Package ‘terrainr’

October 4, 2023
Type Package

Title Landscape Visualizations in R and 'Unity’
Version 0.7.5

Description Functions for the retrieval, manipulation, and visualization
of 'geospatial' data, with an aim towards producing '3D' landscape
visualizations in the 'Unity' '3D' rendering engine. Functions are
also provided for retrieving elevation data and base map tiles from
the 'USGS' National Map <https://apps.nationalmap.gov/services/>.

License MIT + file LICENSE

URL https://docs.ropensci.org/terrainr/,

https://github.com/ropensci/terrainr

BugReports https://github.com/ropensci/terrainr/issues

Imports basebdenc, ggplot2 (>= 3.4.0), glue, grDevices, httr, magick
(>=2.5.0), methods, png, rlang, sf (>= 1.0-5), terra, unifir,
units

Suggests brio, covr, jpeg, knitr, progress, progressr, rmarkdown,
testthat, tiff

VignetteBuilder knitr
Config/testthat/edition 3
Config/testthat/parallel true
Encoding UTF-8
RoxygenNote 7.2.3
Depends R (>=2.10)
NeedsCompilation no

Author Michael Mahoney [aut, cre] (<https://orcid.org/0000-0003-2402-304X>),
Mike Johnson [rev] (Mike reviewed the package (v. 0.2.1) for rOpenSci,
see <https://github.com/ropensci/software-review/issues/416>),
Sydney Foks [rev] (Sydney reviewed the package (v. 0.2.1) for rOpenSci,
see <https://github.com/ropensci/software-review/issues/416>)

Maintainer Michael Mahoney <mike.mahoney.218@gmail.com>

1

https://apps.nationalmap.gov/services/
https://docs.ropensci.org/terrainr/
https://github.com/ropensci/terrainr
https://github.com/ropensci/terrainr/issues
https://orcid.org/0000-0003-2402-304X
https://github.com/ropensci/software-review/issues/416
https://github.com/ropensci/software-review/issues/416

Repository CRAN
Date/Publication 2023-10-04 13:10:02 UTC

R topics documented:

addbuff

addbuff e 2
combine_overlays 4
geom_spatial rgb Lo 6
georeference_overlay L. e 9
get_tiles . . . oL 10
make_manifest L. e e 14
make_unity 15
METZE_TASIEIS . .« . v v v v v e v e e e e e e e e e e e e e e e 16
raster_to_raw_tiles e 17
vector_to_overlay 19

Index 21

addbuff Add a uniform buffer around a bounding box for geographic coordi-
nates
Description

add_bbox_buffer calculates the great circle distance both corners of your bounding box are from
the centroid and extends those by a set distance. Due to using Haversine/great circle distance,

latitude/longitude calculations will not be exact.

set_bbox_side_length is a thin wrapper around add_bbox_buffer which sets all sides of the bound-

ing box to (approximately) a specified length.

Both of these functions are intended to be used with geographic coordinate systems (data using
longitude and latitude for position). For projected coordinate systems, a more sane approach is to
use sf::st_buffer to add a buffer, or combine sf::st_centroid with the buffer to set a specific side

length.
Usage
add_bbox_buffer(data, distance, distance_unit =

S3 method for class 'sf'
add_bbox_buffer(data, distance, distance_unit =

S3 method for class 'Raster’
add_bbox_buffer(data, distance, distance_unit =

S3 method for class 'SpatRaster'
add_bbox_buffer(data, distance, distance_unit =

"meters”,

"meters”,

"meters”,

"meters”,

error_crs

error_crs

error_crs

error_crs

NULL)

NULL)

NULL)

NULL)

addbuff 3

set_bbox_side_length(

data,

distance,

distance_unit = "meters”,
error_crs = NULL

)

S3 method for class 'sf'
set_bbox_side_length(

data,

distance,

distance_unit = "meters”,
error_crs = NULL

)

