source, so set option "keep. source”
to TRUE before calling.

For compiler: :loadcmp(), the srcref is never stored for the compiled code, there is nothing that
can be done.

For utils: :Sweave(), the srcref is never stored, there is nothing that can be done.

For knitr::knit(), the srcref is never stored, there is nothing that can be done. I am looking
into a fix.

For package:targets, set option "keep.source” to TRUE before calling associated functions.

For box: :use(), plumber: :plumb(), shiny: :runApp(), and testthat::source_file(), the
srcref is always stored.

Value

integer; NA_integer_ if the line number is not found.

Note

You can get a more accurate line number by wrapping LINENO() in braces:

{ LINENOQ) }

https://support.posit.co/hc/en-us/articles/205612627-Debugging-with-the-RStudio-IDE
https://posit.co/products/open-source/rstudio/
https://CRAN.R-project.org/package=targets

make_fix_funs 11

Examples

FILE.R <- tempfile(fileext = ".R")

writeLines(c(”

LINENO()

LINENO()

LINENO() respects #line directives

#line 15

LINENO()

#line 1218

cat(sprintf('invalid value %d at %s, line %d\\n',
-5, try.this.path(), LINENO()))

"y, FILE.R)

if (getRversion() >= "4.3.0") {
source(FILE.R, echo = TRUE, verbose = FALSE,
max.deparse.length = Inf, keep.source = TRUE)
} else {
this.path:::.source(FILE.R, echo = TRUE, verbose = FALSE,
max.deparse.length = Inf, keep.source = TRUE)

unlink(FILE.R)

make_fix_funs Constructs Path Functions Similar to ’this.path()’

Description

make_fix_funs() accepts a pathname and constructs a set of path-related functions, similar to
this.path() and associated.

Usage

make_fix_funs(file, delayed = FALSE, local = FALSE, n = 0,
envir = parent.frame(n + 1),
matchThisEnv = getOption("topLevelEnvironment”),
srcfile = if (n) sys.parent(n) else 0)

alias for 'make_fix_funs'

path.functions(file, delayed = FALSE, local = FALSE, n = 0,
envir = parent.frame(n + 1),
matchThisEnv = getOption("topLevelEnvironment”),
srcfile = if (n) sys.parent(n) else 0)

Arguments
file a character string giving the pathname of the file or URL.
delayed TRUE or FALSE; should the normalizing of file be delayed?

local, n, envir, matchThisEnv, srcfile
See ?this.path().

12 OS.type

Value

An environment with at least the following bindings:

this.path Function with formals (original = FALSE, contents = FALSE) which returns
the normalized file path, the original file path, or the contents of the file.

this.dir Function with no formals which returns the directory of the normalized file path.

here, ici Function with formals (..., .. =@) which constructs file paths, starting with

the file’s directory.

this.proj Function with formals (..., .. = @) which constructs file paths, starting with
the project root.

rel2here, rel2proj
Functions with formals (path) which turn absolute paths into relative paths,
against the file’s directory / / project root.

LINENO Function with no formals which returns the line number of the executing expres-
sionin file.

0S. type Detect the Operating System Type

Description
0S.type is a list of TRUE // FALSE values dependent on the platform under which this package was
built.

Usage
0S.type

Value

A list with at least the following components:

AIX Built under IBM AIX.
HPUX Built under Hewlett-Packard HP-UX.
linux Built under some distribution of Linux.
darwin Built under Apple OSX and iOS (Darwin).
i0S.simulator Built under iOS in Xcode simulator.
i0s Built under iOS on iPhone, iPad, etc.
macOS Built under OSX.
solaris Built under Solaris (SunOS).
cygwin Built under Cygwin POSIX under Microsoft Windows.
windows Built under Microsoft Windows.
win64 Built under Microsoft Windows (64-bit).
win32 Built under Microsoft Windows (32-bit).
UNIX Built under a UNIX-style OS.

Source

http://web.archive.org/web/20191012035921/http://nadeausoftware.com/articles/2012/01/c_c_tip_how_use_compiler_p

http://web.archive.org/web/20191012035921/http://nadeausoftware.com/articles/2012/01/c_c_tip_how_use_compiler_predefined_macros_detect_operating_system

path.join 13

path.join Construct Path to File

Description

Construct the path to a file from components / / paths in a platform-DEPENDENT way.

Usage

path.join(...)

Arguments

character vectors.

Details

When constructing a path to a file, the last absolute path is selected and all trailing components are
appended. This is different from file.path() where all trailing paths are treated as components.

Value

A character vector of the arguments concatenated term-by-term and separated by "/".

Examples

path.join("C:", "test1")

path.join("C:/", "test1")

path.join("C:/path/to/filel"”, "/path/to/file2")
path.join("//host-name/share-name/path/to/filel”, "/path/to/file2")

path.join("C:testing”, "C:/testing”, "~", "~/testing”, "//host",
"//host/share”, "//host/share/path/to/file”, "not-an-abs-path")

path.join("c:/test1”, "c:test2”, "C:test3")

path.join("test1”, "c:/test2"”, "test3", "//host/share/test4”, "test5",
"c:/test6"”, "test7", "c:test8", "test9")

path.split Split File Path Into Individual Components

Description

Split the path to a file into components in a platform-DEPENDENT way.

14 relpath

Usage

path.split(path)
path.split.1(path)
path.unsplit(...)

Arguments
path character vector.
character vectors, or one list of character vectors.
Value

for path.split(), a list of character vectors.

for path.split.1() and path.unsplit(), a character vector.

Note

path.unsplit() is NOT the same as path. join().

