Introduction to tester

Gaston Sanchez

Www . gastonsanchez. com

1 Introduction and Motivation

tester provides human readable functions to test characteristics of some common R objects.
The main purpose behind tester is to help you validate objects, especially for programming
and developing purposes (e.g. creating R packages)

Testing objects When we write a function, more often than not, we need to validate its
arguments. In order to do so, we can use some of the already available functions in R that
allow us to test whether objects have certain features. For instance, we can use is.matrix (M)
to test if M is a matrix. Likewise, if you want to test if an object is a list, we can use the
is.1list () function.

The interesting part comes when we want to test for more specific characteristics, like testing
if M is a numeric matrix, or test if a number is a positive integer, or maybe if it is a decimal
number. Let’s take the case in which we want to test whether an object is a character matrix.
One way to do that would be to write something like this:

object = matrix(letters[1:6], 2, 3)
if (is.matrix(object) & is.character(object)) TRUE else FALSE

[1] TRUE

Now let’s say we want to test if a given number is a positive integer:

number = 1

if (number > 0 & is.integer(number)) TRUE else FALSE
[1] FALSE

In this case, we know that number = 1 but the test returned FALSE. The reason is that the
number 1 is not an strict integer in R. Instead, we need to declare number = 1L. Now, if we
test again we will get TRUE:

http://www.gastonsanchez.com

number = 1L

if (number > 0 & is.integer(number)) TRUE else FALSE

[1] TRUE

Easier tests If we just have a couple of functions, testing its arguments may not be a big
deal. But when we have dozens or hundreds of functions, even if they are not in the form of
a package, testing their arguments can be more complicated. Instead of writing expressions
like the following one:

if (number > 0 & is.integer(number)) TRUE else FALSE
it would also be desirable to simply write something like this:
is_positive_integer (number)

This is precisely what tester allows us to do by providing a set of functions to test objects in
a friendly way, following the so-called literate programming paradigm. Under this paradigm,
instead of writing programs instructing the computer what to do, we write programs explain-
ing humans what we want the computer to do. The advantage is that when we read code,
we should be able to do so as if we were reading a text. In this sense, the goal of tester is
twofold: 1) help you test objects, and 2) help you write more human readable code.

Here is another example. Suppose we want to check if a vector has missing values. One
option to answer that quesiton is to use the function is.na():

is.na(c(1, 2, 3, 4, NA))

[1] FALSE FALSE FALSE FALSE TRUE

Depending on your goals, is.na() might be enough. But what if we just want to simply
test if a vector has missing values? With tester now we can do that using the function
has missing():

has_missing(c(1, 2, 3, 4, NA))

[1] TRUE

has_NA(c(1, 2, 3, 4, NA))

[1] TRUE

2 About tester

To use tester (once you have installed it), load it with the function library(Q:

library(tester)

2.1 Numbers

To test if we have number, as well as different types of numbers, we can use one of the
following functions:

Testing Numbers

Function Description

is_positive() tests if a number is positive
is_negative() tests if a number is negative
is_integer () tests if a number is an integer
is_natural() tests if a number is a natural number
is_odd () tests if a number is an odd number
is_even() tests if a number is an even number

is_positive_integer() tests if a number is a positive integer
is negative_integer() tests if a number is a negative integer
is_decimal () tests if a number is decimal
is_positive decimal() tests if a number is a positive decimal
is_negative_decimal() tests if a number is a negative decimal

2.2 Logical

To test if an object (or a condition) is TRUE or FALSE, we can use the following functions:

Testing Logicals

Function Description
is TRUEQ) tests if an object is TRUE
is FALSEQ) tests if an object is FALSE

true_or_false() tests if is TRUE or FALSE

2.3 Vectors

To test if we have different types of vectors we can use the following functions:

Testing Vectors
Function Description
is_vector() tests if an object is a vector
is numeric vector() tests if an object is a numeric vector
is_string vector() tests if an object is a string vector
is_logical_vector() tests if an object is a logical vector
is_not_vector() tests if an object is not a vector

3

2.4 Matrices

Likewise, to test if we have different types of matrices we can use the following functions:

Testing Matrices

Function Description
ismatrix() tests if an object is a matrix
is_notmatrix() tests if an object is not a matrix

is_ numeric matrix()
is_string matrix()
is_logical matrix()
is_square matrix()
is_rectangular matrix()
is_tall matrix()
is_widematrix()
is_diagonal()
is_triangular ()
is_lower_triangular()
is_upper_triangular()

tests if an object is a numeric matrix
tests if an object is a string matrix
tests if an object is a logical matrix
tests if an object is a square matrix
tests if an object is a rectangular matrix
tests if an object is a tall matrix

tests if an object is a wide matrix
tests if an object is a diagonal matrix
tests if an object is a triangular matrix
tests if a matrix is lower triangular
tests if a matrix is upper triangular

2.5 Data Frame

To test if we have different types of data frames we can use the following functions:

Testing Data Frames

Function

Description

is_dataframe()
is_numeric_dataframe()
is_string dataframe ()
is_factor_dataframe()
is_not_dataframe()

tests if an object is a data frame

tests if an object is a numeric data frame
tests if an object is a string data frame
tests if an object is a data frame of factors
tests if an object is not a data frame

2.6 Matrices and data frames attributes

Other functions related to matrices and data frames allows us to ask whether or not some

properties are present:

Matrices and Data Frames attributes

Function

Description

has_dimension()
is_one_dim()
has_rownames ()
has_colnames()

tests if an object has dimension
tests if an object has one-dimension
tests if an object row names

tests if an object column names

2.7 Missing Values

For testing missing values, infinite values, not numbers, tester provides the following func-

tions:

Testing Missing Values

Function Description

has missing() tests if an object has missing values
has_infinite() tests if an object has infinite values

has not_a number() tests if an object has 'Not a Number’

has nas() tests if an object has NA, Inf, -Inf, NaN

2.8 Comparisons

Another interesting set of functions that come in tester are those for comparing purposes:

Comparison

Function Description

same_class() tests if two objects have the same class

same_mode () tests if two objects have the same mode

same_type () tests if two objects have the same type of

same_length() tests if two objects have the same length

same_dim() tests if two matrices (or data frames) have the same dimension

same_nrow () tests if two matrices (or data frames) have the same number of rows

same_ncol() tests if two matrices (or data frames) have the same number of columns
2.9 Other

tester comes with many more functions that will allow you to check —in a friendly way—
whether some common R objects have certain characteristics. Some of the extra available
functions are:

Other Tests

Function Description

is_tabular() tests if an object is a matrix or data frame
ismultiple() tests if a number is multiple of a given number
has names () tests if an object has names

list_of _vectors() tests if an object is a list of vectors

list_of numeric_vectors() tests if an object is a list of numeric vectors
list of string vectors() tests if an object is a list of string vectors
list_of logical vectors() tests if an object is a list of logical vectors

	Introduction and Motivation
	About tester
	Numbers
	Logical
	Vectors
	Matrices
	Data Frame
	Matrices and data frames attributes
	Missing Values
	Comparisons
	Other