S3 method for class 'Raster'
set_bbox_side_length(

data,

distance,

distance_unit = "meters”,
error_crs = NULL

)

S3 method for class 'SpatRaster'
set_bbox_side_length(

data,
distance,
distance_unit = "meters”,
error_crs = NULL

)

Arguments
data The original data to add a buffer around. Must be either an sf or SpatRaster
object.
distance The distance to add or to set side lengths equal to.

distance_unit The units of the distance to add to the buffer, passed to units::as_units.

error_crs Logical: Should this function error if data has no CRS? If TRUE, function errors;
if FALSE, function quietly assumes EPSG:4326. If NULL, the default, function
assumes EPSG:4326 with a warning.

Value

An sfc object (from sf::st_as_sfc).

See Also

Other utilities: calc_haversine_distance(), deg_to_rad(), get_centroid(), rad_to_deg()

4 combine_overlays

Examples

df <- data.frame(
lat = c(44.04905, 44.17609),
Ing = c(-74.01188, -73.83493)
)

df_sf <- sf::st_as_sf(df, coords = c("lng"”, "lat"))
df_sf <- sf::st_set_crs(df_sf, 4326)

add_bbox_buffer(df_sf, 10)
df <- data.frame(

lat = c(44.04905, 44.17609),
Ing = c(-74.01188, -73.83493)

)

df_sf <- sf::st_as_sf(df, coords = c("lng"”, "lat"))
df_sf <- sf::st_set_crs(df_sf, 4326)

set_bbox_side_length(df_sf, 4000)

combine_overlays Combine multiple image overlays into a single file

Description

This function combines any number of images into a single file, which may then be further pro-
cessed as an image or transformed into an image overlay.

Usage

combine_overlays(

output_file = tempfile(fileext = ".png"),

transparency = @
)
Arguments

File paths for images to be combined. Note that combining TIFF images requires
the tiff package be installed.

output_file The path to save the resulting image to. Can be any format accepted by mag-
ick::image_read. Optionally, can be set to NULL, in which case this function will
return the image as a magick object instead of writing to disk.

combine_overlays 5

transparency A value indicating how much transparency should be added to each image. If
less than 1, interpreted as a proportion (so a value of 0.1 results in each image
becoming 10% more transparent); if between 1 and 100, interpreted as a percent-
age (so a value of 10 results in each image becoming 10% more transparent.) A
value of 0 is equivalent to no additional transparency.

Value

If output_fileis not null, output_file, invisibly. If output_file is null, amagick image object.

See Also

Other data manipulation functions: georeference_overlay(), merge_rasters(), raster_to_raw_tiles(),
vector_to_overlay()

Other overlay creation functions: georeference_overlay(), vector_to_overlay()

Other visualization functions: geom_spatial_rgb(), raster_to_raw_tiles(), vector_to_overlay()

Examples

Not run:
Generate points and download orthoimagery
mt_elbert_points <- data.frame(
lat = runif (100, min = 39.11144, max = 39.12416),
Ing = runif (100, min = -106.4534, max = -106.437)
)

mt_elbert_sf <- sf::st_as_sf(mt_elbert_points, coords = c("lng"”, "lat"))
sf::st_crs(mt_elbert_sf) <- sf::st_crs(4326)

output_files <- get_tiles(
mt_elbert_sf,
output_prefix = tempfile(),
services = c("ortho")

)

Merge orthoimagery into a single file
ortho_merged <- merge_rasters(
input_rasters = output_files[1],
output_raster = tempfile(fileext = ".tif")
)

Convert our points into an overlay
mt_elbert_overlay <- vector_to_overlay(mt_elbert_sf,
ortho_merged[[1]],

size = 15,
color = "red",
na.rm = TRUE

)

Combine the overlay with our orthoimage
ortho_with_points <- combine_overlays(

6 geom_spatial_rgb

ortho_merged[[1]],
mt_elbert_overlay

)

End(Not run)

geom_spatial_rgb Plot RGB rasters in ggplot2

Description

geom_spatial_rgb and stat_spatial_rgb allow users to plot three-band RGB rasters in gg-
plot2, using these layers as background base maps for other spatial plotting. Note that unlike
ggplot2::geom_sf, this function does not force ggplot2::coord_sf; for accurate mapping, add gg-
plot2::coord_sf with a crs value matching your input raster as a layer.

