Package ‘textTinyR’

December 4, 2023

Type Package

Title Text Processing for Small or Big Data Files
Version 1.1.8

Date 2023-12-04

BugReports https://github.com/mlampros/textTinyR/issues

URL https://github.com/mlampros/textTinyR

Description It offers functions for splitting, parsing, tokenizing and creating a vocabu-
lary for big text data files. Moreover, it includes functions for building a document-term ma-
trix and extracting information from those (term-associations, most frequent terms). It also em-
bodies functions for calculating token statistics (collocations, look-up tables, string dissimilari-
ties) and functions to work with sparse matrices. Lastly, it includes functions for Word Vec-
tor Representations (i.e. 'GloVe', 'fasttext’) and incorporates functions for the calculation of (pair-
wise) text document dissimilarities. The source code is based on 'C++11' and ex-
ported in R through the 'Repp’, 'ReppArmadillo’ and 'BH' packages.

License GPL-3
Copyright inst/COPYRIGHTS

SystemRequirements libarmadillo: apt-get install -y libarmadillo-dev
(deb)

Encoding UTF-8

Depends R(>= 3.2.3), Matrix

Imports Rcpp (>=0.12.10), R6, data.table, utils

LinkingTo Rcpp, ReppArmadillo (>=0.7.8), BH

Suggests testthat, covr, knitr, rmarkdown

VignetteBuilder knitr

RoxygenNote 7.2.3

NeedsCompilation yes

Author Lampros Mouselimis [aut, cre] (<https://orcid.org/0000-0002-8024-1546>)
Maintainer Lampros Mouselimis <mouselimislampros@gmail.com>
Repository CRAN

Date/Publication 2023-12-04 17:20:02 UTC

https://github.com/mlampros/textTinyR/issues
https://github.com/mlampros/textTinyR
https://orcid.org/0000-0002-8024-1546

2 batch_compute

R topics documented:
batch_compute e 2
big_tokenize_transform oL 3
DYteS_CONVEITEr o v o it et e e e e e e e e e e 9
cluster_frequency 10
cosine_diStancCe e e e e e 11
COS_TEXT e e e e e e 12
Count_ROWS e 13
dense_2Sparse e e e e e 14
dice_distance e e 14
dims_of word_vecs e 15
Doc2Vec e e e 16
JACCARD_DICE e e 18
levenshtein_distance e e e 19
load_sparse_binary 20
Matrix_Sparsity e e e e e e 21
read_charaCters e e e 21
TEAd_TOWS o o i e e e e e e e e 22
save_sparse_binary 23
select_predictors oL e e e e e e e 23
sparse_Means e 25
SPArSE_SUMS . .« . v v v vt e e e e e e e e e e e e e e e 25
Sparse_term_MAtriX o v v v v i e e e e e e e e e e e e e 26
TEXT_DOC_DISSIM e e e e e e e e 32
text_file_parser 33
EXE_INIEISECt o o e i e 35
tokenize_transform_text e e e e 37
tokenize_transform_vec_docs e e 41
OKEN_SLAtS o e 44
utf_locale e e e e e 49
vocabulary_parser L e e e e 50

Index 54

batch_compute Compute batches
Description

Compute batches

Usage

batch_compute(n_rows, n_batches)

big_tokenize_transform 3

Arguments

Nn_rows a numeric specifying the number of rows

n_batches a numeric specifying the number of output batches

Value

a list

Examples

library(textTinyR)

btch = batch_compute(n_rows = 1000, n_batches = 10)

big_tokenize_transform
String tokenization and transformation for big data sets

Description

String tokenization and transformation for big data sets

String tokenization and transformation for big data sets

Usage

utl <- big_tokenize_transform$new(verbose = FALSE)

Details

the big_text_splitter function splits a text file into sub-text-files using either the batches parameter
(big-text-splitter-bytes) or both the batches and the end_query parameter (big-text-splitter-query).
The end_query parameter (if not NULL) should be a character string specifying a word that appears
repeatedly at the end of each line in the text file.

the big_text_parser function parses text files from an input folder and saves those processed files
to an output folder. The big_text_parser is appropriate for files with a structure using the start- and
end- query parameters.

the big_text_tokenizer function tokenizes and transforms the text files of a folder and saves those
files to either a folder or a single file. There is also the option to save a frequency vocabulary of
those transformed tokens to a file.

the vocabulary_accumulator function takes the resulted vocabulary files of the big_text_tokenizer
and returns the vocabulary sums sorted in decreasing order. The parameter max_num_chars limits
the number of the corpus using the number of characters of each word.

The ngram_sequential or ngram_overlap stemming method applies to each single batch and not to
the whole corpus of the text file. Thus, it is possible that the stems of the same words for randomly
selected batches might differ.

Methods

big_tokenize_transform

big_tokenize_transform$new(verbose = FALSE)

vocabulary_accumulator(input_path_folder =NULL, vocabulary_path_file = NULL, max_num_chars = 100)

Methods

Public methods:

e big_tokenize_transform$new()

* big_tokenize_transform$big_text_splitter()

* big_tokenize_transform$big_text_parser()

* big_tokenize_transform$big_text_tokenizer()

* big_tokenize_transform$vocabulary_accumulator()
e big_tokenize_transform$clone()

Method new():

Usage:
big_tokenize_transform$new(verbose = FALSE)

Arguments:
verbose either TRUE or FALSE. If TRUE then information will be printed in the console

Method big_text_splitter():

Usage:
big_tokenize_transform$big_text_splitter(
input_path_file = NULL,
output_path_folder = NULL,
end_query = NULL,
batches = NULL,
trimmed_line = FALSE
)

Arguments:

input_path_file a character string specifying the path to the input file

big_tokenize_transform 5

output_path_folder a character string specifying the folder where the output files should be
saved

end_query a character string. The end_query is the last word of the subset of the data and
should appear frequently at the end of each line in the text file.

batches a numeric value specifying the number of batches to use. The batches will be used to
split the initial data into subsets. Those subsets will be either saved in files (big_text_splitter
function) or will be used internally for low memory processing (big_text_tokenizer func-
tion).

trimmed_line either TRUE or FALSE. If FALSE then each line of the text file will be trimmed
both sides before applying the start_query and end_query

Method big_text_parser():

Usage:

big_tokenize_transform$big_text_parser(
input_path_folder = NULL,
output_path_folder = NULL,
start_query = NULL,
end_query = NULL,
min_lines = 1,
trimmed_line = FALSE

)

Arguments:

input_path_folder a character string specifying the folder where the input files are saved

output_path_folder a character string specifying the folder where the output files should be
saved

start_query a character string. The start_qguery is the first word of the subset of the data and
should appear frequently at the beginning of each line int the text file.

end_query a character string. The end_query is the last word of the subset of the data and
should appear frequently at the end of each line in the text file.

min_lines anumeric value specifying the minimum number of lines. For instance if min_lines
= 2, then only subsets of text with more than 1 lines will be kept.

trimmed_line either TRUE or FALSE. If FALSE then each line of the text file will be trimmed
both sides before applying the start_query and end_query

Method big_text_tokenizer():
Usage:
big_tokenize_transform$big_text_tokenizer(

input_path_folder = NULL,

batches = NULL,

read_file_delimiter = "\n",

to_lower = FALSE,
to_upper = FALSE,
utf_locale = "",
remove_char = "",
remove_punctuation_string
remove_punctuation_vector

FALSE,
FALSE,

big_tokenize_transform

remove_numbers = FALSE,
trim_token = FALSE,
split_string = FALSE,

split_separator = " \r\n\t.,;:()?!//",
remove_stopwords = FALSE,
language = "english”,

min_num_char = 1,
max_num_char = Inf,
stemmer = NULL,
min_n_gram = 1,
max_n_gram = 1,
skip_n_gram = 1,
skip_distance =
n_gram_delimiter
concat_delimiter
path_2folder = "",
stemmer_ngram = 4,
stemmer_gamma = 0,
stemmer_truncate = 3,
stemmer_batches = 1,

threads = 1,
save_2single_file = FALSE,
increment_batch_nr = 1,
vocabulary_path_folder = NULL

0

non

NULL,

)

Arguments:

input_path_folder a character string specifying the folder where the input files are saved

batches a numeric value specifying the number of batches to use. The batches will be used to
split the initial data into subsets. Those subsets will be either saved in files (big_text_splitter
function) or will be used internally for low memory processing (big_text_tokenizer func-
tion).

read_file_delimiter the delimiter to use when the input file will be red (for instance a tab-
delimiter or a new-line delimiter).

to_lower either TRUE or FALSE. If TRUE the character string will be converted to lower case

to_upper either TRUE or FALSE. If TRUE the character string will be converted to upper case

utf_locale the language specific locale to use in case that either the fo_lower or the to_upper
parameter is TRUE and the text file language is other than english. For instance if the
language of a text file is greek then the utf locale parameter should be ’el_ GR.UTF-8’
(language_country.encoding). A wrong utf-locale does not raise an error, however the
runtime of the function increases.

remove_char a character string with specific characters that should be removed from the text
file. If the remove_char is "" then no removal of characters take place

remove_punctuation_string either TRUE or FALSE. If TRUE then the punctuation of the
character string will be removed (applies before the split function)

remove_punctuation_vector either TRUE or FALSE. If TRUE then the punctuation of the
vector of the character strings will be removed (after the string split has taken place)

big_tokenize_transform 7

remove_numbers either TRUE or FALSE. If TRUE then any numbers in the character string
will be removed

trim_token either TRUE or FALSE. If TRUE then the string will be trimmed (left and/or right)

split_string either TRUE or FALSE. If TRUE then the character string will be split using
the split_separator as delimiter. The user can also specify multiple delimiters.