Examples

path <- c(
NA

nn
’

paste@("https://raw.githubusercontent.com/ArcadeAntics/PACKAGES/",
"src/contrib/Archive/this.path/this.path_1.0.0.tar.gz"),

"\\\\host\\share\\path\\to\\file",

"\\\\host\\share\\",

"\\\\host\\share",

"C:\\path\\to\\file",

"C:path\\to\\file",

"path\\to\\file",

"\\path\\to\\file",

"~\\path\\to\\file",

paths with character encodings

“Encoding<- ("path/to/fil\xe9", "latinl"),

"C:/Users/iris/Documents/\u@3b4.R"

’

)
print(x <- path.split(path))
print(path.unsplit(x))

relpath Make a Path Relative to Another

Description

When working with this.path, you will be dealing with a lot of absolute paths. These paths are not
portable for saving within files nor tables, so convert them to relative paths with relpath().

relpath 15

Usage

relpath(path, relative.to = normalizePath(getwd(), "/", TRUE))

rel2here(path, local = FALSE, n = @, envir = parent.frame(n + 1),
matchThisEnv = getOption("topLevelEnvironment"),
srcfile = if (n) sys.parent(n) else 0)

rel2proj(path, local = FALSE, n = 0,
envir = parent.frame(n + 1),
matchThisEnv = getOption("topLevelEnvironment"),
srcfile = if (n) sys.parent(n) else 0)

Arguments
path character vector of file / / URL pathnames.
relative.to character string; the file // URL pathname to make path relative to.

local, n, envir, matchThisEnv, srcfile
See ?this.path().
Details

Tilde-expansion (see ?path.expand()) is first done on path and relative. to.

If path and relative. to are equivalent, "." will be returned. If path and relative.to have no
base in common, the normalized path will be returned.

Value

character vector of the same length as path.

Examples
Not run:
relpath(
c(
paths which are equivalent will return "."
"C:/Users/effective_user/Documents/this.path/man"”,
paths which have no base in common return as themselves
paste@("https://raw.githubusercontent.com/ArcadeAntics/",
"this.path/main/tests/sys-path-with-urls.R"),
n D : / n s
"//host-name/share-name/path/to/file”,
"C:/Users/effective_user/Documents/testing”,
"C:\\Users\\effective_user"”,
"C:/Users/effective_user/Documents/R/thispath.R"
) ’
relative.to = "C:/Users/effective_user/Documents/this.path/man”
)

End(Not run)

16 set.gui.path

set.gui.path Declare GUI'’s Active Document

Description

set.gui.path() can be used to implement this.path() for arbitrary GUIs.

Usage

set.gui.path(...)

thisPathNotExistsError(..., call. = TRUE, domain = NULL,
call = .getCurrentCall())

thisPathNotFoundError(..., call. = TRUE, domain = NULL,
call = .getCurrentCall())

Arguments

...,call., domain, call
See details.

Details

thisPathNotExistsError() and thisPathNotFoundError() are provided for use inside set.gui.path(),
and should not be used elsewhere.

If no arguments are passed to set.gui.path(), the default behaviour will be restored.

If one argument is passed to set. gui.path(), it must be a function that returns the path of the active
document in your GUI. It must accept the following arguments: (verbose, original, for.msg,
contents) (default values are unnecessary). This makes sense for a GUI which can edit and run R
code from several different documents such as RGui, RStudio, Positron, VSCode + REditorSupport,
and Emacs + ESS.

If two or three arguments are passed to set.gui.path(), they must be the name of the GUI, the
path of the active document, and optionally a function to get the contents of the document. If
provided, the function must accept at least one argument which will be the normalized path of the
document. This makes sense for a GUI which can edit and run R code from only one document
such as Jupyter and shell.

It is best to call this function as a user hook.

setHook (packageEvent("this.path"),
function(pkgname, pkgpath)

{
this.path::set.gui.path(<...>)
}, action = "prepend")

An example for a GUI which can run code from multiple documents:
evalg(envir = new.env(parent = .BaseNamespaceEnv), {

.guiname <- "myGui”
.custom_gui_path <- function(verbose, original, for.msg, contents) {

https://posit.co/products/open-source/rstudio/
https://github.com/posit-dev/positron
https://code.visualstudio.com/
https://code.visualstudio.com/docs/languages/r
https://www.gnu.org/software/emacs/
https://ess.r-project.org/
https://jupyter.org/

set.gui.path

if (verbose)
cat(”Source: document in", .guiname, "\n")

your GUI needs to know which document is active
and some way to retrieve that document from R
doc <- <.myGui_activeDocument()>

if no documents are open, 'doc' should be NULL
or some other object to represent no documents open
if (is.null(doc)) {
if (for.msg)
NA_character_
else stop(this.path::thisPathNotExistsError(
"R is running from ", .guiname, with no documents open\n”,
" (or document has no path)"))

n

}

else if (contents) {
somehow, get and return the contents of the document

<doc$contents>
}
else {
somehow, get the path of the document
path <- <doc$path>
if (nzchar(path)) {
if the path is not normalized, this will normalize it
if (isFALSE(original))
normalizePath(path, "/", TRUE)
else path
otherwise, you could just do:
path
}
else if (for.msg)
return "Untitled” possibly translated
gettext("Untitled”, domain = "RGui"”, trim = FALSE)
else
stop(this.path::thisPathNotFoundError(
"document in ", .guiname, " does not exist"))
}

3

recommended to prevent tampering

lockEnvironment(environment(), bindings = TRUE)

setHook (packageEvent("this.path"),

function(pkgname, pkgpath) {
this.path::set.gui.path(.custom_gui_path)