Usage

geom_spatial_rgh(
mapping = NULL,

data = NULL,

stat = "spatialRGB",
position = "identity"”,
hjust = 0.5,

vjust = 0.5,

interpolate = FALSE,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE,
scale = NULL

)

stat_spatial_rgb(
mapping = NULL,

data = NULL,
geom = "raster”,
position = "identity"”,

na.rm = FALSE,
show.legend = FALSE,
inherit.aes = TRUE,
scale = NULL,

geom_spatial_rgb 7

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. In addition to the three options described
in ggplot2::geom_raster, there are two additional methods:

If a SpatRaster object (see terra::rast), this function will coerce the raster to a
data frame and assume the raster bands are in RGB order (while allowing for,
but ignoring, a fourth alpha band).

If a length-1 character vector, this function will attempt to load the object via
terra::rast.

stat The statistical transformation to use on the data for this layer, either as a ggproto
Geom subclass or as a string naming the stat stripped of the stat_ prefix (e.g.
"count” rather than "stat_count")

position Position adjustment, either as a string naming the adjustment (e.g. "jitter” to
use position_jitter), or the result of a call to a position adjustment function.
Use the latter if you need to change the settings of the adjustment.

Other arguments passed on to layer (). These are often aesthetics, used to set
an aesthetic to a fixed value, like colour = "red” or size = 3. They may also
be parameters to the paired geom/stat.

hjust, vjust horizontal and vertical justification of the grob. Each justification value should
be a number between 0 and 1. Defaults to 0.5 for both, centering each pixel over
its data location.

interpolate If TRUE interpolate linearly, if FALSE (the default) don’t interpolate.

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

show. legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

scale Integer. Maximum (possible) value in the three channels. If NULL, attempts to
infer proper values from data — if all RGB values are <=1 then 1, <= 255 then
255, and otherwise 65535.

geom The geometric object to use to display the data, either as a ggproto Geom sub-
class or as a string naming the geom stripped of the geom_ prefix (e.g. "point”
rather than "geom_point")

See Also

Other visualization functions: combine_overlays(), raster_to_raw_tiles(), vector_to_overlay()

8 geom_spatial_rgb

Examples

Not run:

simulated_data <- data.frame(
id = seq(1, 100, 1),
lat = runif (100, 44.04905, 44.17609),
Ing = runif (100, -74.01188, -73.83493)
)

simulated_data <- sf::st_as_sf(simulated_data, coords = c("lng", "lat"))
simulated_data <- sf::st_set_crs(simulated_data, 4326)

output_tiles <- get_tiles(simulated_data,
services = c("ortho"),
resolution = 120

)

merged_ortho <- tempfile(fileext = ".tif")
merge_rasters(output_tiles[["ortho”"]], merged_ortho)

merged_stack <- terra::rast(merged_ortho)
library(ggplot2)
ggplot() +

geom_spatial_rgb(

data = merged_ortho,
mapping = aes(

X = X,
Y=y,
r = red,
g = green,
b = blue
)
) +

geom_sf(data = simulated_data) +
coord_sf(crs = 4326)

ggplot() +
geom_spatial_rgb(
data = merged_stack,
mapping = aes(

X = X,
y =Y,
r = red,
g = green,
b = blue
)
) +

geom_sf(data = simulated_data) +
coord_sf(crs = 4326)

georeference_overlay 9

End(Not run)

georeference_overlay Georeference image overlays based on a reference raster

Description

This function georeferences an image overlay based on a reference raster, setting the extent and
CRS of the image to those of the raster file. To georeference multiple images and merge them into
a single file, see merge_rasters.