split_separator acharacter string specifying the character delimiter(s)

remove_stopwords either TRUE, FALSE or a character vector of user defined stop words. If
TRUE then by using the language parameter the corresponding stop words vector will be
uploaded.

language a character string which defaults to english. If the remove_stopwords parameter is
TRUE then the corresponding stop words vector will be uploaded. Available languages are
afrikaans, arabic, armenian, basque, bengali, breton, bulgarian, catalan, croatian, czech,
danish, dutch, english, estonian, finnish, french, galician, german, greek, hausa, hebrew,
hindi, hungarian, indonesian, irish, italian, latvian, marathi, norwegian, persian, polish,
portuguese, romanian, russian, slovak, slovenian, somalia, spanish, swahili, swedish, turk-
ish, yoruba, zulu

min_num_char aninteger specifying the minimum number of characters to keep. If the min_num_char
is greater than 1 then character strings with more than 1 characters will be returned

max_num_char an integer specifying the maximum number of characters to keep. The max_num_char
should be less than or equal to Inf (in this function the Inf value translates to a word-length
of 1000000000)

stemmer acharacter string specifying the stemming method. One of the following porter2_stemmer,
ngram_sequential, ngram_overlap. See details for more information.

min_n_gram an integer specifying the minimum number of n-grams. The minimum number of
min_n_gram is 1.

max_n_gram an integer specifying the maximum number of n-grams. The minimum number of
max_n_gram is 1.

skip_n_gram an integer specifying the number of skip-n-grams. The minimum number of
skip_n_gram is 1. The skip_n_gram gives the (max.) n-grams using the skip_distance
parameter. If skip_n_gram is greater than 1 then both min_n_gram and max_n_gram should
be set to 1.

skip_distance aninteger specifying the skip distance between the words. The minimum value
for the skip distance is 0, in which case simple n-grams will be returned.

n_gram_delimiter a character string specifying the n-gram delimiter (applies to both n-gram
and skip-n-gram cases)

concat_delimiter either NULL or a character string specifying the delimiter to use in order
to concatenate the end-vector of character strings to a single character string (recommended
in case that the end-vector should be saved to a file)

path_2folder acharacter string specifying the path to the folder where the file(s) will be saved

stemmer_ngram anumeric value greater than 1. Applies to both ngram_sequential and ngram_overlap
methods. In case of ngram_sequential the first stemmer_ngram characters will be picked,
whereas in the case of ngram_overlap the overlapping stemmer_ngram characters will be
build.

stemmer_gamma a float number greater or equal to 0.0. Applies only to ngram_sequential. Is a
threshold value, which defines how much frequency deviation of two N-grams is acceptable.
It is kept either zero or to a minimum value.

big_tokenize_transform

stemmer_truncate a numeric value greater than 0. Applies only to ngram_sequential. The
ngram_sequential is modified to use relative frequencies (float numbers between 0.0 and
1.0 for the ngrams of a specific word in the corpus) and the stemmer_truncate parameter
controls the number of rounding digits for the ngrams of the word. The main purpose
was to give the same relative frequency to words appearing approximately the same on the
corpus.

stemmer_batches a numeric value greater than 0. Applies only to ngram_sequential. Splits
the corpus into batches with the option to run the batches in multiple threads.

threads an integer specifying the number of cores to run in parallel

save_2single_file either TRUE or FALSE. If TRUE then the output data will be saved in a
single file. Otherwise the data will be saved in multiple files with incremented enumeration

increment_batch_nr anumeric value. The enumeration of the output files will start from the
increment_batch_nr. If the save_2single_file parameter is TRUE then the increment_batch_nr
parameter won’t be taken into consideration.

vocabulary_path_folder either NULL or a character string specifying the output folder where
the vocabulary batches should be saved (after tokenization and transformation is applied).
Applies to the big_text_tokenizer method.

Method vocabulary_accumulator():

Usage:
big_tokenize_transform$vocabulary_accumulator(
input_path_folder = NULL,
vocabulary_path_file = NULL,
max_num_chars = 100

)
Arguments:
input_path_folder a character string specifying the folder where the input files are saved

vocabulary_path_file either NULL or a character string specifying the output file where the
vocabulary should be saved (after tokenization and transformation is applied). Applies to
the vocabulary_accumulator method.

max_num_chars a numeric value to limit the words of the output vocabulary to a maximum
number of characters (applies to the vocabulary_accumulator function)

Method clone(): The objects of this class are cloneable with this method.
Usage:

big_tokenize_transform$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Examples

Not run:

library(textTinyR)

bytes_converter

fs <- big_tokenize_transform$new(verbose = FALSE)

fs$big_text_splitter(input_path_file = "input.txt",
output_path_folder = "/folder/output/",
end_query = "endword”, batches = 5,
trimmed_line = FALSE)

fs$big_text_parser(input_path_folder = "/folder/output/"”,
output_path_folder = "/folder/parser/",
start_query = "startword”, end_query = "endword"”,
min_lines = 1, trimmed_line = TRUE)

fs$big_text_tokenizer(input_path_folder = "/folder/parser/",
batches = 5, split_string=TRUE,
to_lower = TRUE, trim_token = TRUE,
max_num_char = 100, remove_stopwords = TRUE,
stemmer = "porter2_stemmer"”, threads = 1,
path_2folder="/folder/output_token/",
vocabulary_path_folder="/folder/VOCAB/")

fs$vocabulary_accumulator (input_path_folder = "/folder/VOCAB/",
vocabulary_path_file = "/folder/vocab.txt",
max_num_chars = 50)

End(Not run)

bytes_converter bytes converter of a text file (KB, MB or GB)

10 cluster_frequency

Description

bytes converter of a text file (KB, MB or GB)

Usage

bytes_converter(input_path_file = NULL, unit = "MB")

Arguments

input_path_file
a character string specifying the path to the input file
unit a character string specifying the unit. One of KB, MB, GB

Value

a number

Examples

Not run:
library(textTinyR)

bc = bytes_converter(input_path_file = 'some_file.txt', unit = "MB")

End(Not run)

cluster_frequency Frequencies of an existing cluster object

Description

Frequencies of an existing cluster object

Usage

cluster_frequency(tokenized_list_text, cluster_vector, verbose = FALSE)

Arguments

tokenized_list_text
alist of tokenized text documents. This can be the result of the textTinyR: :tokenize_transform_vec_docs
function with the as_roken parameter set to TRUE (the foken object of the out-
put)
cluster_vector anumeric vector. This can be the result of the ClusterR::KMeans_rcpp function
(the clusters object of the output)

verbose either TRUE or FALSE. If TRUE then information will be printed out in the R
session.

cosine_distance 11

Details

This function takes a list of tokenized text and a numeric vector of clusters and returns the sorted
frequency of each cluster. The length of the tokenized_list_text object must be equal to the length
of the cluster_vector object

Value

a list of data.tables

Examples

library(textTinyR)

tok_lst = list(c('the', 'the', 'tokens', 'of', 'first', 'document'),
c('the', 'tokens', 'of', 'of', 'second', 'document'),
c('the', 'tokens', 'of', 'third', 'third', 'document'))

vec_clust = rep(1:6, 3)

res = cluster_frequency(tok_1st, vec_clust)

cosine_distance cosine distance of two character strings (each string consists of more
than one words)

Description

cosine distance of two character strings (each string consists of more than one words)

Usage
cosine_distance(sentencel, sentence2, split_separator =" ")
Arguments
sentencel a character string consisting of multiple words
sentence? a character string consisting of multiple words

split_separator
a character string specifying the delimiter(s) to split the sentence

Value

a float number

12 COS_TEXT

Examples
library(textTinyR)
sentencel = 'this is one sentence'
sentence2 = 'this is a similar sentence’

cds = cosine_distance(sentencel, sentence2)

COS_TEXT Cosine similarity for text documents

Description

Cosine similarity for text documents

Usage

COS_TEXT(
text_vectorl = NULL,
text_vector2 = NULL,
threads = 1,
separator =

n on

Arguments

text_vector1 a character string vector representing text documents (it should have the same
length as the text_vector2)

text_vector2 a character string vector representing text documents (it should have the same
length as the text_vectorl)

threads a numeric value specifying the number of cores to run in parallel
separator specifies the separator used between words of each character string in the text
vectors
Details
The function calculates the cosine distance between pairs of text sequences of two character string
vectors
Value

a numeric vector

Count_Rows

13

Examples
library(textTinyR)
vecl = c('use this', 'function to compute the')
vec2 = c('cosine distance', 'between text sequences')
out = COS_TEXT(text_vectorl = vecl, text_vector2 = vec2, separator = " ")
Count_Rows Number of rows of a file
Description

Number of rows of a file

Usage

Count_Rows(PATH, verbose = FALSE)

Arguments
PATH a character string specifying the path to a file
verbose either TRUE or FALSE

Details

This function returns the number of rows for a file. It doesn’t load the data in memory.