}, action = "prepend”)

D
An example for a GUI which can run code from only one document:

evalg(envir = new.env(parent = .BaseNamespaceEnv), {
.guiname <- "myGui”
.path <- "~/example.R"
.custom_get_contents <- function(path) {

17

18

D

Value

set.jupyter.path

get the contents of the document
readLines(path, warn = FALSE)
3
recommended to prevent tampering
lockEnvironment(environment(), bindings = TRUE)
setHook (packageEvent("this.path"), function(pkgname, pkgpath) {
this.path::set.gui.path(.guiname, .path, .custom_get_contents)
}, action = "prepend"”)
if your GUI does not have/need a .custom_get_contents
function, then this works just as well:
setHook(packageEvent("this.path”), function(pkgname, pkgpath) {
this.path::set.gui.path(.guiname, .path)
}, action = "prepend"”)

a list of the previous settings for set.gui.path(), similar to options().

set. jupyter.path Declare Executing 'Jupyter’ Notebook’s Filename

Description

this.path() does some guess work to determine the path of the executing notebook in ‘Jupyter’.
This involves listing all the files in the initial working directory, filtering those which are R note-
books, then filtering those with contents matching the top-level expression.

This could possibly select the wrong file if the same top-level expression is found in another file.
As such, you can use set. jupyter.path() to declare the executing ‘Jupyter’ notebook’s filename.

Usage

set. jupyter.path(...)

Arguments

Details

further arguments passed to path.join(). If no arguments are provided or
exactly one argument is provided that is NA or NULL, the ‘Jupyter’ path is unset.

This function may only be called from a top-level context in ‘Jupyter’. It is recommended that you
do NOT provide an absolute path. Instead, provide just the basename and the directory will be
determined by the initial working directory.

Value

character string, invisibly; the declared path for ‘Jupyter’.

https://jupyter.org/

set.sys.path 19

Examples

if you opened the file "~/file50b816a24ecl.ipynb”, the initial
working directory should be "~". You can write:

#

set.jupyter.path(”"file50b816a24ecl.ipynb")

#

and then this.path() will return "~/file50b816a24ec1.ipynb”

set.sys.path Implement ’this.path()’ For Arbitrary 'source()’-Like Functions

Description

sys.path() is implemented to work with these functions and packages:

source()

* sys.source()

debugSource() in ‘RStudio’
e compiler::loadcmp()

e utils::Sweave()

* box::use()

e knitr::knit()

e plumber: :plumb()

* shiny::runApp()

* package:targets

e testthat::source_file()

set.sys.path() can be used to implement sys.path() for any other source()-like functions.

set.env.path() and set.src.path() canbe used alongside set.sys.path() toimplement env.path()
and src.path(), thereby fully implementing this.path(). Note that set.env.path() only
makes sense if the code is being modularized, see Examples.

unset.sys.path() will undo a call to set.sys.path(). You will need to use this if you wish to
call set.sys.path() multiple times within a function.

set.sys.path.function() is a special variant of set. sys.path() to be called within callr::r()
on a function with an appropriate srcref.

with_sys.path() is a convenient way to evaluate code within the context of a file. Whereas
set.sys.path() can only be used within a function, with_sys.path() can only be used outside
a function.

See ?sys.path(local = TRUE) which returns the path of the executing script, confining the search
to the local environment in which set.sys.path() was called.

wrap. source() should not be used, save for one specific use-case. See details.

https://support.posit.co/hc/en-us/articles/205612627-Debugging-with-the-RStudio-IDE
https://posit.co/products/open-source/rstudio/
https://CRAN.R-project.org/package=targets

20

Usage

set.sys.pa
path.o
charac
file.o
conv2u
allow.
allow.
allow.
allow.
allow.
allow.
allow.
allow.
allow.
allow.
allow.
allow.
allow.

ignore.
ignore.
ignore.
ignore.
ignore.
ignore.

Functi
set.env.pa
set.src.pa
unset.sys.
set.sys.pa
with_sys.p

wrap.sourc
path.o
charac
file.o
conv2u
allow.
allow.
allow.
allow.
allow.
allow.
allow.
allow.
allow.
allow.

th(file,

nly = FALSE,

ter.only = path.only,
nly = path.only,

tf8 = FALSE,
blank.string = FALSE,
clipboard = !file.only,
stdin = !file.only,
url = !file.only,
file.uri = !path.only,
unz = !path.only,

pipe = !file.only,

terminal = !file.only,
textConnection = !file.only,
rawConnection = !file.only,
sockconn = !file.only,
servsockconn = !file.only,
customConnection = !file.only,
all = FALSE,

blank.string = ignore.all,

clipboard = ignore.all,
stdin = ignore.all,
url = ignore.all,

file.uri = ignore.all,
on = NULL, ofile, delayed = FALSE)
th(envir, matchThisEnv = getOption("topLevelEnvironment”))
th(srcfile)
path()
th.function(fun)
ath(file, expr, ...)
e(expr,
nly = FALSE,
ter.only = path.only,

nly = path.only,

tf8 = FALSE,

blank.string = FALSE,
clipboard = !file.only,
stdin = !file.only,

url = !file.only,

file.uri = !path.only,

unz = !path.only,

pipe = !file.only,

terminal = !file.only,
textConnection = !file.only,
rawConnection = !file.only,

set.sys.path

set.sys.path 21

allow.sockconn = !file.only,
allow.servsockconn = !file.only,
allow.customConnection = !file.only,
ignore.all = FALSE,
ignore.blank.string = ignore.all,
ignore.clipboard = ignore.all,
ignore.stdin = ignore.all,
ignore.url = ignore.all,
ignore.file.uri = ignore.all)