Usage

georeference_overlay(

overlay_file,

reference_raster,

output_file = tempfile(fileext = ".tif")
)

Arguments

overlay_file The image overlay to georeference. File format will be detected automatically
from file extension; options include jpeg/jpg, png, and tif/tiff.
reference_raster
The raster file to base georeferencing on. The output image will have the same
extent and CRS as the reference raster. Accepts anything that can be read by
terra::rast

output_file The path to write the georeferenced image file to. Must be a TIFF.

Value

The file path written to, invisibly.

See Also

Other data manipulation functions: combine_overlays(), merge_rasters(), raster_to_raw_tiles(),
vector_to_overlay()

Other overlay creation functions: combine_overlays(), vector_to_overlay()

Examples

Not run:
simulated_data <- data.frame(
id = seq(1, 100, 1),
lat = runif (100, 44.1114, 44.1123),
lng = runif(100, -73.92273, -73.92147)
)

10 get_tiles

simulated_data <- sf::st_as_sf(simulated_data, coords = c("lng", "lat"))

downloaded_tiles <- get_tiles(simulated_data,
services = c("elevation”, "ortho"),
georeference = FALSE

)

georeference_overlay(
overlay_file = downloaded_tiles[[2]],
reference_raster = downloaded_tiles[[1]],
output_file = tempfile(fileext = ".tif")
)

End(Not run)

get_tiles A user-friendly way to get USGS National Map data tiles for an area

Description

This function splits the area contained within a bounding box into a set of tiles, and retrieves data
from the USGS National map for each tile. As of version 0.5.0, the method for lists has been
deprecated.

Usage

get_tiles(
data,
output_prefix = tempfile(),
side_length = NULL,
resolution = 1,
services = "elevation”,
verbose = FALSE,
georeference = TRUE,
projected = NULL,

S3 method for class 'sf'
get_tiles(
data,
output_prefix = tempfile(),
side_length = NULL,
resolution = 1,
services = "elevation”,
verbose = FALSE,

get_tiles

georeference = TRUE,
projected = NULL,

)

S3 method for class 'sfc'
get_tiles(
data,
output_prefix = tempfile(),
side_length = NULL,
resolution = 1,
services = "elevation”,
verbose = FALSE,
georeference = TRUE,
projected = NULL,

)

S3 method for class 'Raster'
get_tiles(
data,
output_prefix = tempfile(),
side_length = NULL,
resolution = 1,
services = "elevation”,
verbose = FALSE,
georeference = TRUE,
projected = NULL,

)

S3 method for class 'SpatRaster'’
get_tiles(

data,

output_prefix = tempfile(),

side_length = NULL,

resolution = 1,

services = "elevation”,

verbose = FALSE,

georeference = TRUE,

projected = NULL,

)

S3 method for class 'list'
get_tiles(

data,

output_prefix = tempfile(),

12 get_tiles
side_length = NULL,
resolution = 1,
services = "elevation”,

verbose = FALSE,

georeference

= TRUE,

projected = NULL,

Arguments

data

output_prefix
side_length

resolution

services

verbose

georeference

projected

Value

An sf or SpatRaster object; tiles will be downloaded for the full extent of the
provided object.

The file prefix to use when saving tiles.

The length, in meters, of each side of tiles to download. If NULL, defaults to the
maximum side length permitted by the least permissive service requested.

How many meters are represented by each pixel? The default value of 1 means
that 1 pixel = 1 meter, while a value of 2 means that 1 pixel = 2 meters, and so
on.

A character vector of services to download data from. Current options include
"3DEPElevation”, "USGSNAIPPIus", and "nhd". Users can also use short codes
to download a specific type of data without specifying the source; current op-
tions for short codes include "elevation" (equivalent to "3DEPElevation"), "or-
tho" (equivalent to "USGSNAIPPIus), and "hydro" ("nhd"). Short codes are not
guaranteed to refer to the same source across releases. Short codes are converted
to their service name and then duplicates are removed, so any given source will
only be queried once per tile.