Value

a numeric value

Examples

library(textTinyR)
PATH = system.file("example_files”, "word_vecs.txt", package = "textTinyR")

num_rows = Count_Rows(PATH)

14

dice_distance

dense_2sparse convert a dense matrix to a sparse matrix

Description

convert a dense matrix to a sparse matrix

Usage

dense_2sparse(dense_mat)

Arguments

dense_mat a dense matrix

Value

a sparse matrix

Examples

library(textTinyR)
tmp = matrix(sample(@:1, 100, replace = TRUE), 10, 10)

sp_mat = dense_2sparse(tmp)

dice_distance dice similarity of words using n-grams

Description

dice similarity of words using n-grams

Usage

dice_distance(wordl, word2, n_grams = 2)

Arguments
word1 a character string
word2 a character string

n_grams a value specifying the consecutive n-grams of the words

dims_of _word_vecs 15

Value

a float number

Examples
library(textTinyR)
wordl = 'one_word"'
word2 = 'two_words'

dts = dice_distance(wordl, word2, n_grams = 2)

dims_of_word_vecs dimensions of a word vectors file

Description

dimensions of a word vectors file

Usage

dims_of_word_vecs(input_file = NULL, read_delimiter = "\n")
Arguments

input_file a character string specifying a valid path to a text file

read_delimiter a character string specifying the row delimiter of the text file

Details

This function takes a valid path to a file and a file delimiter as input and estimates the dimensions
of the word vectors by using the first row of the file.

Value

a numeric value
Examples
library(textTinyR)

PATH = system.file("example_files”, "word_vecs.txt", package = "textTinyR")

dimensions = dims_of_word_vecs(input_file = PATH)

16 Doc2Vec

Doc2Vec Conversion of text documents to word-vector-representation features (
Doc2Vec)

Description

Conversion of text documents to word-vector-representation features (Doc2Vec)

Conversion of text documents to word-vector-representation features (Doc2Vec)

Usage

utl <- Doc2Vec$new(token_list = NULL, word_vector_FILE = NULL,
print_every_rows = 10000, verbose = FALSE,

copy_data = FALSE)

Details

the pre_processed_wv method should be used after the initialization of the Doc2Vec class, if the
copy_data parameter is set to TRUE, in order to inspect the pre-processed word-vectors.

The global_term_weights method is part of the sparse_term_matrix R6 class of the textTinyR pack-
age. One can come to the correct global_term_weights by using the sparse_term_matrix class and
by setting the ¢f_idf parameter to FALSE and the normalize parameter to NULL. In Doc2Vec class,
if method equals to idf then the global_term_weights parameter should not be equal to NULL.

Explanation of the various methods :

sum_sqrt Assuming that a single sublist of the token list will be taken into consideration : the
wordvectors of each word of the sublist of tokens will be accumulated to a vector equal to the
length of the wordvector (INITTAL_WORD_VECTOR). Then a scalar will be computed using
this INITIAL_WORD_VECTOR in the following way : the INITTAL_WORD_VECTOR will
be raised to the power of 2.0, then the resulted wordvector will be summed and the square-root
will be calculated. The INITTAL_WORD_VECTOR will be divided by the resulted scalar

min_max_norm Assuming that a single sublist of the token list will be taken into consideration
: the wordvectors of each word of the sublist of tokens will be first min-max normalized and
then will be accumulated to a vector equal to the length of the initial wordvector

idf Assuming that a single sublist of the token list will be taken into consideration : the word-vector
of each term in the sublist will be multiplied with the corresponding idf of the global weights
term

There might be slight differences in the output data for each method depending on the input
value of the copy_data parameter (if it’s either TRUE or FALSE).

Value

a matrix

Doc2Vec 17

Methods

Doc2Vec$new(token_list =NULL, word_vector_FILE =NULL, print_every_rows = 10000, verbose = FALSE, copy_d

pre_processed_wv()

Methods

Public methods:

* Doc2Vec$new()

* Doc2Vec$doc2vec_methods ()
* Doc2Vec$pre_processed_wv ()
* Doc2Vec$clone()

Method new():

Usage:

Doc2Vec$new(
token_list = NULL,
word_vector_FILE = NULL,
print_every_rows = 10000,
verbose = FALSE,
copy_data = FALSE

)

Arguments:

token_list either NULL or a list of tokenized text documents

word_vector_FILE a valid path to a text file, where the word-vectors are saved

print_every_rows a numeric value greater than 1 specifying the print intervals. Frequent
output in the R session can slow down the function especially in case of big files.

verbose either TRUE or FALSE. If TRUE then information will be printed out in the R session.

copy_data either TRUE or FALSE. If FALSE then a pointer will be created and no copy of the
initial data takes place (memory efficient especially for big datasets). This is an alternative
way to pre-process the data.

Method doc2vec_methods():

Usage:

Doc2Vec$doc2vec_methods(
method = "sum_sqrt”,
global_term_weights = NULL,
threads = 1

)

Arguments:

18 JACCARD_DICE

method a character string specifying the method to use. One of sum_sqrt, min_max_norm or
idf. See the details section for more information.

global_term_weights either NULL or the output of the global_term_weights method of the
textTinyR package. See the details section for more information.

threads a numeric value specifying the number of cores to run in parallel

Method pre_processed_wv():

Usage:
Doc2Vec$pre_processed_wv ()

Method clone(): The objects of this class are cloneable with this method.

Usage:
Doc2Vec$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.
Examples

library(textTinyR)

tok_text = list(c('the', 'result', 'of'), c('doc2vec',6 'are', 'vector', 'features'))

PATH = system.file("example_files"”, "word_vecs.txt"”, package = "textTinyR")

init = Doc2Vec$new(token_list = tok_text, word_vector_FILE = PATH)

out = init$doc2vec_methods(method = "sum_sqrt")
JACCARD_DICE Jaccard or Dice similarity for text documents
Description

Jaccard or Dice similarity for text documents

levenshtein_distance 19

Usage

JACCARD_DICE(
token_list1 = NULL,
token_list2 = NULL,

method = "jaccard”,
threads = 1
)
Arguments
token_list1 a list of tokenized text documents (it should have the same length as the to-
ken_list2)
token_list?2 a list of tokenized text documents (it should have the same length as the to-
ken_listl)
method a character string specifying the similarity metric. One of "jaccard’, *dice’
threads a numeric value specifying the number of cores to run in parallel
Details
The function calculates either the jaccard or the dice distance between pairs of tokenized text of
two lists
Value

a numeric vector

Examples
library(textTinyR)
1st1 = list(c('use', 'this', 'function', 'to'), c('either', 'compute', 'the', 'jaccard'))

1st2 = list(c('or', 'the', 'dice', 'distance'), c('for', 'two', 'same', 'sized',6 'lists'))

out = JACCARD_DICE(token_list1 = 1st1, token_list2 = 1st2, method = 'jaccard', threads = 1)

levenshtein_distance levenshtein distance of two words

Description

levenshtein distance of two words

Usage

levenshtein_distance(wordl, word2)

20 load_sparse_binary
Arguments

word1 a character string

word?2 a character string
Value

a float number
Examples

library(textTinyR)

wordl = 'one_word'

word2 = 'two_words'

lvs = levenshtein_distance(wordl, word2)

load_sparse_binary load a sparse matrix in binary format

Description

load a sparse matrix in binary format
Usage

load_sparse_binary(file_name = "save_sparse.mat")
Arguments

file_name a character string specifying the binary file
Value

loads a sparse matrix from a file
Examples

Not run:

library(textTinyR)

load_sparse_binary(file_name = "save_sparse.mat")

End(Not run)

matrix_sparsity 21

matrix_sparsity sparsity percentage of a sparse matrix

Description

sparsity percentage of a sparse matrix

Usage

matrix_sparsity(sparse_matrix)

Arguments

sparse_matrix a sparse matrix

Value

a numeric value (percentage)

Examples

library(textTinyR)
tmp = matrix(sample(@:1, 100, replace = TRUE), 10, 10)
sp_mat = dense_2sparse(tmp)

dbl = matrix_sparsity(sp_mat)

read_characters read a specific number of characters from a text file

Description

read a specific number of characters from a text file

Usage

read_characters(input_file = NULL, characters = 100, write_2file = "")
Arguments

input_file a character string specifying a valid path to a text file

characters a numeric value specifying the number of characters to read

write_2file either an empty string ("") or a character string specifying a valid output file to

write the subset of the input file

22 read_rows

Examples

Not run:
library(textTinyR)

txfl = read_characters(input_file = 'input.txt', characters = 100)

End(Not run)

read_rows read a specific number of rows from a text file

Description

read a specific number of rows from a text file

Usage

read_rows(
input_file = NULL,

read_delimiter = "\n",
rows = 100,
write_2file = ""
)
Arguments
input_file a character string specifying a valid path to a text file

read_delimiter a character string specifying the row delimiter of the text file

rows a numeric value specifying the number of rows to read
write_2file either "" or a character string specifying a valid output file to write the subset of
the input file
Examples
Not run:
library(textTinyR)

txfl = read_rows(input_file = 'input.txt', rows = 100)

End(Not run)

save_sparse_binary

save_sparse_binary save a sparse matrix in binary format

Description

save a sparse matrix in binary format

Usage

save_sparse_binary(sparse_matrix, file_name = "save_sparse.mat")

Arguments

sparse_matrix a sparse matrix
file_name a character string specifying the binary file

Value

writes the sparse matrix to a file
Examples
library(textTinyR)

tmp = matrix(sample(@:1, 100, replace = TRUE), 10, 10)

sp_mat = dense_2sparse(tmp)

save_sparse_binary(sp_mat, file_name = "save_sparse.mat")
select_predictors Exclude highly correlated predictors
Description

Exclude highly correlated predictors

Usage

select_predictors(
response_vector,
predictors_matrix,
response_lower_thresh =
predictors_upper_thresh
threads = 1,
verbose = FALSE

0.1,
=0.75,

24 select_predictors

Arguments

response_vector
anumeric vector (the length should be equal to the rows of the predictors_matrix
parameter)

predictors_matrix
a numeric matrix (the rows should be equal to the length of the response_vector
parameter)

response_lower_thresh
anumeric value. This parameter allows the user to keep all the predictors having
a correlation with the response greater than the response_lower_thresh value.

predictors_upper_thresh
a numeric value. This parameter allows the user to keep all the predictors
having a correlation comparing to the other predictors less than the predic-
tors_upper_thresh value.

threads a numeric value specifying the number of cores to run in parallel
verbose either TRUE or FALSE. If TRUE then information will be printed out in the R
session.
Details

The function works in the following way : The correlation of the predictors with the response is
first calculated and the resulted correlations are sorted in decreasing order. Then iteratively predic-
tors with correlation higher than the predictors_upper_thresh value are removed by favoring those
predictors which are more correlated with the response variable. If the response_lower_thresh
value is greater than 0.0 then only predictors having a correlation higher than or equal to the re-
sponse_lower_thresh value will be kept, otherwise they will be excluded. This function returns the
indices of the predictors and is useful in case of multicollinearity.