Arguments
expr for with_sys.path(), an expression to evaluate within the context of a file.
for wrap. source(), an (unevaluated) call to a source()-like function.
file a connection or a character string giving the pathname of the file or URL to read
from.
path.only must file be an existing path? This implies character.only and file.only

are TRUE and implies allow.file.uri and allow.unz are FALSE, though these
can be manually changed.

character.only must file be a character string?
file.only must file refer to an existing file?

conv2utf8 if file is a character string, should it be converted to UTF-8?
allow.blank.string

may file be a blank string, i.e. ""?
allow.clipboard

may file be "clipboard” or a clipboard connection?

allow.stdin may file be "stdin"”? Note that "stdin” refers to the C-level ‘standard input’
of the process, differing from stdin() which refers to the R-level ‘standard
input’.

allow.url may file be a URL pathname or a connection of class "url-libcurl” //

"url-wininet”?
allow.file.uri may filebea ‘file://’ URL?
allow.unz, allow.pipe, allow.terminal, allow.textConnection,
allow.rawConnection, allow. sockconn, allow. servsockconn
may file be aconnection of class "unz" // "pipe” //"terminal”//"textConnection”
// "rawConnection” // "sockconn" // "servsockconn"?
allow.customConnection
may file be a custom connection?
ignore.all, ignore.blank.string, ignore.clipboard, ignore.stdin,
ignore.url, ignore.file.uri
ignore the special meaning of these types of strings, treating it as a path instead?

Function character vector of length 1 or 2; the name of the function and package in which
set.sys.path() is called.

ofile a connection or a character string specifying the original file argument. This
overwrites the value returned by sys.path(original = TRUE).

delayed TRUE or FALSE; should the normalizing of the path be delayed? Mostly for use
with make_fix_funs() and similar.

22

set.sys.path

envir, matchThisEnv
arguments passed to topenv () to determine the top level environment in which
to assign an associated path.

srcfile source file in which to assign a pathname.
fun function with a srcref.

further arguments passed to set.sys.path().

Details

set.sys.path() should be added to the body of your source()-like function before reading / /
evaluating the expressions.

wrap.source(), unlike set.sys.path(), does not accept an argument file. Instead, an attempt
is made to extract the file from expr, after which expr is evaluated. It is assumed that the file is the
first argument of the function, as is the case with most source()-like functions. The function of
the call is evaluated, its formals() are retrieved, and then the arguments of expr are searched for a
name matching the name of the first formal argument. If a match cannot be found by name, the first
unnamed argument is taken instead. If no such argument exists, the file is assumed missing.

wrap.source() does non-standard evaluation and does some guess work to determine the file.
As such, it is less desirable than set.sys.path() when the option is available. I can think of
exactly one scenario in which wrap. source() might be preferable: suppose there is a source()-
like function sourcelike() in a foreign package (a package for which you do not have write
permission). Suppose that you write your own function in which the formals are (...) to wrap
sourcelike():

wrapper <- function (...)

{
possibly more args to wrap.source()
wrap.source(sourcelike(...))

This is the only scenario in which wrap. source() is preferable, since extracting the file from the
... list would be a pain. Then again, you could simply change the formals of wrapper() from
(...)to (file, ...). If this does not describe your exact scenario, use set.sys.path() instead.

Value

for set.sys.path(), if file is a path, then the normalized path with the same attributes, otherwise
file itself. The return value of set.sys.path() should be assigned to a variable before use,
something like:

file <- set.sys.path(file, ...)
sourcelike(file)

for set.env.path(), envir invisibly.
for set.src.path(), srcfile invisibly.
for unset.sys.path() and set.sys.path.function(), NULL invisibly.

for with_sys.path() and wrap.source(), the result of evaluating expr.

set.sys.path 23

Using ’ofile’

ofile can be used when the file argument supplied to set.sys.path() is not the same as the
file argument supplied to the source()-like function:

sourcelike <- function (file)

{
ofile <- file
if (!is.character(ofile) || length(ofile) != 1)

stop(gettextf(”'%s' must be a character string”, "file"))

if the file exists, do nothing
if (file.exists(file)) {
}
look for the file in the home directory
if it exists, do nothing
else if (file.exists(file <- this.path::path.join("~", ofile))) {
3
you could add other directories to look in,
but this is good enough for an example
else stop(gettextf(”'%s' is not an existing file"”, ofile))
file <- this.path::set.sys.path(file, ofile = ofile)
exprs <- parse(n = -1, file = file)
for (i in seq_along(exprs)) eval(exprs[i], envir)
invisible()

}

Examples
FILE.R <- tempfile(fileext = ".R")

this.path:::.writeCode({
this.path::sys.path(verbose = TRUE)
try(this.path::env.path(verbose = TRUE))
this.path::src.path(verbose = TRUE)
this.path::this.path(verbose = TRUE)

}, FILE.R)

here we have a source-like function, suppose this
function is in a package for which you have write permission
sourcelike <- function (file, envir = parent.frame())
{
ofile <- file
file <- set.sys.path(file, Function = "sourcelike")
lines <- readlLines(file, warn = FALSE)
filename <- sys.path(local = TRUE, for.msg = TRUE)
isFile <- lis.na(filename)
if (isFile) {
timestamp <- file.mtime(filename)[1]
in case 'ofile' is a URL pathname / / 'unz' connection
if (is.na(timestamp))
timestamp <- Sys.time()
3
else {
filename <- if (is.character(ofile)) ofile else "<connection>"
timestamp <- Sys.time()

