
Vignette for the tailDepFun package

Anna Kiriliouk
Université de Namur

Faculté des sciences économiques, sociales et de gestion

Rempart de la vierge 8, B-5000 Namur, Belgium

E-mail: anna.kiriliouk@unamur.be

1 Introduction

This package provides functions for the estimation of tail dependence parameters for a variety
of models. The estimators that are implemented are

• The pairwise M-estimator described in Einmahl et al. (2016), which will be referred to
as Mestimator in the R code.

• The weighted least squares estimator described in Einmahl et al. (2018), which will be
called WLS in the R code.

This package contains three main functions:

• EstimationGumbel: estimation of the parameter of a Gumbel model, also called a logistic
model.

• EstimationMaxLinear: estimation of the parameters of a max-linear model, possibly de-
fined on a directed acyclic graph (DAG).

• EstimationBR: estimation of the parameters of an (anisotropic) Brown–Resnick process.

All the above models are defined by means of their stable tail dependence function, denoted
by `. For this reason, functions that compute the (bias-corrected) empirical stable tail depen-
dence function are available, as well as the function SelectGrid that aids to define a regular
grid of indices in which the stable tail dependence function should be evaluated.

2 Choosing a grid

In the definition of the weighted least squares estimator (Einmahl et al., 2018, Section 2.2),
we evaluate ` in the points c1, . . . , cq ∈ [0,∞)d, with cm = (cm1, . . . , cmd) for m = 1, . . . , q for
q ≥ p, where p denotes the dimension of the parameter vector of `. The function selectGrid aids
in selecting these points. For instance, the grids used in the simulation study in Section 3.1
of Einmahl et al. (2018) for dimension d = 5 and method WLS can be generated as follows

> selectGrid(cst = c(0,1), d = 5)

> selectGrid(cst = c(0,1), d = 5, nonzero = 3)

1

for pairs and triples respectively. For the simulation study on the Brown–Resnick process in
Section 3.2 of Einmahl et al. (2018), we first need to define the locations of the stations on a
3× 4 unit distance grid

> loc <- cbind(rep(1:3, 4), rep(1:4, each = 3))

> selectGrid(cst = c(0,1), d = 12, locations = loc, maxDistance = sqrt(2))

Finally, the grid used in the simulation study in Section 3.3 of Einmahl et al. (2018) for
method WLS can be generated as follows

> selectGrid(cst = c(0,0.5,1), d = 4, nonzero = c(2:4))

Note that we always set cst = c(0,1) when we want to use an estimator based on extremal
coefficients only. This function can also be used to select the pairs for the pairwise M-
estimator. Then, setting cst = c(0,1) and nonzero = 2, we get q rows, where the two ones
in each row correspond to the pair that is selected.

3 Gumbel model

The Gumbel model, also known as the logistic model, has stable tail dependence function

`(x1, . . . , xd; θ) =
(
x
1/θ
1 + · · ·+ x

1/θ
d

)θ
, θ ∈ (0, 1].

We can generate observations from it using the copula package (Hofert et al., 2015), here in
three dimensions with parameter value θ = 0.5, and transform them to unit Pareto margins
using ranks.

> library(copula)

> set.seed(1)

> n <- 1000

> data <- rCopula(n = n,copula = gumbelCopula(param = 1/0.5, dim = 3))

> x <- apply(data, 2, function(col) n/(n + 0.5 - rank(col)))

Then, we can estimate θ using either the pairwise M-estimator

> indices <- selectGrid(c(0,1), d = 3)

> EstimationGumbel(x, indices, k = 50, method = "Mestimator")$theta

[1] 0.4123743

or using the weighted least squares estimator, based on the points cm on the grid {0, 0.5, 1}3
having at least two positive coordinates

> indices <- selectGrid(c(0,0.5,1), d = 3, nonzero = c(2,3))

> EstimationGumbel(x, indices, k = 50, method = "WLS")$theta

[1] 0.4177336

In Einmahl et al. (2018, Section 3.1), we simulate from a process in the max-domain of
attraction of the Gumbel model, also known as the outer power Clayton copula (Hofert

2

et al., 2015). The outer power Clayton copula is the Archimedean copula with generator
ψ(t) = ψβ(tθ), where θ ∈ (0, 1] and

ψβ(t) =
1

(1 + βt)1/β
, β > 0.