If during computation the correlation between the response variable and a potential predictor is
equal to NA or +/- Inf, then a correlation of 0.0 will be assigned to this particular pair.

Value

a vector of column-indices

Examples

library(textTinyR)

set.seed(1)
resp = runif(100)

set.seed(2)
col = runif(100)

matr = matrix(c(col, col”4, col”6, col”8, col”10), nrow = 100, ncol = 5)

out = select_predictors(resp, matr, predictors_upper_thresh = 0.75)

sparse_Means 25

sparse_Means RowMens and colMeans for a sparse matrix

Description

RowMens and colMeans for a sparse matrix

Usage

sparse_Means(sparse_matrix, rowMeans = FALSE)

Arguments

sparse_matrix a sparse matrix

rowMeans either TRUE or FALSE. If TRUE then the row-means will be calculated, other-
wise the column-means

Value

a vector with either the row- or the column-sums of the matrix

Examples

library(textTinyR)
tmp = matrix(sample(@:1, 100, replace = TRUE), 10, 10)
sp_mat = dense_2sparse(tmp)

spsm = sparse_Means(sp_mat, rowMeans = FALSE)

sparse_Sums RowSums and colSums for a sparse matrix

Description

RowSums and colSums for a sparse matrix

Usage

sparse_Sums(sparse_matrix, rowSums = FALSE)

26 sparse_term_matrix

Arguments

sparse_matrix a sparse matrix

rowSums either TRUE or FALSE. If TRUE then the row-sums will be calculated, other-
wise the column-sums

Value

a vector with either the row- or the column-sums of the matrix

Examples

library(textTinyR)
tmp = matrix(sample(@:1, 100, replace = TRUE), 10, 10)
sp_mat = dense_2sparse(tmp)

spsm = sparse_Sums(sp_mat, rowSums = FALSE)

sparse_term_matrix Term matrices and statistics (document-term-matrix, term-document-
matrix)

Description

Term matrices and statistics (document-term-matrix, term-document-matrix)

Term matrices and statistics (document-term-matrix, term-document-matrix)

Usage

utl <- sparse_term_matrix$new(vector_data = NULL, file_data = NULL,

document_term_matrix = TRUE)

Details

the Term_Matrix function takes either a character vector of strings or a text file and after tokenization
and transformation returns either a document-term-matrix or a term-document-matrix

the triplet_data function returns the triplet data, which is used internally (in c++), to construct the
Term Matrix. The triplet data could be usefull for secondary purposes, such as in word vector
representations.

the global_term_weights function returns a list of length two. The first sublist includes the terms
and the second sublist the global-term-weights. The tf_idf parameter should be set to FALSE and
the normalize parameter to NULL. This function is normally used in conjuction with word-vector-
embeddings.

sparse_term_ima trix

27

the Term_Matrix_Adjust function removes sparse terms from a sparse matrix using a sparsity thresh-

old

the term_associations function finds the associations between the given terms (Terms argument)
and all the other terms in the corpus by calculating their correlation. There is also the option to keep

a specific number of terms from the output table using the keep_terms parameter.

the most_frequent_terms function returns the most frequent terms of the corpus using the output of
the sparse matrix. The user has the option to keep a specific number of terms from the output table
using the keep_terms parameter.

Stemming of the english language is done using the porter2-stemmer, for details see https://
github.com/smassung/porter2_stemmer

Methods

sparse_term_matrix$new(vector_data =NULL, file_data =NULL, document_term_matrix = TRUE)

Term_Matrix(sort_terms = FALSE, to_lower = FALSE, to_upper = FALSE, utf_locale="",

most_frequent_terms(keep_terms =NULL, threads =1, verbose = FALSE)

Methods

Public methods:

sparse_term_matrix$new()
sparse_term_matrix$Term_Matrix()
sparse_term_matrix$triplet_data()
sparse_term_matrix$global_term_weights()
sparse_term_matrix$Term_Matrix_Adjust()
sparse_term_matrix$term_associations()
sparse_term_matrix$most_frequent_terms()
sparse_term_matrix$clone()

Method new():
Usage:

remove_char =

nn

, remc

https://github.com/smassung/porter2_stemmer
https://github.com/smassung/porter2_stemmer

28

spmsc_&anJnandx

sparse_term_matrix$new(
vector_data = NULL,
file_data = NULL,
document_term_matrix = TRUE

)

Arguments:
vector_data either NULL or a character vector of documents
file_data either NULL or a valid character path to a text file

document_term_matrix either TRUE or FALSE. If TRUE then a document-term-matrix will
be returned, otherwise a term-document-matrix

Method Term_Matrix():

Usage:

sparse_term_matrix$Term_Matrix(
sort_terms = FALSE,
to_lower = FALSE,
to_upper = FALSE,
utf_locale = "",
remove_char = "",
remove_punctuation_string
remove_punctuation_vector
remove_numbers = FALSE,
trim_token = FALSE,
split_string = FALSE,
split_separator = " \r\n\t.,;:()?!//",
remove_stopwords = FALSE,
language = "english”,
min_num_char = 1,
max_num_char = Inf,
stemmer = NULL,
min_n_gram = 1,
max_n_gram = 1,
skip_n_gram = 1,
skip_distance =
n_gram_delimiter
print_every_rows
normalize = NULL,
tf_idf = FALSE,

FALSE,
FALSE,

0

non

1000,

threads = 1,
verbose = FALSE
)
Arguments:

sort_terms either TRUE or FALSE specifying if the initial terms should be sorted (so that the
output sparse matrix is sorted in alphabetical order)

to_lower either TRUE or FALSE. If TRUE the character string will be converted to lower case
to_upper either TRUE or FALSE. If TRUE the character string will be converted to upper case

sparse_term_matrix 29

utf_locale the language specific locale to use in case that either the fo_lower or the to_upper
parameter is TRUE and the text file language is other than english. For instance if the
language of a text file is greek then the utf locale parameter should be ’el_GR.UTF-8’
(language_country.encoding). A wrong utf-locale does not raise an error, however the
runtime of the function increases.

remove_char astring specifying the specific characters that should be removed from a text file.
If the remove_char is "" then no removal of characters take place

remove_punctuation_string either TRUE or FALSE. If TRUE then the punctuation of the
character string will be removed (applies before the split function)

remove_punctuation_vector either TRUE or FALSE. If TRUE then the punctuation of the
vector of the character strings will be removed (after the string split has taken place)

remove_numbers either TRUE or FALSE. If TRUE then any numbers in the character string
will be removed

trim_token either TRUE or FALSE. If TRUE then the string will be trimmed (left and/or right)

split_string either TRUE or FALSE. If TRUE then the character string will be split using
the split_separator as delimiter. The user can also specify multiple delimiters.

split_separator a character string specifying the character delimiter(s)

remove_stopwords either TRUE, FALSE or a character vector of user defined stop words. If
TRUE then by using the language parameter the corresponding stop words vector will be
uploaded.

language a character string which defaults to english. If the remove_stopwords parameter is
TRUE then the corresponding stop words vector will be uploaded. Available languages are
afrikaans, arabic, armenian, basque, bengali, breton, bulgarian, catalan, croatian, czech,
danish, dutch, english, estonian, finnish, french, galician, german, greek, hausa, hebrew,
hindi, hungarian, indonesian, irish, italian, latvian, marathi, norwegian, persian, polish,
portuguese, romanian, russian, slovak, slovenian, somalia, spanish, swahili, swedish, turk-
ish, yoruba, zulu

min_num_char aninteger specifying the minimum number of characters to keep. If the min_num_char
is greater than 1 then character strings with more than 1 characters will be returned

max_num_char an integer specifying the maximum number of characters to keep. The max_num_char
should be less than or equal to Inf (in this function the Inf value translates to a word-length
of 1000000000)

stemmer acharacter string specifying the stemming method. Available method is the porter2_stemmer.
See details for more information.

min_n_gram an integer specifying the minimum number of n-grams. The minimum number of
min_n_gram is 1.

max_n_gram an integer specifying the maximum number of n-grams. The minimum number of
max_n_gram is 1.