24

3

srcfile <- srcfilecopy(filename, lines, timestamp, isFile)
set.src.path(srcfile)

exprs <- parse(text = lines, srcfile = srcfile, keep.source = FALSE)
invisible(source.exprs(exprs, evaluated = TRUE, envir = envir))

sourcelike(FILE.R)
sourcelike(conn <- file(FILE.R)); close(conn)

here we have another source-like function, suppose this function
is in a foreign package for which you do not have write permission
sourcelike2 <- function (pathname, envir = globalenv())
{

if (!(is.character(pathname) && file.exists(pathname)))

stop(gettextf("'%s' is not an existing file”,
pathname, domain = "R-base"))

envir <- as.environment(envir)

lines <- readLines(pathname, warn = FALSE)

srcfile <- srcfilecopy(pathname, lines, isFile = TRUE)

exprs <- parse(text = lines, srcfile = srcfile, keep.source = FALSE)

invisible(source.exprs(exprs, evaluated = TRUE, envir = envir))

the above function is similar to sys.source(), and it
expects a character string referring to an existing file
#it

with the following, you should be able

to use 'sys.path()' within 'FILE.R':
wrap.source(sourcelike2(FILE.R), path.only = TRUE)

with R >= 4.1.0, use the forward pipe operator '|>' to
make calls to 'wrap.source' more intuitive:
sourcelike2(FILE.R) |> wrap.source(path.only = TRUE)

'wrap.source' can recognize arguments by name, so they

do not need to appear in the same order as the formals

wrap.source(sourcelike2(envir = new.env(), pathname = FILE.R),
path.only = TRUE)

it it much easier to define a new function to do this
sourcelike3 <- function (...)
wrap.source(sourcelike2(...), path.only = TRUE)

the same as before
sourcelike3(FILE.R)

however, this is preferable:
sourcelike4 <- function (pathname, ...)

set.sys.path

pathname is now normalized
pathname <- set.sys.path(pathname, path.only = TRUE)
sourcelike2(pathname = pathname, ...)

3
sourcelike4(FILE.R)

perhaps you wish to run several scripts in the same function
fun <- function (paths, ...)
{
for (pathname in paths) {
pathname <- set.sys.path(pathname, path.only = TRUE)
sourcelike2(pathname = pathname, ...)
unset.sys.path(pathname)

here we have a source-like function which modularizes its code
sourcelike5 <- function (file)

{
ofile <- file
file <- set.sys.path(file, Function = "sourcelike5")
lines <- readLines(file, warn = FALSE)
filename <- sys.path(local = TRUE, for.msg = TRUE)
isFile <- !is.na(filename)
if (isFile) {
timestamp <- file.mtime(filename)[1]
in case 'ofile' is a URL pathname / / 'unz' connection
if (is.na(timestamp))
timestamp <- Sys.time()
}
else {
filename <- if (is.character(ofile)) ofile else "<connection>"
timestamp <- Sys.time()
}
srcfile <- srcfilecopy(filename, lines, timestamp, isFile)
set.src.path(srcfile)
envir <- new.env(hash = TRUE, parent = .BaseNamespaceEnv)
envir$.packageName <- filename
oopt <- options(topLevelEnvironment = envir)
on.exit(options(oopt))
set.env.path(envir)
exprs <- parse(text = lines, srcfile = srcfile, keep.source = FALSE)
source.exprs(exprs, evaluated = TRUE, envir = envir)
envir
3

sourcelike5(FILE.R)

the code can be made much simpler in some cases
sourcelike6 <- function (file)

{

we expect a character string refering to a file

25

26 shFILE

ofile <- file

filename <- set.sys.path(file, path.only = TRUE, ignore.all = TRUE,
Function = "sourcelike6")

lines <- readLines(filename, warn = FALSE)

timestamp <- file.mtime(filename)[1]

srcfile <- srcfilecopy(filename, lines, timestamp, isFile = TRUE)

set.src.path(srcfile)

envir <- new.env(hash = TRUE, parent = .BaseNamespaceEnv)

envir$.packageName <- filename

oopt <- options(topLevelEnvironment = envir)

on.exit(options(oopt))

set.env.path(envir)

exprs <- parse(text = lines, srcfile = srcfile, keep.source = FALSE)

source.exprs(exprs, evaluated = TRUE, envir = envir)

envir

sourcelike6(FILE.R)

unlink(FILE.R)

shFILE Get 'FILE’ Provided to R by a Shell

Description
Look through the command line arguments, extracting ‘FILE’ from either of the following: ‘-f’
‘FILE’ or ‘--file=FILE’

Usage

shFILE(original = FALSE, for.msg = FALSE, default, else.)

Arguments
original TRUE, FALSE, or NA; should the original or the normalized path be returned? NA
means the normalized path will be returned if it has already been forced, and the
original path otherwise.
for.msg TRUE or FALSE; do you want the path for the purpose of printing a diagnostic
message / / warning / / error? for.msg = TRUE will ignore original = FALSE,
and will use original = NA instead.
default if ‘FILE’ is not found, this value is returned.
else. missing or a function to apply if ‘FILE’ is found. See tryCatch2() for inspira-
tion.
Value

character string, or default if ‘FILE’ was not found.

startup_files 27

Note

The original and the normalized path are saved; this makes them faster when called subsequent
times.

On Windows, the normalized path will use / as the file separator.