We can fix β = 1 and hence focus on the generator ψ(t) = (1 + tθ)−1. A sample from this
copula for θ = 0.7 and d = 3 can be obtained using the copula package as follows.

> opc <- opower(copClayton, thetabase = 1)

> copClayton <- onacopulaL(opc, list(theta = 1/0.7, comp = c(1:3)))

> data <- rnacopula(n = n, copula = copClayton)

4 Brown–Resnick process

A full definition of the process and its stable tail dependence function can be found in Einmahl
et al. (2016, Section 4.1). Let θ = (α, ρ, β, c) denote the parameters of the anisotropic Brown–
Resnick process, where α ∈ (0, 2], ρ > 0, β ∈ [0, π/2) and c > 0.

We first illustrate the estimation of an isotropic Brown–Resnick process using the pairwise
M-estimator. We define coordinates of four locations and we select all pairs of locations.

> locations <- rbind(c(1,1),c(2,1),c(1,2),c(2,2))

> indices <- selectGrid(cst = c(0,1), d = 4, locations = locations)

Then we generate data from the Brown–Resnick process using the SpatialExtremes package
(Ribatet, 2015).

> set.seed(2)

> library(SpatialExtremes)

> x <- rmaxstab(n = 5000, coord = locations, cov.mod = "brown",

+ range = 3, smooth = 1)

We calculate the estimator for k = 300. This could take a couple of minutes.

> EstimationBR(x, locations, indices, k = 300, method = "Mestimator",

+ iterate = TRUE, isotropic = TRUE, Tol = 1e-04)

$theta

[1] 1.235120 2.689146

$theta_pilot

[1] 1.235124 2.689140

$covMatrix

[,1] [,2]

[1,] 0.009990198 -0.02362328

[2,] -0.023623279 0.11335579

$value

[1] 0.01474498

3

Standard errors are simply the square roots of the diagonal elements of covMatrix. Setting
iterate = TRUE means that we use the two-step optimal weighting procedure as described
in (Einmahl et al., 2016, Corollary 3.3): theta returns the parameter estimates obtained
using the optimal weight matrix, which is defined as the inverse of the matrix Σ evaluated in
theta_pilot.

Next we estimate the parameters using the weighted least squares estimator. We use the
bias-corrected stable tail dependence function (Beirlant et al., 2016). For method = "WLS" the
option iterate = TRUE means that we use the continuous updating procedure as described
in Einmahl et al. (2018, Corollary 2.3). .

> EstimationBR(x, locations, indices, 300, method = "WLS", isotropic = TRUE,

+ biascorr = TRUE, iterate = TRUE)

$theta

[1] 1.113500 3.087141

$theta_pilot

[1] 1.115788 3.092344

$covMatrix

[,1] [,2]

[1,] 0.02644506 -0.07761775

[2,] -0.07761775 0.31759008

$value

[1] 0.006486834

Note that since we set iterate = TRUE, we can use Einmahl et al. (2018, Corollary 2.5) to
test the goodness-of-fit of the model. The test statistic is 300×0.006486834 = 1.94605, which
we should compare to a high quantile of the χ2

4 distribution.
If we want to mimic the two-step weighting procedure from Einmahl et al. (2016) instead

of continuous updated weighting, we could do so as follows

> result <- EstimationBR(x, locations, indices, 300, method = "WLS",

+ isotropic = TRUE, biascorr = TRUE, covMat = FALSE)

> Sigma <- AsymVarBR(locations, indices, par = result$theta_pilot,

+ method = "WLS")

> EstimationBR(x, locations, indices, 300, method= "WLS", isotropic = TRUE,

+ biascorr = TRUE, Omega = solve(Sigma))$theta

[1] 1.115812 3.092290

If we want to estimate an isotropic Brown–Resnick process, we need to transform the
coordinates of our locations, since we can only simulate isotropic Brown–Resnick processes.
Hence, we multiply the coordinates of our locations with V −1(β, c); see Einmahl et al. (2016,
Section 4.1). Here we take β = 0.25 and c = 1.