skip_n_gram an integer specifying the number of skip-n-grams. The minimum number of
skip_n_gram is 1. The skip_n_gram gives the (max.) n-grams using the skip_distance
parameter. If skip_n_gram is greater than 1 then both min_n_gram and max_n_gram should
be set to 1.

skip_distance aninteger specifying the skip distance between the words. The minimum value
for the skip distance is 0, in which case simple n-grams will be returned.

n_gram_delimiter a character string specifying the n-gram delimiter (applies to both n-gram
and skip-n-gram cases)

30

sparse_ term_matrix

print_every_rows a numeric value greater than 1 specifying the print intervals. Frequent
output in the R session can slow down the function in case of big files.

normalize either NULL or one of "11” or ’12’ normalization.

tf_idf either TRUE or FALSE. If TRUE then the term-frequency-inverse-document-frequency
will be returned

threads an integer specifying the number of cores to run in parallel

verbose either TRUE or FALSE. If TRUE then information will be printed out

Method triplet_data():

Usage:
sparse_term_matrix$triplet_data()

Method global_term_weights():

Usage:
sparse_term_matrix$global_term_weights()

Method Term_Matrix_Adjust():

Usage:
sparse_term_matrix$Term_Matrix_Adjust(sparsity_thresh = 1)

Arguments:

sparsity_thresh a float number between 0.0 and 1.0 specifying the sparsity threshold in the
Term_Matrix_Adjust function

Method term_associations():

Usage:
sparse_term_matrix$term_associations(
Terms = NULL,
keep_terms = NULL,
verbose = FALSE

)

Arguments:

Terms a character vector specifying the character strings for which the associations will be
calculated (term_associations function)

keep_terms either NULL or a numeric value specifying the number of terms to keep (both in
term_associations and most_frequent_terms functions)

verbose either TRUE or FALSE. If TRUE then information will be printed out

Method most_frequent_terms():
Usage:
sparse_term_matrix$most_frequent_terms(
keep_terms = NULL,

threads = 1,
verbose = FALSE

)

Arguments:

sparse_term_matrix 31

keep_terms either NULL or a numeric value specifying the number of terms to keep (both in
term_associations and most_frequent_terms functions)

threads an integer specifying the number of cores to run in parallel

verbose either TRUE or FALSE. If TRUE then information will be printed out

Method clone(): The objects of this class are cloneable with this method.
Usage:
sparse_term_matrix$clone(deep = FALSE)
Arguments:

deep Whether to make a deep clone.

Examples
Not run:
library(textTinyR)
sm <- sparse_term_matrix$new(file_data = "/folder/my_data.txt",
document_term_matrix = TRUE)

term matrix

sm$Term_Matrix(sort_terms = TRUE, to_lower = TRUE,
trim_token = TRUE, split_string = TRUE,

remove_stopwords = TRUE, normalize = '11',
stemmer = 'porter2_stemmer', threads =1)

triplet data

sm$Term_Matrix_Adjust(sparsity_thresh = 0.995)

32 TEXT DOC_DISSIM

sm$term_associations(Terms = c("word”, "sentence"), keep_terms = 10)

sm$most_frequent_terms(keep_terms = 10, threads = 1)

End(Not run)

TEXT_DOC_DISSIM Dissimilarity calculation of text documents

Description

Dissimilarity calculation of text documents

Usage

TEXT_DOC_DISSIM(
first_matr = NULL,
second_matr = NULL,

method = "euclidean”,
batches = NULL,
threads = 1,
verbose = FALSE
)
Arguments
first_matr a numeric matrix where each row represents a text document (has same dimen-
sions as the second_matr)
second_matr a numeric matrix where each row represents a text document (has same dimen-
sions as the first_matr)
method a dissimilarity metric in form of a character string. One of euclidean, manhattan,
chebyshev, canberra, braycurtis, pearson_correlation, cosine, simple_matching_coefficient,
hamming, jaccard_coefficient, Rao_coefficient
batches a numeric value specifying the number of batches
threads a numeric value specifying the number of cores to run in parallel

verbose either TRUE or FALSE. If TRUE then information will be printed in the console

text_file_parser 33

Details

Row-wise dissimilarity calculation of text documents. The text document sequences should be
converted to numeric matrices using for instance LSI (Latent Semantic Indexing). If the numeric
matrices are too big to be pre-processed, then one should use the batches parameter to split the data
in batches before applying one of the dissimilarity metrics. For parallelization (threads) OpenMP
will be used.

Value

a numeric vector

Examples

Not run:

library(textTinyR)

example input LSI matrices (see details section)

set.seed(1)

LSI_matrix1 = matrix(runif(10000), 100, 100)
set.seed(2)

LSI_matrix2 = matrix(runif(10000), 100, 100)
txt_out = TEXT_DOC_DISSIM(first_matr = LSI_matrix1,

second_matr = LSI_matrix2, 'euclidean')

End(Not run)

text_file_parser text file parser

Description

text file parser

Usage

text_file_parser(
input_path_file = NULL,

output_path_file = ,
start_query = NULL,

34

end_query
min_lines

text_file_parser

= NULL,

1,

trimmed_line = FALSE,
verbose = FALSE

Arguments

input_path_file

either a path to an input file or a vector of character strings (normally the latter
would represent ordered lines of a text file in form of a character vector)

output_path_file

start_query

end_query

min_lines

trimmed_line

verbose

Details

"

either an empty character string ("") or a character string specifying a path to an
output file (it applies only if the input_path_file parameter is a valid path to a
file)

a character string or a vector of character strings. The start_query (if it’s a single

character string) is the first word of the subset of the data and should appear
frequently at the beginning of each line in the text file.

a character string or a vector of character strings. The end_query (if it’s a single
character string) is the last word of the subset of the data and should appear
frequently at the end of each line in the text file.

a numeric value specifying the minimum number of lines (applies only if the
input_path_file is a valid path to a file) . For instance if min_lines = 2, then only
subsets of text with more than 1 lines will be pre-processed.

either TRUE or FALSE. If FALSE then each line of the text file will be trimmed
both sides before applying the start_query and end_query

either TRUE or FALSE. If TRUE then information will be printed in the console

The text file should have a structure (such as an xml-structure), so that subsets can be extracted
using the start_query and end_query parameters (the same applies in case of a vector of character

strings)
Examples

Not run:

library(textTinyR)

In case that the 'input_path_file' is a valid path

fp = text_file_parser(input_path_file = '/folder/input_data.txt',

output_path_file = '/folder/output_data.txt',
start_query = 'word_a', end_query = 'word_w',
min_lines = 1, trimmed_line = FALSE)

text_intersect 35

In case that the 'input_path_file' is a character vector of strings

PATH_url = "https://FILE.xml"
con = url(PATH_url, method = "libcurl”)
tmp_dat = read.delim(con, quote = "\"", comment.char = "", stringsAsFactors = FALSE)

vec_docs = unlist(lapply(1:length(as.vector(tmp_dat[, 1])), function(x)
trimws(tmp_dat[x, 1], which = "both")))

parse_data = text_file_parser(input_path_file = vec_docs,
start_query = c("<queryl>", "<query2>", "<query3>"),
end_query = c("</query1>", "</query2>", "</query3>"),
min_lines = 1, trimmed_line = TRUE)

End(Not run)

text_intersect intersection of words or letters in tokenized text

Description

intersection of words or letters in tokenized text

intersection of words or letters in tokenized text

Usage

utl <- text_intersect$new(token_list1 = NULL, token_list2 = NULL)

Details
This class includes methods for text or character intersection. If both distinct and letters are FALSE
then the simple (count or ratio) word intersection will be computed.

Value

a numeric vector

Methods

text_intersect$new(file_data = NULL)

ratio_intersect(distinct = FALSE, letters = FALSE)

36 text_intersect

Methods

Public methods:
e text_intersect$new()
e text_intersect$count_intersect()
* text_intersect$ratio_intersect()
e text_intersect$clone()

Method new():
Usage:
text_intersect$new(token_listl = NULL, token_list2 = NULL)
Arguments:

token_list1 a list, where each sublist is a tokenized text sequence (token_list] should be of
same length with token_list2)

token_list2 a list, where each sublist is a tokenized text sequence (token_list2 should be of
same length with token_listI)

Method count_intersect():
Usage:
text_intersect$count_intersect(distinct = FALSE, letters = FALSE)
Arguments:

distinct either TRUE or FALSE. If TRUE then the intersection of distinct words (or letters)
will be taken into account

letters either TRUE or FALSE. If TRUE then the intersection of letters in the text sequences
will be computed
Method ratio_intersect():

Usage:
text_intersect$ratio_intersect(distinct = FALSE, letters = FALSE)

Arguments:

distinct either TRUE or FALSE. If TRUE then the intersection of distinct words (or letters)
will be taken into account

letters either TRUE or FALSE. If TRUE then the intersection of letters in the text sequences
will be computed

Method clone(): The objects of this class are cloneable with this method.