See Also

this.path(), here()

Examples

FILE.R <- tempfile(fileext = ".R")
this.path:::.writeCode({
this.path:::.withAutoprint({

shFILE(original = TRUE)

ShFILE()

shFILE(default = {

stop(”since 'FILE.R' will be found,\n",
"this error will not be thrown")

D)
}, spaced = TRUE, verbose = FALSE, width.cutoff = 60L)
3}, FILE.R)
this.path:::.Rscript(
c("--default-packages=this.path”, "--vanilla”, FILE.R)

)
unlink(FILE.R)

for (expr in c("shFILE(original = TRUE)",
"shFILE(original = TRUE, default = NULL)",
"ShFILE()",
"shFILE(default = NULL)"))

{
cat("\n\n")
this.path:::.Rscript(

c("--default-packages=this.path”, "--vanilla”, "-e", expr)

)

3

startup_files Files Related to Initialization of the R Session
Description

site.file() and init.file() return the normalized paths of the site-wide startup profile file and
the user profile that were run at startup.

with_init.file() declares that the current script is the user profile then evaluates and auto-prints
the sub-expressions of its argument.

28

Usage

site.file(original
init.file(original =

= FALSE, for.msg
FALSE, for.msg

with_site.file(expr)
with_init.file(expr)

Arguments

original, for.msg, default, else.
Same as shFILE().

expr

Value

this.path

FALSE, default, else.)
FALSE, default, else.)

a braced expression, the sub-expressions of which to evaluate and auto-print.

for site.file() and init.file(), a character string, or default if it was not found.

forwith_site.file() and with_init.file(), NULL invisibly.

Note

with_site.file() is unneeded now that the site-wide startup profile file can be automatically

detected.

Examples

#i#
H#
#i
<expr 1>
<expr 2>
<...>

#i#
##
#i
#Hi#

instead of writing:

write this:

this.path::with_init.file({
<expr 1>

<expr 2>

#H<...>

3)

if you wish to use this.path() in a user profile,

this.path

Determine Script’s Filename

Description

this.path() returns the normalized path of the script in which it was written.

this.dir () returns the directory of this.path().

this.path 29

Usage

this.path(verbose = getOption("”verbose”), original = FALSE,
for.msg = FALSE, contents = FALSE, local = FALSE,
n = @, envir = parent.frame(n + 1),
matchThisEnv = getOption("topLevelEnvironment”),
srcfile = if (n) sys.parent(n) else 0,
default, else.)

this.dir(verbose = getOption("verbose”), local = FALSE,
n = 0, envir = parent.frame(n + 1),
matchThisEnv = getOption("topLevelEnvironment”),
srcfile = if (n) sys.parent(n) else 0,
default, else.)

Arguments

verbose TRUE or FALSE; should the method in which the path was determined be printed?

original TRUE, FALSE, or NA; should the original or the normalized path be returned? NA
means the normalized path will be returned if it has already been forced, and the
original path otherwise.

for.msg TRUE or FALSE; do you want the path for the purpose of printing a diagnostic
message / / warning / / error? This will return NA_character_ in most cases
where an error would have been thrown.

for.msg = TRUE will ignore original = FALSE, and will use original = NA in-
stead.

contents TRUE or FALSE; should the contents of the script be returned instead?

In ‘Jupyter’, a list of character vectors will be returned, the contents separated
into cells. Otherwise, a character vector will be returned. If the executing script
cannot be determined and for.msg is TRUE, NULL will be returned.

You could use as.character(unlist(this.path(contents = TRUE))) if you
require a character vector.

This is intended for logging purposes. This is useful in ‘Rgui’, ‘RStudio’, ‘VS-
Code’, and ‘Emacs’ when the source document has contents but no path.

local TRUE or FALSE; should the search for the executing script be confined to the local
environment in which set.sys.path() was called?

n the number of additional generations to go back. By default, this.path() will
look for a path based on the srcref of the call to this.path() and the environ-
ment in which this.path() was called. This can be changed to be based on the
srcref of the call and the calling environment n generations up the stack. See
section Argument *n’ for more details.

envir, matchThisEnv

arguments passed to topenv () to determine the top level environment in which
to search for an associated path.

srcfile source file in which to search for a pathname, or an object containing a source
file. This includes a source reference, a call, an expression object, or a closure.

default this value is returned if there is no executing script.

else. function to apply if there is an executing script. See tryCatch2() for inspira-

tion.

30 this.path

Details

this.path() starts by examining argument srcfile. It looks at the bindings filename and wd to
determine the associated file path. A source file of class "srcfilecopy” in which binding isFile
is FALSE will be ignored. A source file of class "srcfilealias” will use the aliased filename in

determining the associated path. Filenames such as "", "clipboard”, and "stdin" will be ignored
since they do not refer to files.

If it does not find a path associated with srcfile, it will next examine arguments envir and
matchThisEnv. Specifically, it calculates topenv(envir, matchThisEnv) then looks for an as-
sociated path. It will find a path associated with the top level environment in two ways:

 from a package:box module’s namespace

¢ from an attribute "path”

If it does not find an associated path with envir and matchThisEnv, it will next examine the call
stack looking for a source call; a call to one of these functions:

e source()

e sys.source()

e debugSource() in ‘RStudio’
e compiler::loadcmp()

e utils::Sweave()

* box::use()

e knitr::knit()

e plumber: :plumb()

e shiny: :runApp()

e targets::tar_callr_inner_try()
targets::tar_load_globals()
targets: :tar_source()
targets: :tar_workspace()

e testthat::source_file()

If a source call is found, the file argument is returned from the function’s evaluation environment. If
you have your own source()-like function that you would like to be recognized by this.path(),
please use set.sys.path() or contact the package maintainer so that it can be implemented.