> Vmat <- matrix(c(cos(0.25),1.5*sin(0.25),-sin(0.25),1.5*cos(0.25)),nrow=2)

> locationsAniso <- locations %*% t(solve(Vmat))

> EstimationBR(x, locationsAniso, indices, 300, method = "WLS",

+ biascorr = TRUE, iterate = TRUE)$theta

[1] 1.1275481 3.1058154 0.4099169 1.5394794

4

Finally, some tips for the use of this function:

• If the number of locations d is small (d < 8 say), a sufficiently large sample size (eg
n > 2000) is needed to obtain a satisfying result. However, if d is large, a sample size
of n = 500 should suffice.

• The tolerance parameter is used when calculating the three- and four-dimensional inte-
grals in the asymptotic covariance matrix; see the supplementary material in Einmahl
et al. (2016). A tolerance of 10−4 often suffices, although the default tolerance is a safer
choice.

• For an anisotropic process, it is advised to try a couple of starting values if d is small,
preferably a starting value with c < 1 and one with c > 1.

• Setting iterate = TRUE has a more significant effect when d is large.

• If the number of pairs q is large, then method = "Mestimator" will be rather slow.
This is due to the calculation of the weight matrix Ω and the covariance matrix. Set-
ting iterate = FALSE and covMat = FALSE will make estimation fast even for several
hundreds of pairs of locations.

• method = "WLS", it is not advised to change the values of k1 or tau; the default values
are chosen as advised in Beirlant et al. (2016).

Note that an extension two triples and more general grids (i.e., where cst is not necessarily
c(0,1)) might be available in the future.

5 Max-linear model

The max-linear model is described in detail in Einmahl et al. (2018, Section 3.3). Its parameter
matrix is a d × r matrix B := (bjt)j,t, where r denotes the number of factors and d the
dimension. The factor loadings bjt are non-negative constants such that

∑r
t=1 bjt = 1 for

every j ∈ {1, . . . , d} and all column sums of B are positive. Note that B has p = d× (r − 1)
free elements. The parameter vector θ ∈ Rp is defined by stacking the columns of B in
decreasing order of their sums, leaving out the column with the lowest sum.

To illustrate estimation of a 2-factor model in dimension d = 3, we simulate data with
parameter vector θ = c(b11, b12, b13) = c(0.3, 0.5, 0.9).

> set.seed(1)

> n <- 1000

> fr <- matrix(-1/log(runif(2*n)), nrow = n, ncol = 2)

> data <- cbind(pmax(0.3*fr[,1], 0.7*fr[,2]),pmax(0.5*fr[,1], 0.5*fr[,2]),

+ pmax(0.9*fr[,1], 0.1*fr[,2]))

Then we transform to unit Pareto, select a grid and estimate the parameters using the
weighted least squares estimator. Note that the choice cst = c(0,1) will usually not lead
to a valid estimator; see (Einmahl et al., 2018, Section 3.3).

> x <- apply(data, 2, function(i) n/(n + 0.5 - rank(i)))

> indices <- selectGrid(cst = c(0,0.5,1), d = 3)

5

> EstimationMaxLinear(x, indices, k = 100, method = "WLS",

+ iterate = TRUE, GoFtest = TRUE,

+ startingValue = c(0.3,0.5,0.9))

$theta

[1] 0.3284527 0.5007583 0.9115711

$theta_pilot

[1] 0.3152544 0.4893125 0.8980283

$covMatrix

[,1] [,2] [,3]

[1,] 0.0022120835 0.0021556005 0.0006626992

[2,] 0.0021556005 0.0026694102 0.0009185456

[3,] 0.0006626992 0.0009185456 0.0011039448

$value

[1] 0.2069704

$GoFresult

$GoFresult$value

[1] 1.961863

$GoFresult$s

[1] 2

The results of GoFtest permit us to do the test described in Einmahl et al. (2018, Corollary
2.6). We need to compare GoFresult$value to the 95% quantile of a χ2 distribution with
s = 2 degrees of freedom, given by 5.99. For the two-step weighting procedure from Einmahl
et al. (2016) we would do