Usage:
text_intersect$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

References

https://www.kaggle.com/c/home-depot-product-search-relevance/discussion/20427 by Igor Buinyi

tokenize_transform_text

Examples
library(textTinyR)
tokl = list(c('compare', 'this', 'text'),
c('and', 'this', 'text'))
tok2 = list(c('with', 'another', 'set'),

c('of', "text', 'documents'))

init = text_intersect$new(tokl, tok2)

init$count_intersect(distinct = TRUE, letters = FALSE)

init$ratio_intersect(distinct = FALSE, letters = TRUE)

tokenize_transform_text
String tokenization and transformation (character string or path to a

file)

Description

String tokenization and transformation (character string or path to a file)

Usage

tokenize_transform_text(
object = NULL,
batches = NULL,
read_file_delimiter = "\n",
to_lower = FALSE,
to_upper = FALSE,

nn

utf_locale = R

remove_char = "",
remove_punctuation_string = FALSE,
remove_punctuation_vector = FALSE,
remove_numbers = FALSE,

trim_token = FALSE,

split_string = FALSE,

split_separator = " \r\n\t.,;:()?!//",
remove_stopwords = FALSE,

language = "english”,

38

min_num_char
max_num_char

tokenize_transform_text

:'],
= Inf,

stemmer = NULL,

min_n_gram
max_n_gram
skip_n_gra

skip_distance
n_gram_delimiter

m

17
1)
11
=0

n on

concat_delimiter = NULL,
path_2folder = "",
stemmer_ngram = 4,
stemmer_gamma = 0,
stemmer_truncate = 3,
stemmer_batches = 1,

threads =

1,

vocabulary_path_file = NULL,
verbose = FALSE

Arguments

object

batches

either a character string (text data) or a character-string-path to a file (for big .txt
files it’s recommended to use a path to a file).

a numeric value. If the batches parameter is not NULL then the object pa-
rameter should be a valid path to a file and the path_2folder parameter should
be a valid path to a folder. The batches parameter should be used in case of
small to medium data sets (for zero memory consumption). For big data sets the
big_tokenize_transform R6 class and especially the big_text_tokenizer function
should be used.

read_file_delimiter

to_lower

to_upper

utf_locale

remove_char

the delimiter to use when the input file will be red (for instance a tab-delimiter
or a new-line delimiter).

either TRUE or FALSE. If TRUE the character string will be converted to lower
case

either TRUE or FALSE. If TRUE the character string will be converted to upper
case

the language specific locale to use in case that either the to_lower or the to_upper
parameter is TRUE and the text file language is other than english. For instance
if the language of a text file is greek then the utf locale parameter should be
‘el_GR.UTF-8’ (language_country.encoding). A wrong utf-locale does not
raise an error, however the runtime of the function increases.

a character string with specific characters that should be removed from the text
file. If the remove_char is "" then no removal of characters take place

remove_punctuation_string

either TRUE or FALSE. If TRUE then the punctuation of the character string
will be removed (applies before the split function)

tokenize_transform_text 39

remove_punctuation_vector
either TRUE or FALSE. If TRUE then the punctuation of the vector of the char-
acter strings will be removed (after the string split has taken place)

remove_numbers either TRUE or FALSE. If TRUE then any numbers in the character string will
be removed

trim_token either TRUE or FALSE. If TRUE then the string will be trimmed (left and/or
right)

split_string either TRUE or FALSE. If TRUE then the character string will be split using the
split_separator as delimiter. The user can also specify multiple delimiters.

split_separator
a character string specifying the character delimiter(s)

remove_stopwords
either TRUE, FALSE or a character vector of user defined stop words. If TRUE
then by using the language parameter the corresponding stop words vector will
be uploaded.

language a character string which defaults to english. If the remove_stopwords parameter
is TRUE then the corresponding stop words vector will be uploaded. Available
languages are afrikaans, arabic, armenian, basque, bengali, breton, bulgarian,
catalan, croatian, czech, danish, dutch, english, estonian, finnish, french, gali-
cian, german, greek, hausa, hebrew, hindi, hungarian, indonesian, irish, italian,
latvian, marathi, norwegian, persian, polish, portuguese, romanian, russian,
slovak, slovenian, somalia, spanish, swahili, swedish, turkish, yoruba, zulu

min_num_char aninteger specifying the minimum number of characters to keep. If the min_num_char
is greater than 1 then character strings with more than 1 characters will be re-
turned

max_num_char aninteger specifying the maximum number of characters to keep. The max_num_char
should be less than or equal to Inf (in this function the Inf value translates to a
word-length of 1000000000)

stemmer a character string specifying the stemming method. One of the following porter2_stemmer,
ngram_sequential, ngram_overlap. See details for more information.

min_n_gram an integer specifying the minimum number of n-grams. The minimum number
of min_n_gramis 1.

max_n_gram an integer specifying the maximum number of n-grams. The minimum number
of max_n_gram is 1.

skip_n_gram an integer specifying the number of skip-n-grams. The minimum number of
skip_n_gram s 1. The skip_n_gram gives the (max.) n-grams using the skip_distance
parameter. If skip_n_gram is greater than 1 then both min_n_gram and max_n_gram
should be set to 1.

skip_distance an integer specifying the skip distance between the words. The minimum value
for the skip distance is 0, in which case simple n-grams will be returned.
n_gram_delimiter

a character string specifying the n-gram delimiter (applies to both n-gram and
skip-n-gram cases)

40 tokenize_transform_text

concat_delimiter
either NULL or a character string specifying the delimiter to use in order to
concatenate the end-vector of character strings to a single character string (rec-
ommended in case that the end-vector should be saved to a file)

path_2folder a character string specifying the path to the folder where the file(s) will be saved

stemmer_ngram anumeric value greater than 1. Applies to both ngram_sequential and ngram_overlap
methods. In case of ngram_sequential the first n characters will be picked,
whereas in the case of ngram_overlap the overlapping stemmer_ngram char-
acters will be build.

stemmer_gamma a float number greater or equal to 0.0. Applies only to ngram_sequential. Is a
threshold value, which defines how much frequency deviation of two N-grams
is acceptable. It is kept either zero or to a minimum value.

stemmer_truncate
anumeric value greater than 0. Applies only to ngram_sequential. The ngram_sequential
is modified to use relative frequencies (float numbers between 0.0 and 1.0 for
the ngrams of a specific word in the corpus) and the stemmer_truncate parame-
ter controls the number of rounding digits for the ngrams of the word. The main
purpose was to give the same relative frequency to words appearing approxi-
mately the same on the corpus.

stemmer_batches
a numeric value greater than 0. Applies only to ngram_sequential. Splits the
corpus into batches with the option to run the batches in multiple threads.

threads an integer specifying the number of cores to run in parallel
vocabulary_path_file
either NULL or a character string specifying the output path to a file where the
vocabulary should be saved once the text is tokenized

verbose either TRUE or FALSE. If TRUE then information will be printed out

Details

It is memory efficient to read the data using a path file in case of a big file, rather than importing the
data in the R-session and then calling the fokenize_transform_text function.

It is memory efficient to give a path_2folder in case that a big file should be saved, rather than return
the vector of all character strings in the R-session.

The skip-grams are a generalization of n-grams in which the components (typically words) need not
to be consecutive in the text under consideration, but may leave gaps that are skipped over. They
provide one way of overcoming the data sparsity problem found with conventional n-gram analysis.

Many character string pre-processing functions (such as the utf-locale or the split-string function)
are based on the boost library (https://www.boost.org/).

Stemming of the english language is done using the porter2-stemmer, for details see https://
github.com/smassung/porter2_stemmer

N-gram stemming is language independent and supported by the following two functions:
ngram_overlap The ngram_overlap stemming method is based on N-Gram Morphemes for Re-

trieval, Paul McNamee and James Mayfield, http://clef.isti.cnr.it/2007/working_
notes/mcnameeCLEF2007. pdf

https://www.boost.org/
https://github.com/smassung/porter2_stemmer
https://github.com/smassung/porter2_stemmer
http://clef.isti.cnr.it/2007/working_notes/mcnameeCLEF2007.pdf
http://clef.isti.cnr.it/2007/working_notes/mcnameeCLEF2007.pdf

tokenize_transform_vec_docs 41

ngram_sequential The ngram_sequential stemming method is a modified version based on Gen-
eration, Implementation and Appraisal of an N-gram based Stemming Algorithm, B. P. Pande,
Pawan Tamta, H. S. Dhami, https://arxiv.org/pdf/1312.4824.pdf

The list of stop-words in the available languages was downloaded from the following link, https:
//github.com/6/stopwords-json

Value

a character vector

Examples

library(textTinyR)
token_str = "CONVERT to lower, remove.. punctuation11234, trim token and split "

res = tokenize_transform_text(object = token_str, to_lower = TRUE, split_string = TRUE)

tokenize_transform_vec_docs
String tokenization and transformation (vector of documents)

Description

String tokenization and transformation (vector of documents)

Usage

tokenize_transform_vec_docs(
object = NULL,
as_token = FALSE,
to_lower = FALSE,
to_upper FALSE,

nn

utf_locale = R

remove_char = "",
remove_punctuation_string = FALSE,
remove_punctuation_vector = FALSE,
remove_numbers = FALSE,

trim_token = FALSE,

split_string = FALSE,

split_separator = " \r\n\t.,;:()?!//",
remove_stopwords = FALSE,
language = "english”,

min_num_char = 1,
max_num_char = Inf,
stemmer = NULL,

https://arxiv.org/pdf/1312.4824.pdf
https://github.com/6/stopwords-json
https://github.com/6/stopwords-json