If no source call is found up the calling stack, it will next examine the GUI in use. If R is running
from:

a shell, such as the Windows command-line / / Unix terminal then the shell arguments are searched
for ‘*~f” ‘FILE’ or ‘--file=FILE’ (the two methods of taking input from ‘FILE’) (‘*-f” ‘-” and
‘--file=-" are ignored). The last ‘FILE’ is extracted and returned. If no arguments of either
type are supplied, an error is thrown.

3

If R is running from a shell under a Unix-alike with ‘-g’ ‘Tk’ or ‘--gui=Tk’, an error is
thrown. ‘Tk’ does not make use of its ‘~f” ‘FILE’, ‘--file=FILE’ arguments.

‘Rgui’ then the source document’s filename (the document most recently interacted with) is re-
turned (at the time of evaluation). Please note that minimized documents WILL be included
when looking for the most recently used document. It is important to not leave the current
document (either by closing the document or interacting with another document) while any
calls to this.path() have yet to be evaluated in the run selection. If no documents are open
or the source document does not exist (not saved anywhere), an error is thrown.

https://CRAN.R-project.org/package=box
https://support.posit.co/hc/en-us/articles/205612627-Debugging-with-the-RStudio-IDE
https://posit.co/products/open-source/rstudio/

this.path 31

‘RStudio’ then the active document’s filename (the document in which the cursor is active) is
returned (at the time of evaluation). If the active document is the R console, the source docu-
ment’s filename (the document open in the current tab) is returned (at the time of evaluation).
Please note that the source document will NEVER be a document open in another window
(with the Show in new window button). Please also note that an active document open in
another window can sometimes lose focus and become inactive, thus returning the incorrect
path. Tt is best NOT to not run R code from a document open in another window. It is im-
portant to not leave the current tab (either by closing or switching tabs) while any calls to
this.path() have yet to be evaluated in the run selection. If no documents are open or the
source document does not exist (not saved anywhere), an error is thrown.

‘Positron’ then the source document’s filename is returned (at the time of evaluation). It is im-
portant to not leave the current tab (either by closing or switching tabs) while any calls to
this.path() have yet to be evaluated in the run selection. If no documents are open or the
source document does not exist (not saved anywhere), an error is thrown.

‘VSCode’ + ‘REditorSupport’ then the source document’s filename is returned (at the time of
evaluation). It is important to not leave the current tab (either by closing or switching tabs)
while any calls to this.path() have yet to be evaluated in the run selection. If no documents
are open or the source document does not exist (not saved anywhere), an error is thrown.

‘Jupyter’ then the source document’s filename is guessed by looking for R notebooks in the initial
working directory, then searching the contents of those files for an expression matching the
top-level expression. Please be sure to save your notebook before using this.path(), or
explicitly use set. jupyter.path().

‘Emacs’ + ‘ESS’ then the source document’s filename is returned (at the time of evaluation).
‘Emacs’ must be running as a server, either by running (server-start) (consider adding
to your ‘~/.emacs’ file) or typing M-x server-start. It is important to not leave the current
window (either by closing or switching buffers) while any calls to this.path() have yet to
be evaluated in the run selection. If multiple frames are active, this.path() will pick the first
frame containing the corresponding R session.

If multiple ‘Emacs’ sessions are active, this.path() will only work in the primary session
due to limitations in ‘emacsclient.exe’. If you want to run multiple R sessions, it is better to
run one ‘Emacs’ session with multiple frames, one R session per frame. Use M-x make-frame
to make a new frame, or C-x 5 f to visit a file in a new frame.

Additionally, never use C-c C-b to send the current buffer to the R process. This copies the
buffer contents to a new file which is then source()-ed. The source references now point
to the wrong file. Instead, use C-x h to select the entire buffer then C-c C-r to evaluate the
selection.

‘AQUA’ then the executing script’s path cannot be determined. Until such a time that there is a
method for requesting the path of an open document, consider using ‘RStudio’, ‘Positron’,
‘VSCode’, or ‘Emacs’.

If R is running in another manner, an error is thrown.

If your GUI of choice is not implemented with this.path(), please contact the package maintainer
so that it can be implemented.

Value

default if there is no executing script.

If contents is TRUE, there are a variety of return values. If a custom GUI is implemented with
set.gui.path(), any R object. If the executing script cannot be determined and for.msg is TRUE,
then NULL. In Jupyter, a list of character vectors, the contents separated into cells. Otherwise, a
character vector.

https://posit.co/products/open-source/rstudio/
https://github.com/posit-dev/positron
https://code.visualstudio.com/
https://code.visualstudio.com/docs/languages/r
https://jupyter.org/
https://www.gnu.org/software/emacs/
https://ess.r-project.org/
https://jupyter.org/

32 this.path
Otherwise, a character string.

Argument ’n’

By default, this.path() will look for a path based on the srcref of the call to this.path() and
the environment in which this.path() was called. For example:

{

#line 1 "filel.R"

fun <- function() this.path::this.path(original = TRUE)
fun()

3

{
#line 1 "file2.R"

fun()
3

Both of these will return "file1.R" because that is where the call to this.path() is written.

But suppose we do not care to know where this.path() is called, but instead want to know where
fun() is called. Pass argument n = 1; this.path() will inspect the call and the calling environment
one generation up the stack:

{
#line 1 "filel.R"

fun <- function() this.path::this.path(original = TRUE, n = 1)
fun()
}

{
#line 1 "file2.R"

fun()
3

These will return "file1.R" and "file2.R", respectively, because those are where the calls to
fun() are written.