Logical: should tile retrieval functions run in verbose mode?

Logical: should tiles be downloaded as PNGs without georeferencing, or should
they be downloaded as georeferenced TIFF files? This option does nothing when
only elevation data is being downloaded.

Logical: is data in a projected coordinate reference system? If NULL, the default,
inferred from sf::st_is_longlat.

Additional arguments passed to hit_national_map_api. These can be used to
change default query parameters or as additional options for the National Map
services. See below for more details.

A list of the same length as the number of unique services requested, containing named vectors of
where data files were saved to. Returned invisibly.

Available Datasources

The following services are currently available (with short codes in parentheses where applicable).
See links for API documentation.

get_tiles 13

e 3DEPElevation (short code: elevation)
e USGSNAIPPIus (short code: ortho)
* USGSNAIPImagery

* nhd (short code: hydro)

* govunits

* contours

e geonames

e NHDPlus_HR

¢ structures

* transportation

e wbd ("short code": watersheds)

* ecosystems

* USGSTopo

* USGSShadedReliefOnly

* USGSImageryOnly

* USGSHydroCached

* USGSTNMBIlank

Additional Arguments

The ... argument can be used to pass additional arguments to the National Map API or to edit the
hard-coded defaults used by this function. More information on common arguments to change can
be found in hit_national_map_api. Note that ... can also be used to change the formats returned
by the server, but that doing so while using this function will likely cause the function to error (or
corrupt the output data). To download files in different formats, use hit_national_map_api.

See Also

Other data retrieval functions: hit_national_map_api()

Examples

Not run:

simulated_data <- data.frame(
id = seq(1, 100, 1),
lat = runif (100, 44.04905, 44.17609),
Ing = runif (100, -74.01188, -73.83493)

)

simulated_data <- sf::st_as_sf(simulated_data, coords = c("lng”, "lat"))
get_tiles(simulated_data, tempfile())

End(Not run)

https://elevation.nationalmap.gov/arcgis/rest/services/3DEPElevation/ImageServer
https://imagery.nationalmap.gov/arcgis/rest/services/USGSNAIPPlus/ImageServer/exportImage
https://imagery.nationalmap.gov/arcgis/rest/services/USGSNAIPImagery/ImageServer
https://hydro.nationalmap.gov/arcgis/rest/services/nhd/MapServer
https://carto.nationalmap.gov/arcgis/rest/services/govunits/MapServer
https://carto.nationalmap.gov/arcgis/rest/services/contours/MapServer
https://carto.nationalmap.gov/arcgis/rest/services/geonames/MapServer
https://hydro.nationalmap.gov/arcgis/rest/services/NHDPlus_HR/MapServer
https://carto.nationalmap.gov/arcgis/rest/services/structures/MapServer
https://carto.nationalmap.gov/arcgis/rest/services/transportation/MapServer
https://hydro.nationalmap.gov/arcgis/rest/services/wbd/MapServer
https://www.usgs.gov/centers/geosciences-and-environmental-change-science-center/science/global-ecosystems
https://basemap.nationalmap.gov/arcgis/rest/services/USGSTopo/MapServer
https://basemap.nationalmap.gov/arcgis/rest/services/USGSShadedReliefOnly/MapServer
https://basemap.nationalmap.gov/arcgis/rest/services/USGSImageryOnly/MapServer
https://basemap.nationalmap.gov/arcgis/rest/services/USGSHydroCached/MapServer
https://basemap.nationalmap.gov/arcgis/rest/services/USGSTNMBlank/MapServer

14 make_manifest

make_manifest Transform rasters and write manifest file for import into Unity

Description

These functions crop input raster files into smaller square tiles and then converts them into either
.png or .raw files which are ready to be imported into the Unity game engine. make_manifest also
writes a "manifest" file and importer script which may be used to automatically import the tiles into
Unity.