42

min_n_gram
max_n_gram
skip_n_gram =
skip_distance
n_gram_delimi
concat_delimi

tokenize_transform_vec_docs

1)
17
1!
:0’
ter =" ",
ter = NULL,

path_2folder = "",

threads = 1,
vocabulary_pa
verbose = FAL

Arguments

object

as_token

to_lower

to_upper

utf_locale

remove_char

th_file = NULL,
SE

a character string vector of documents

if TRUE then the output of the function is a list of (split) token. Otherwise is a
vector of character strings (sentences)

either TRUE or FALSE. If TRUE the character string will be converted to lower
case

either TRUE or FALSE. If TRUE the character string will be converted to upper
case

the language specific locale to use in case that either the fo_lower or the to_upper
parameter is TRUE and the text file language is other than english. For instance
if the language of a text file is greek then the utf_locale parameter should be
‘el_GR.UTF-8’ (language_country.encoding). A wrong utf-locale does not
raise an error, however the runtime of the function increases.

a character string with specific characters that should be removed from the text
file. If the remove_char is "" then no removal of characters take place

remove_punctuation_string

either TRUE or FALSE. If TRUE then the punctuation of the character string
will be removed (applies before the split function)

remove_punctuation_vector

remove_numbers

trim_token

split_string

split_separator

either TRUE or FALSE. If TRUE then the punctuation of the vector of the char-
acter strings will be removed (after the string split has taken place)

either TRUE or FALSE. If TRUE then any numbers in the character string will
be removed

either TRUE or FALSE. If TRUE then the string will be trimmed (left and/or
right)

either TRUE or FALSE. If TRUE then the character string will be split using the
split_separator as delimiter. The user can also specify multiple delimiters.

a character string specifying the character delimiter(s)

remove_stopwords

either TRUE, FALSE or a character vector of user defined stop words. If TRUE
then by using the language parameter the corresponding stop words vector will
be uploaded.

tokenize_transform_vec_docs 43

language a character string which defaults to english. If the remove_stopwords parameter
is TRUE then the corresponding stop words vector will be uploaded. Available
languages are afrikaans, arabic, armenian, basque, bengali, breton, bulgarian,
catalan, croatian, czech, danish, dutch, english, estonian, finnish, french, gali-
cian, german, greek, hausa, hebrew, hindi, hungarian, indonesian, irish, italian,
latvian, marathi, norwegian, persian, polish, portuguese, romanian, russian,
slovak, slovenian, somalia, spanish, swahili, swedish, turkish, yoruba, zulu
min_num_char an integer specifying the minimum number of characters to keep. If the min_num_char

is greater than 1 then character strings with more than 1 characters will be re-
turned

max_num_char aninteger specifying the maximum number of characters to keep. The max_num_char
should be less than or equal to Inf (in this function the Inf value translates to a
word-length of 1000000000)

stemmer a character string specifying the stemming method. Available method is the
porter2_stemmer. See details for more information.

min_n_gram an integer specifying the minimum number of n-grams. The minimum number
of min_n_gramis 1.

max_n_gram an integer specifying the maximum number of n-grams. The minimum number
of max_n_gram is 1.

skip_n_gram an integer specifying the number of skip-n-grams. The minimum number of
skip_n_gramis 1. The skip_n_gram gives the (max.) n-grams using the skip_distance
parameter. If skip_n_gram is greater than 1 then both min_n_gram and max_n_gram
should be set to 1.

skip_distance an integer specifying the skip distance between the words. The minimum value
for the skip distance is 0, in which case simple n-grams will be returned.

n_gram_delimiter
a character string specifying the n-gram delimiter (applies to both n-gram and
skip-n-gram cases)

concat_delimiter
either NULL or a character string specifying the delimiter to use in order to
concatenate the end-vector of character strings to a single character string (rec-
ommended in case that the end-vector should be saved to a file)

path_2folder a character string specifying the path to the folder where the file(s) will be saved

threads an integer specifying the number of cores to run in parallel
vocabulary_path_file
either NULL or a character string specifying the output path to a file where the
vocabulary should be saved once the text is tokenized

verbose either TRUE or FALSE. If TRUE then information will be printed out

Details

It is memory efficient to give a path_2folder in case that a big file should be saved, rather than return
the vector of all character strings in the R-session.

The skip-grams are a generalization of n-grams in which the components (typically words) need not
to be consecutive in the text under consideration, but may leave gaps that are skipped over. They
provide one way of overcoming the data sparsity problem found with conventional n-gram analysis.

44 token_stats

Many character string pre-processing functions (such as the utf-locale or the split-string function)
are based on the boost library (https://www.boost.org/).

Stemming of the english language is done using the porter2-stemmer, for details see https://
github.com/smassung/porter2_stemmer

The list of stop-words in the available languages was downloaded from the following link, https:
//github.com/6/stopwords-json

Value

a character vector

Examples

library(textTinyR)
token_doc_vec = c("CONVERT to lower"”, "remove.. punctuation11234”, "trim token and split ")

res = tokenize_transform_vec_docs(object = token_doc_vec, to_lower = TRUE, split_string = TRUE)

token_stats token statistics

Description

token statistics

token statistics

Usage
utl <- token_stats$new(x_vec = NULL, path_2folder = NULL, path_2file = NULL,
file_delimiter = ' ', n_gram_delimiter = "_")

Details

the path_2vector function returns the words of a folder or file to a vector (using the file_delimiter
to input the data). Usage: read a vocabulary from a text file

the freq_distribution function returns a named-unsorted vector frequency_distribution in R for EI-
THER a folder, a file OR a character string vector. A specific subset of the result can be retrieved
using the print_frequency function

the count_character function returns the number of characters for each word of the corpus for
EITHER a folder, a file OR a character string vector. A specific number of character words can be
retrieved using the print_count_character function

the collocation_words function returns a co-occurence frequency table for n-grams for EITHER a
folder, a file OR a character string vector. A collocation is defined as a sequence of two or more

https://www.boost.org/
https://github.com/smassung/porter2_stemmer
https://github.com/smassung/porter2_stemmer
https://github.com/6/stopwords-json
https://github.com/6/stopwords-json

token_stats 45

consecutive words, that has characteristics of a syntactic and semantic unit, and whose exact and
unambiguous meaning or connotation cannot be derived directly from the meaning or connotation of
its components (http://nlp.stanford.edu/fsnlp/promo/colloc.pdf, page 172). The input
to the function should be text n-grams separated by a delimiter (for instance 3- or 4-ngrams). I can
retrieve a specific frequency table by using the print_collocations function

the string_dissimilarity_matrix function returns a string-dissimilarity-matrix using either the dice,
levenshtein or cosine distance. The input can be a character string vector only. In case that the
method is dice then the dice-coefficient (similarity) is calculated between two strings for a specific
number of character n-grams (dice_n_gram).

the look_up_table returns a look-up-list where the list-names are the n-grams and the list-vectors
are the words associated with those n-grams. The words for each n-gram can be retrieved using the
print_words_lookup_tbl function. The input can be a character string vector only.

Methods

token_stats$new(x_vec =NULL, path_2folder =NULL, path_2file =NULL, file_delimiter ="", n_gram_delimit

nn

string_dissimilarity_matrix(dice_n_gram=2, method = "dice"”, split_separator = , dice_thresh=1.0, ur

print_words_lookup_tbl(n_gram=NULL)

http://nlp.stanford.edu/fsnlp/promo/colloc.pdf

46

Methods

Public methods:

token_stats$new()
token_stats$path_2vector()
token_stats$freq_distribution()
token_stats$print_frequency()
token_stats$count_character()
token_stats$print_count_character()
token_stats$collocation_words()
token_stats$print_collocations()
token_stats$string_dissimilarity_matrix()
token_stats$look_up_table()
token_stats$print_words_lookup_tb1()
token_stats$clone()

Method new():

Usage:
token_stats$new(

)

x_vec = NULL,
path_2folder = NULL,
path_2file = NULL,
file_delimiter = "\n",
n_gram_delimiter = "_"

Arguments:

X_

vec either NULL or a string character vector

token_stats

path_2folder either NULL or a valid path to a folder (each file in the folder should include

words separated by a delimiter)

path_2file either NULL or a valid path to a file

file_delimiter either NULL or a character string specifying the file delimiter

n_gram_delimiter either NULL or a character string specifying the n-gram delimiter. It is

used in the collocation_words function

Method path_2vector():

Usage:
token_stats$path_2vector()

Method freq_distribution():

Usage:
token_stats$freq_distribution()

Method print_frequency():

Usage:
token_stats$print_frequency(subset = NULL)

token_stats 47

Arguments:

subset either NULL or a vector specifying the subset of data to keep (number of rows of the
print_frequency function)

Method count_character():

Usage:
token_stats$count_character()

Method print_count_character():
Usage:
token_stats$print_count_character(number = NULL)
Arguments:

number a numeric value for the print_count_character function. All words with number of
characters equal to the number parameter will be returned.