But now suppose we wish to make a second function that uses fun(). We do not care to know
where fun() is called, but instead want to know where fun2() is called. Add a formal argument n
= 0 to each function and pass n = n + 1 to each sub-function:

{
#line 1 "filel.R"

fun <- function(n = @) {
this.path::this.path(original = TRUE, n = n + 1)

3

fun()

}

this.path 33

#line 1 "file2.R"

fun2 <- function(n = @) fun(n =n + 1)
list(fun = fun(), fun2 = fun2())

}

{
#line 1 "file3.R"

fun3 <- function(n = @) fun2(n = n + 1)
list(fun = fun(), fun2 = fun2(), fun3 = fun3())
}

Within each file, all these functions will return the path in which they are called, regardless of how
deep this.path() is called.

Note

If you need to use this.path() inside a user profile, please use with_init.file(). i.e. instead
of writing:

<expr 1>
<expr 2>
<...>

write this:

this.path::with_init.file({
<expr 1>

<expr 2>

<...>

D

See Also

ShFILE()
set.sys.path()

Examples

FILET.R <- tempfile(fileext = ".R")
writeLines("writeLines(sQuote(this.path::this.path()))", FILE1.R)

'this.path()' works with 'source()'
source(FILET.R)

'this.path()' works with 'sys.source()'
sys.source(FILET.R, envir = environment())

'this.path()' works with 'debugSource()' in 'RStudio'
if (.Platform$GUI == "RStudio")
get("debugSource”, "tools:rstudio”, inherits = FALSE)(FILE1.R)

'this.path()' works with 'testthat::source_file()'
if (requireNamespace("testthat"))

34 try.this.path

testthat::source_file(FILE1.R, chdir = FALSE, wrap = FALSE)

'this.path()' works with 'compiler::loadcmp()'
if (requireNamespace("compiler”)) {
FILE2.Rc <- tempfile(fileext = ".Rc")
compiler::cmpfile(FILE1.R, FILE2.Rc)
compiler::loadcmp(FILE2.Rc)
unlink(FILE2.Rc)
3

'this.path()' works with 'Rscript’
this.path:::.Rscript(c(”--default-packages=NULL", "--vanilla”, FILE1.R))

'this.path()' also works when 'source()'-ing a URL
(included tryCatch in case an internet connection is not available)
tryCatch({
source(paste@("https://raw.githubusercontent.com/ArcadeAntics/",
"this.path/main/tests/sys-path-with-urls.R"))
}, condition = this.path:::.cat_condition)

unlink(FILE1.R)

try.this.path Attempt to Determine Script’s Filename

Description
try.this.path() attempts to return this.path(), returning this.path(original = TRUE) if
that fails, returning NA_character_ if that fails as well.

Usage

try.this.path(contents = FALSE, local = FALSE, n = 0,
envir = parent.frame(n + 1),
matchThisEnv = getOption("topLevelEnvironment”),
srcfile = if (n) sys.parent(n) else 0)

try.shFILE()

Arguments

contents, local, n, envir, matchThisEnv, srcfile
See ?this.path().

Details

This should NOT be used to construct file paths against the script’s directory. This should exclu-
sively be used for diagnostic messages / / warnings / / errors / / logging. The returned path may not
exist, may be relative instead of absolute, or may be undefined.

Value

character string.

try.this.path

Examples

try.shFILE()
try.this.path()
try.this.path(contents = TRUE)

35

Index

* package
this.path-package, 2

set.gui.path, 16, 31
set. jupyter.path, 18, 31

set.src.path (set.sys.path), 19
basename2, 3, 4 set.sys.path, 3, 19, 29, 30, 33
shFILE, 3, 26, 28, 33
site.file (startup_files), 27
splitext, 3
splitext (ext),7
src.path, 19
startup_files, 27
sys.path, 19, 21

check.dir (check.path), 5
check.path, 5
check.proj (check.path), 5

dirname2, 3
dirname2 (basename2), 4

:Ca;:iﬁ’ ?9 this.dir, 3,6, 8
env-pat this.dir (this.path), 28

ext<- (ext),7 this.path, 3,5, 6,9-11, 15, 16, 18, 19, 27,

28, 34
here. 3. 8. 27 this.path-package, 2
this.proj, 3
ici (here), 8 this.proj (here), 8
init.file (startup_files), 27 thisPathNotExistsError (set.gui.path),
16
LINENO, 3, 10 thisPathNotFoundError (set.gui.path), 16
try.shFILE (try.this.path), 34
make_fix_file (Enhances), 6 try.this.path, 34
make_fix_funs, 11, 21 tryCatch2, 29
0S.type, 12 unset.sys.path (set.sys.path), 19
path.functions (make_fix_funs), 11 with_init.file, 3, 33

path.join, 3,5, 9,13, 14, I8 with_init.file (startup_files), 27
path.split, 3, 13 with_script_path (Enhances), 6
path.split.1,3 with_site.file (startup_files), 27
path.unsplit, 3 with_sys.path (set.sys.path), 19
path.unsplit (path.split), 13 wrap.source (set.sys.path), 19

rel2here, 3

rel2here (relpath), 14
rel2proj, 3

rel2proj (relpath), 14
relpath, 3, 14
removeext, 3
removeext (ext), 7
reset.proj (here), 8

set.env.path (set.sys.path), 19

36

	this.path-package
	basename2
	check.path
	Enhances
	ext
	here
	LINENO
	make_fix_funs
	OS.type
	path.join
	path.split
	relpath
	set.gui.path
	set.jupyter.path
	set.sys.path
	shFILE
	startup_files
	this.path
	try.this.path
	Index