> result <- EstimationMaxLinear(x, indices, k = 100, method = "WLS",

+ startingValue = c(0.3,0.5,0.9))

> Sigma <- AsymVarML(indices, par = result$theta_pilot)

> while(rcond(Sigma) < 1e-05){Sigma <- Sigma + (1e-05)*diag(nrow(indices))}

> EstimationMaxLinear(x, indices, 100, method = "WLS", Omega = solve(Sigma),

+ startingValue = result$theta_pilot)$theta

[1] 0.3277286 0.4988443 0.9105570

The correction on Sigma is done because it is not invertible otherwise; see Einmahl et al.
(2018, Remark 3.1).

In the above estimation, the function EstimationMaxLinear assumed a 2-factor model
because we did not provide Bmatrix and Ldot. If we want to fit a max-linear model based on a
directed acyclic graph, for instance the one in Gissibl and Klüppelberg (2015, Example 2.1) or
Einmahl et al. (2018, Section 3.3), we need to define a Bmatrix, corresponding to the matrix
of coefficients B, and a Ldot, corresponding to the total derivative of L(θ) = (`(cm; θ))m=1,...,q.
For instance, B is given by

> Bmatrix <- function(theta){

6

+ temp <- max(theta[1]*theta[3],theta[2]*theta[4])

+ B<- cbind(c(1, theta[1], theta[2], temp),

+ c(0, 1 - theta[1], 0, (1 - theta[1])*theta[3]),

+ c(0, 0, 1 - theta[2], (1 - theta[2])*theta[4]),

+ c(0, 0, 0, 1 - temp - (1 - theta[1])*theta[3] -

+ (1 - theta[2])*theta[4]))

+ return(B)

+ }

and then we generate data from the DAG as follows

> d <- r <- 4

> n <- 1000

> theta <- c(0.3, 0.8, 0.4, 0.55)

> B <- Bmatrix(theta)

> set.seed(1)

> fr <- matrix(-1/log(runif(r*n)), nrow = n, ncol = r)

> data <- cbind(B[1,1]*fr[,1], pmax(B[2,1]*fr[,1], B[2,2]*fr[,2]),

+ pmax(B[3,1]*fr[,1], B[3,3]*fr[,3]),

+ pmax(B[4,1]*fr[,1], B[4,2]*fr[,2], B[4,3]*fr[,3], B[4,4]*fr[,4]))

> x <- apply(data, 2, function(i) n/(n + 0.5 - rank(i)))

We then estimate using a grid as in Einmahl et al. (2016, Section 3.3)

> indices <- selectGrid(cst = c(0,0.5,1), d = 4, nonzero = c(2:4))

> EstimationMaxLinear(x, indices, k = 100, method = "WLS", Bmatrix = Bmatrix,

+ startingValue = c(0.3,0.8,0.4,0.55), covMat = FALSE)$theta

[1] 0.3502117 0.8692499 0.4124804 0.5909954

Note that in order to calculate covMat, we would also need to provide Ldot.

References

Beirlant, J., Escobar-Bach, M., Goegebeur, Y., and Guillou, A. (2016). Bias-corrected esti-
mation of stable tail dependence function. Journal of Multivariate Analysis, 143:453–466.

Einmahl, J. H., Kiriliouk, A., Krajina, A., and Segers, J. (2016). An M-estimator of spatial
tail dependence. Journal of the Royal Statistical Society: Series B (Statistical Methodology),
78(1):275–298.

Einmahl, J. H., Kiriliouk, A., and Segers, J. (2018). A continuous updating weighted least
squares estimator of tail dependence in high dimensions. Extremes, 21(2):205–233.

Gissibl, N. and Klüppelberg, C. (2015). Max-linear models on directed acyclic graphs. Avail-
able at http://arxiv.org/abs/1512.07522.

Hofert, M., Kojadinovic, I., Maechler, M., and Yan, J. (2015). copula: Multivariate Depen-
dence with Copulas. R package version 0.999-14.

Ribatet, M. (2015). SpatialExtremes: Modelling Spatial Extremes. R package version 2.0-2.

7