Method collocation_words():
Usage:
token_stats$collocation_words()

Method print_collocations():

Usage:
token_stats$print_collocations(word = NULL)

Arguments:

word a character string for the print_collocations and print_prob_next functions

Method string_dissimilarity_matrix():

Usage:
token_stats$string_dissimilarity_matrix(
dice_n_gram = 2,
method = "dice",
split_separator = " ",
dice_thresh = 1,

upper = TRUE,
diagonal = TRUE,
threads = 1

)

Arguments:

dice_n_gram anumeric value specifying the n-gram for the dice method of the string_dissimilarity_matrix
function

method a character string specifying the method to use in the string_dissimilarity_matrix func-
tion. One of dice, levenshtein or cosine.

split_separator acharacter string specifying the string split separator if method equal cosine
in the string_dissimilarity_matrix function. The cosine method uses sentences, so for a
sentence : "this_is_a_word_sentence" the split_separator should be "_"

48 token_stats
dice_thresh afloat number to use to threshold the data if method is dice in the string_dissimilarity_matrix
function. It takes values between 0.0 and 1.0. The closer the thresh is to 0.0 the more values
of the dissimilarity matrix will take the value of 1.0.
upper either TRUE or FALSE. If TRUE then both lower and upper parts of the dissimilarity
matrix of the string_dissimilarity_matrix function will be shown. Otherwise the upper part
will be filled with NA’s
diagonal either TRUE or FALSE. If TRUE then the diagonal of the dissimilarity matrix of the
string_dissimilarity_matrix function will be shown. Otherwise the diagonal will be filled
with NA’s
threads anumeric value specifying the number of cores to use in parallel in the string_dissimilarity_matrix
function
Method look_up_table():
Usage:
token_stats$look_up_table(n_grams = NULL)
Arguments:
n_grams a numeric value specifying the n-grams in the look_up_table function
Method print_words_lookup_tb1():
Usage:
token_stats$print_words_lookup_tbl(n_gram = NULL)
Arguments:
n_gram a character string specifying the n-gram to use in the print_words_lookup_tbl function
Method clone(): The objects of this class are cloneable with this method.
Usage:
token_stats$clone(deep = FALSE)
Arguments:
deep Whether to make a deep clone.
Examples

library(textTinyR)
expl = c('one_word_token', 'two_words_token', 'three_words_token', 'four_words_token')

tk <- token_stats$new(x_vec = expl, path_2folder = NULL, path_2file = NULL)

tk$freq_distribution()

tk$print_frequency()

utf locale 49

cnt <- tk$count_character()

tk$print_count_character(number = 4)

col <- tk$collocation_words()

tk$print_collocations(word = 'five')

string dissimilarity matrix:

dism <- tk$string_dissimilarity_matrix(method = 'levenshtein')

build a look-up-table:

lut <- tk$look_up_table(n_grams = 3)

tk$print_words_lookup_tbl(n_gram = 'e_w')

utf_locale utf-locale for the available languages

Description

utf-locale for the available languages

Usage

utf_locale(language = "english”)

Arguments

language a character string specifying the language for which the utf-locale should be
returned

50 vocabulary_parser

Details

This is a limited list of language-locale. The locale depends mostly on the text input.

Value

a utf locale

Examples

library(textTinyR)

utf_locale(language = "english")

vocabulary_parser returns the vocabulary counts for small or medium (xml and not only

) files

Description

returns the vocabulary counts for small or medium (xml and not only) files

Usage

vocabulary_parser(
input_path_file = NULL,
start_query = NULL,
end_query = NULL,
vocabulary_path_file = NULL,
min_lines = 1,
trimmed_line = FALSE,
to_lower = FALSE,
to_upper = FALSE,
utf_locale = "",
max_num_char = Inf,
remove_char = "",
remove_punctuation_string = FALSE,
remove_punctuation_vector = FALSE,
remove_numbers = FALSE,
trim_token = FALSE,
split_string = FALSE,

split_separator = " \r\n\t.,;:()?!//",
remove_stopwords = FALSE,
language = "english”,

min_num_char = 1,
stemmer = NULL,
min_n_gram = 1,

vocabulary_parser 51

max_n_gram = 1,
skip_n_gram = 1,
skip_distance = 0,
n_gram_delimiter = " ",
threads = 1,

verbose = FALSE

Arguments

input_path_file

start_query

end_query

a character string specifying a valid path to the input file

a character string. The start_guery is the first word of the subset of the data and
should appear frequently at the beginning of each line in the text file.

a character string. The end_query is the last word of the subset of the data and
should appear frequently at the end of each line in the text file.

vocabulary_path_file

min_lines

trimmed_line

to_lower

to_upper

utf_locale

max_num_char

remove_char

a character string specifying the output file where the vocabulary should be
saved (after tokenization and transformation is applied).

anumeric value specifying the minimum number of lines. For instance if min_lines
= 2, then only subsets of text with more than 1 lines will be kept.

either TRUE or FALSE. If FALSE then each line of the text file will be trimmed
both sides before applying the start_query and end_query

either TRUE or FALSE. If TRUE the character string will be converted to lower
case

either TRUE or FALSE. If TRUE the character string will be converted to upper
case

the language specific locale to use in case that either the fo_lower or the to_upper
parameter is TRUE and the text file language is other than english. For instance
if the language of a text file is greek then the utf locale parameter should be
‘el_GR.UTF-8’ (language_country.encoding). A wrong utf-locale does not
raise an error, however the runtime of the function increases.

an integer specifying the maximum number of characters to keep. The max_num_char
should be less than or equal to Inf (in this function the Inf value translates to a
word-length of 1000000000)

a character string with specific characters that should be removed from the text
file. If the remove_char is "" then no removal of characters take place

remove_punctuation_string

either TRUE or FALSE. If TRUE then the punctuation of the character string
will be removed (applies before the split function)

remove_punctuation_vector

either TRUE or FALSE. If TRUE then the punctuation of the vector of the char-
acter strings will be removed (after the string split has taken place)

remove_numbers either TRUE or FALSE. If TRUE then any numbers in the character string will

be removed

52 vocabulary_parser

trim_token either TRUE or FALSE. If TRUE then the string will be trimmed (left and/or
right)

split_string either TRUE or FALSE. If TRUE then the character string will be split using the
split_separator as delimiter. The user can also specify multiple delimiters.

split_separator
a character string specifying the character delimiter(s)

remove_stopwords
either TRUE, FALSE or a character vector of user defined stop words. If TRUE
then by using the language parameter the corresponding stop words vector will
be uploaded.

language a character string which defaults to english. If the remove_stopwords parameter
is TRUE then the corresponding stop words vector will be uploaded. Available
languages are afrikaans, arabic, armenian, basque, bengali, breton, bulgarian,
catalan, croatian, czech, danish, dutch, english, estonian, finnish, french, gali-
cian, german, greek, hausa, hebrew, hindi, hungarian, indonesian, irish, italian,
latvian, marathi, norwegian, persian, polish, portuguese, romanian, russian,
slovak, slovenian, somalia, spanish, swahili, swedish, turkish, yoruba, zulu

min_num_char an integer specifying the minimum number of characters to keep. If the min_num_char
is greater than 1 then character strings with more than 1 characters will be re-
turned

stemmer a character string specifying the stemming method. Available method is the
porter2_stemmer. See details for more information.

min_n_gram an integer specifying the minimum number of n-grams. The minimum number
of min_n_gram is 1.

max_n_gram an integer specifying the maximum number of n-grams. The minimum number
of max_n_gram is 1.

skip_n_gram an integer specifying the number of skip-n-grams. The minimum number of
skip_n_gramis 1. The skip_n_gram gives the (max.) n-grams using the skip_distance
parameter. If skip_n_gram is greater than 1 then both min_n_gram and max_n_gram
should be set to 1.

skip_distance an integer specifying the skip distance between the words. The minimum value
for the skip distance is 0, in which case simple n-grams will be returned.
n_gram_delimiter
a character string specifying the n-gram delimiter (applies to both n-gram and
skip-n-gram cases)

threads an integer specifying the number of cores to run in parallel
verbose either TRUE or FALSE. If TRUE then information will be printed in the console
Details

The text file should have a structure (such as an xml-structure), so that subsets can be extracted
using the start_query and end_guery parameters

For big files the vocabulary_accumulator method of the big_tokenize_transform class is appropriate

Stemming of the english language is done using the porter2-stemmer, for details see https://
github.com/smassung/porter2_stemmer

https://github.com/smassung/porter2_stemmer
https://github.com/smassung/porter2_stemmer

vocabulary_parser 53
Examples

Not run:

library(textTinyR)

vps = vocabulary_parser(input_path_file = '/folder/input_data.txt',
start_query = 'start_word', end_query = 'end_word',
vocabulary_path_file = '/folder/vocab.txt',
to_lower = TRUE, split_string = TRUE)

End(Not run)

Index

batch_compute, 2
big_tokenize_transform, 3
bytes_converter, 9

cluster_frequency, 10
COS_TEXT, 12
cosine_distance, 11
Count_Rows, 13

dense_2sparse, 14
dice_distance, 14
dims_of_word_vecs, 15
Doc2Vec, 16

JACCARD_DICE, 18

levenshtein_distance, 19
load_sparse_binary, 20

matrix_sparsity, 21

read_characters, 21
read_rows, 22

save_sparse_binary, 23
select_predictors, 23
sparse_Means, 25
sparse_Sums, 25
sparse_term_matrix, 26

TEXT_DOC_DISSIM, 32
text_file_parser, 33
text_intersect, 35
token_stats, 44
tokenize_transform_text, 37
tokenize_transform_vec_docs, 41

utf_locale, 49

vocabulary_parser, 50

54

	batch_compute
	big_tokenize_transform
	bytes_converter
	cluster_frequency
	cosine_distance
	COS_TEXT
	Count_Rows
	dense_2sparse
	dice_distance
	dims_of_word_vecs
	Doc2Vec
	JACCARD_DICE
	levenshtein_distance
	load_sparse_binary
	matrix_sparsity
	read_characters
	read_rows
	save_sparse_binary
	select_predictors
	sparse_Means
	sparse_Sums
	sparse_term_matrix
	TEXT_DOC_DISSIM
	text_file_parser
	text_intersect
	tokenize_transform_text
	tokenize_transform_vec_docs
	token_stats
	utf_locale
	vocabulary_parser
	Index