Usage
make_manifest(
heightmap,
overlay = NULL,
output_prefix = "import"”,
manifest_path = "terrainr.manifest”,
importer_path = "import_terrain.cs"

transform_elevation(heightmap, side_length = 4097, output_prefix = "import")

transform_overlay(overlay, side_length = 4097, output_prefix = "import")
Arguments

heightmap File path to the heightmap to transform.

overlay File path to the image overlay to transform. Optional for make_ manifest.

output_prefix The file path to prefix output tiles with.
manifest_path File path to write the manifest file to.

importer_path File name to write the importer script to. Set to NULL to not copy the importer
script. Will overwrite any file at the same path.

side_length Side length, in pixels, of each output tile. If the raster has dimensions not evenly
divisible by side_length, tiles will be generated with overhanging pieces set
to O units of elevation or RGB 0 (pure black). Side lengths not equal to 2*x +
1 (for x <= 12) will cause a warning, as tiles must be this size for import into
Unity.

Value

manifest_path, invisibly.

make_unity 15

Examples

Not run:
if (!isTRUE(as.logical(Sys.getenv("CI")))) {
simulated_data <- data.frame(
id = seq(1, 100, 1),
lat = runif(100, 44.04905, 44.17609),
lng = runif (100, -74.01188, -73.83493)
)
simulated_data <- sf::st_as_sf(simulated_data, coords = c("lng", "lat"))
output_files <- get_tiles(simulated_data)
temptiff <- tempfile(fileext = ".tif")
merge_rasters(output_files["elevation”][[1]], temptiff)
make_manifest(temptiff, output_prefix = tempfile(), importer_path = NULL)
}

End(Not run)

make_unity Initialize terrain inside of a Unity project.

Description

Initialize terrain inside of a Unity project.

Usage

make_unity(
project,
heightmap,
overlay = NULL,
side_length = 4097,
scene_name = "terrainr_scene",
action = TRUE,
unity = find_unity()

)
Arguments
project The directory path of the Unity project to create terrain inside.
heightmap The file path for the raster to transform into terrain.
overlay Optionally, a file path for an image overlay to layer on top of the terrain surface.
Leave as NULL for no overlay.
side_length The side length, in map units, for the terrain tiles. Must be equal to 2*x + 1, for

any x between 5 and 12.

scene_name The name of the Unity scene to create the terrain in.

16 merge_rasters

action Boolean: Execute the unifir "script" and create the Unity project? If FALSE,
returns a non-executed script.

unity The location of the Unity executable to create projects with. By default, will be
auto-detected by unifir::find_unity

Value

An object of class "unifir_script", containing either an executed unifir script (if action = TRUE) or
a non-executed script object (if action = FALSE).

Examples

Not run:
if (!isTRUE(as.logical(Sys.getenv(”"CI")))) {
simulated_data <- data.frame(
id = seq(1, 100, 1),
lat = runif(100, 44.04905, 44.17609),
lng = runif (100, -74.01188, -73.83493)
)
simulated_data <- sf::st_as_sf(simulated_data, coords = c("lng", "lat"))
output_files <- get_tiles(simulated_data)
temptiff <- tempfile(fileext = ".tif")
merge_rasters(output_files["elevation”][[1]], temptiff)
make_unity(file.path(tempdir(), "unity"), temptiff)
}

End(Not run)

merge_rasters Merge multiple raster files into a single raster

Description

Some functions like get_tiles return multiple separate files when it can be useful to have a single
larger raster instead. This function is a thin wrapper over sf::gdal_utils, making it easy to collapse
those multiple raster files into a single TIFF.

