| Type: | Package | 
| Title: | Tools for Handling Extraction of Features from Time Series | 
| Version: | 0.8.2 | 
| Date: | 2025-07-29 | 
| Maintainer: | Trent Henderson <then6675@uni.sydney.edu.au> | 
| Description: | Consolidates and calculates different sets of time-series features from multiple 'R' and 'Python' packages including 'Rcatch22' Henderson, T. (2021) <doi:10.5281/zenodo.5546815>, 'feasts' O'Hara-Wild, M., Hyndman, R., and Wang, E. (2021) https://CRAN.R-project.org/package=feasts, 'tsfeatures' Hyndman, R., Kang, Y., Montero-Manso, P., Talagala, T., Wang, E., Yang, Y., and O'Hara-Wild, M. (2020) https://CRAN.R-project.org/package=tsfeatures, 'tsfresh' Christ, M., Braun, N., Neuffer, J., and Kempa-Liehr A.W. (2018) <doi:10.1016/j.neucom.2018.03.067>, 'TSFEL' Barandas, M., et al. (2020) <doi:10.1016/j.softx.2020.100456>, and 'Kats' Facebook Infrastructure Data Science (2021) https://facebookresearch.github.io/Kats/. | 
| BugReports: | https://github.com/hendersontrent/theft/issues | 
| License: | MIT + file LICENSE | 
| Encoding: | UTF-8 | 
| LazyData: | true | 
| Depends: | R (≥ 3.5.0) | 
| Imports: | utils, stats, rlang, dplyr, tidyr, purrr, tsibble, fabletools, feasts, tsfeatures, Rcatch22, reticulate, R.matlab | 
| Suggests: | lifecycle, cachem, bslib, knitr, rmarkdown, pkgdown, testthat | 
| RoxygenNote: | 7.3.2 | 
| VignetteBuilder: | knitr | 
| URL: | https://hendersontrent.github.io/theft/ | 
| NeedsCompilation: | no | 
| Packaged: | 2025-07-29 08:42:59 UTC; trenthenderson | 
| Author: | Trent Henderson [cre, aut], Annie Bryant [ctb] | 
| Repository: | CRAN | 
| Date/Publication: | 2025-07-29 10:40:02 UTC | 
Compute features on an input time series dataset
Description
Compute features on an input time series dataset
Usage
calculate_features(
  data,
  feature_set = c("catch22", "feasts", "tsfeatures", "kats", "tsfresh", "tsfel",
    "quantiles", "moments"),
  features = NULL,
  catch24 = FALSE,
  tsfresh_cleanup = FALSE,
  use_compengine = FALSE,
  seed = 123,
  z_score = FALSE,
  n_jobs = 0,
  warn = TRUE
)
Arguments
| data | 
 | 
| feature_set | 
 | 
| features | named  | 
| catch24 | 
 | 
| tsfresh_cleanup | 
 | 
| use_compengine | 
 | 
| seed | 
 | 
| z_score | 
 | 
| n_jobs | 
 | 
| warn | 
 | 
Value
object of class feature_calculations that contains the summary statistics for each feature
Author(s)
Trent Henderson
Examples
featMat <- calculate_features(data = simData, 
  feature_set = "catch22")
Check for presence of NAs and non-numerics in a vector
Description
Check for presence of NAs and non-numerics in a vector
Usage
check_vector_quality(x)
Arguments
| x | input  | 
Value
Boolean of whether the data is good to extract features on or not
Author(s)
Trent Henderson
All features available in theft in tidy format
Description
The variables include:
Usage
feature_list
Format
A tidy data frame with 2 variables:
- feature_set
- Name of the set the feature is from 
- feature
- Name of the feature 
Communicate to R the Python virtual environment containing the relevant libraries for calculating features
Description
Communicate to R the Python virtual environment containing the relevant libraries for calculating features
Usage
init_theft(venv)
Arguments
| venv | 
 | 
Value
no return value; called for side effects
Author(s)
Trent Henderson
Examples
## Not run: 
install_python_pkgs("theft-test")
init_theft("theft-test")
## End(Not run)
Download and install Kats from Python into a new virtual environment
Description
Download and install Kats from Python into a new virtual environment
Usage
install_kats(venv, python)
Arguments
| venv | 
 | 
| python | 
 | 
Value
no return value; called for side effects
Author(s)
Trent Henderson
Examples
## Not run: 
install_kats("theft-test", "/usr/local/bin/python3.10")
## End(Not run)
Download and install tsfresh, TSFEL, and Kats from Python into a new virtual environment
Description
Download and install tsfresh, TSFEL, and Kats from Python into a new virtual environment
Usage
install_python_pkgs(venv, python)
Arguments
| venv | 
 | 
| python | 
 | 
Value
no return value; called for side effects
Author(s)
Trent Henderson
Examples
## Not run: 
install_python_pkgs("theft-test", "/usr/local/bin/python3.10")
## End(Not run)
Download and install TSFEL from Python into a new virtual environment
Description
Download and install TSFEL from Python into a new virtual environment
Usage
install_tsfel(venv, python)
Arguments
| venv | 
 | 
| python | 
 | 
Value
no return value; called for side effects
Author(s)
Trent Henderson
Examples
## Not run: 
install_tsfel("theft-test", "/usr/local/bin/python3.10")
## End(Not run)
Download and install tsfresh from Python into a new virtual environment
Description
Download and install tsfresh from Python into a new virtual environment
Usage
install_tsfresh(venv, python)
Arguments
| venv | 
 | 
| python | 
 | 
Value
no return value; called for side effects
Author(s)
Trent Henderson
Examples
## Not run: 
install_tsfresh("theft-test", "/usr/local/bin/python3.10")
## End(Not run)
Calculate a kurtosis of a vector
Description
Calculate a kurtosis of a vector
Usage
kurtosis(y)
Arguments
| y | 
 | 
Value
numeric scalar of kurtosis
Author(s)
Trent Henderson
Calculate a basic set of the four moments of the distribution
Description
Calculate a basic set of the four moments of the distribution
Usage
moments(y)
Arguments
| y | 
 | 
Value
data.frame of results
Author(s)
Trent Henderson
Load in hctsa formatted MATLAB files of time series data into a tidy format ready for feature extraction
Description
Load in hctsa formatted MATLAB files of time series data into a tidy format ready for feature extraction
Usage
process_hctsa_file(data)
Arguments
| data | 
 | 
Value
an object of class data.frame in tidy format
Author(s)
Trent Henderson
Calculate a basic set of quantiles for an input time-series vector
Description
Calculate a basic set of quantiles for an input time-series vector
Usage
quantiles(y, quantiles = seq(0.01, 1, by = 0.01))
Arguments
| y | 
 | 
| quantiles | 
 | 
Value
data.frame of results
Author(s)
Trent Henderson
Sample of randomly-generated time series to produce function tests and vignettes
Description
The variables include:
Usage
simData
Format
A tidy tsibble with 4 variables:
- id
- Unique identifier for the time series 
- timepoint
- Time index 
- values
- Value 
- process
- Group label for the type of time series 
Calculate a skewness of a vector
Description
Calculate a skewness of a vector
Usage
skewness(y)
Arguments
| y | 
 | 
Value
numeric scalar of skewness
Author(s)
Trent Henderson
Tools for Handling Extraction of Features from Time-series
Description
Tools for Handling Extraction of Features from Time-series