Usage

merge_rasters(
input_rasters,
output_raster = tempfile(fileext = ".tif"),
options = character(0),
overwrite = FALSE,
force_fallback = FALSE

raster_to_raw_tiles 17

Arguments
input_rasters A character vector containing the file paths to the georeferenced rasters you want
to use.
output_raster The file path to save the merged georeferenced raster to.

options Optionally, a character vector of options to be passed directly to sf::gdal_utils.
If the fallback is used and any options (other than "-overwrite") are specified,
this will issue a warning.

overwrite Logical: overwrite output_raster if it exists? If FALSE and the file exists,
this function will fail with an error. The behavior if this argument is TRUE and
"-overwrite" is passed to options directly is not stable.

force_fallback Logical: if TRUE, uses the much slower fallback method by default. This is
used for testing purposes and is not recommended for use by end users.
Value

output_raster, invisibly.

See Also

Other data manipulation functions: combine_overlays(), georeference_overlay(), raster_to_raw_tiles(),
vector_to_overlay()

Examples

Not run:

simulated_data <- data.frame(
lat = c(44.10379, 44.17573),
Ing = c(-74.01177, -73.91171)

)

simulated_data <- sf::st_as_sf(simulated_data, coords = c("lng", "lat"))

img_files <- get_tiles(simulated_data)
merge_rasters(img_files[[1]1])

End(Not run)

raster_to_raw_tiles Crop a raster and convert the output tiles into new formats.

Description

This function has been deprecated as of terrainr 0.5.0 in favor of the new function, make_manifest.
While it will be continued to be exported until at least 2022, improvements and bug fixes will only
be made to the new function. Please open an issue if any features you relied upon is missing from
the new function!

18 raster_to_raw_tiles

Usage

raster_to_raw_tiles(input_file, output_prefix, side_length = 4097, raw = TRUE)

Arguments

input_file File path to the input TIFF file to convert.
output_prefix The file path to prefix output tiles with.
side_length The side length, in pixels, for the .raw tiles.

raw Logical: Convert the cropped tiles to .raw? When FALSE returns a .png.

Details

This function crops input raster files into smaller square tiles and then converts them into either .png
or .raw files which are ready to be imported into the Unity game engine.

Value

Invisibly, a character vector containing the file paths that were written to.

See Also

Other data manipulation functions: combine_overlays(), georeference_overlay(), merge_rasters(),
vector_to_overlay()

Other visualization functions: combine_overlays(), geom_spatial_rgb(), vector_to_overlay()

Examples

Not run:
if (!isTRUE(as.logical(Sys.getenv("CI")))) {
simulated_data <- data.frame(
id = seq(1, 100, 1),
lat = runif (100, 44.04905, 44.17609),
1ng = runif(100, -74.01188, -73.83493)
)
simulated_data <- sf::st_as_sf(simulated_data, coords = c("lng", "lat"))
output_files <- get_tiles(simulated_data)
temptiff <- tempfile(fileext = ".tif")
merge_rasters(output_files["elevation”]J[[1]], temptiff)
raster_to_raw_tiles(temptiff, tempfile())
3

End(Not run)

vector_to_overlay

19

vector_to_overlay

Turn spatial vector data into an image overlay

Description

This function allows users to quickly transform any vector data into an image overlay, which may
then be imported as a texture into Unity.

Usage

vector_to_overlay(

vector_data,

reference_raster,
output_file = NULL,
transparent = "#ffffff",

L

error_crs

Arguments

vector_data

NULL

The spatial vector data set to be transformed into an overlay image. Users may
provide either an sf object or a length 1 character vector containing a path to a
file readable by sf::read_sf.

reference_raster

output_file

transparent

error_crs

Value

The raster file to produce an overlay for. The output overlay will have the same
extent and resolution as the input raster. Users may provide either a Raster*
object or a length 1 character vector containing a path to a file readable by
terra::rast.

The path to save the image overlay to. If NULL, saves to a tempfile.

The hex code for a color to be made transparent in the final image. Set to FALSE
to not set any colors to transparent.

Arguments passed to . .. in either ggplot2::geom_point (for point vector data),
ggplot2::geom_line (for line data), or ggplot2::geom_polygon (for all other data

types).
Logical: Should this function error if data has no CRS? If TRUE, function errors;

if FALSE, function quietly assumes EPSG:4326. If NULL, the default, function
assumes EPSG:4326 with a warning.

output_file, invisibly.

20 vector_to_overlay

See Also
Other data manipulation functions: combine_overlays(), georeference_overlay(), merge_rasters(),
raster_to_raw_tiles()
Other overlay creation functions: combine_overlays(), georeference_overlay()

Other visualization functions: combine_overlays(), geom_spatial_rgb(), raster_to_raw_tiles()

Examples

Not run:

Generate points to download raster tiles for
set.seed(123)
simulated_data <- data.frame(
id = seq(1, 100, 1),
lat = runif(100, 44.1114, 44.1123),
1ng = runif(100, -73.92273, -73.92147)
)

Create an sf object from our original simulated data

simulated_data_sf <- sf::st_as_sf(simulated_data, coords = c("lng"”, "lat"))
sf::st_crs(simulated_data_sf) <- sf::st_crs(4326)

Download data!
downloaded_tiles <- get_tiles(simulated_data_sf, tempfile())
merged_file <- merge_rasters(

downloaded_tiles[[1]],

tempfile(fileext = ".tif")
)

Create an overlay image
vector_to_overlay(simulated_data_sf, merged_file[[1]], na.rm = TRUE)

End(Not run)

Index

* data manipulation functions
combine_overlays, 4
georeference_overlay, 9
merge_rasters, 16
raster_to_raw_tiles, 17
vector_to_overlay, 19

+ data retrieval functions
get_tiles, 10

x datasets
geom_spatial_rgb, 6

x overlay creation functions
combine_overlays, 4
georeference_overlay, 9
vector_to_overlay, 19

+ utilities
addbuff, 2

* visualization functions
combine_overlays, 4
geom_spatial_rgb, 6
raster_to_raw_tiles, 17
vector_to_overlay, 19

add_bbox_buffer, 2
add_bbox_buffer (addbuff), 2
addbuff, 2

aes(), 7

borders(), 7

calc_haversine_distance, 3
combine_overlays,4,7,9,17, 18, 20

deg_to_rad, 3

geom_spatial_rgh, 5,6, 18, 20
georeference_overlay, 5,9, 17, 18, 20
get_centroid, 3

get_tiles, 10, 16

ggplot2, 6

ggplot2::coord_sf, 6
ggplot2::geom_line, 19

21

ggplot2::geom_point, /9
ggplot2: :geom_polygon, 19
ggplot2: :geom_raster, 7
ggplot2: :geom_sf, 6

hit_national_map_api, 12, 13
layer(),7

magick: :image_read, 4
make_manifest, /14, 14, 17
make_unity, 15
merge_rasters, 5, 9, 16, 18, 20

rad_to_deg, 3
raster_to_raw_tiles, 5,7,9, 17,17, 20

set_bbox_side_length, 2
set_bbox_side_length (addbuff), 2
sf::gdal_utils, 16, 17

sf::read_sf, 19

sf::st_as_sfc, 3

sf::st_buffer, 2

sf::st_centroid, 2
sf::st_is_longlat, 12
stat_spatial_rgb (geom_spatial_rgb), 6
StatSpatialRGB (geom_spatial_rgb), 6

terra::rast, 7,9, 19
transform_elevation (make_manifest), 14
transform_overlay (make_manifest), 14

unifir::find_unity, 16
units::as_units, 3

vector_to_overlay, 5,7,9,17, 18, 19

	addbuff
	combine_overlays
	geom_spatial_rgb
	georeference_overlay
	get_tiles
	make_manifest
	make_unity
	merge_rasters
	raster_to_raw_tiles
	vector_to_overlay
	Index

