
The tablesgg Package

Richard Raubertas

27 May 2021

Contents
1 Introduction 2

1.1 Package features . 3
1.2 Some limitations . 4
1.3 Logical structure of a data summary table . 4
1.4 Remainder of this vignette . 4

2 Getting started 5
2.1 textTables and pltdTables . 5
2.2 Table annotation . 6
2.3 Table size and scaling . 6
2.4 Positioning the table on the graphics device . 7
2.5 Grouping rows: rowheadInside and rowgroupSize . 7
2.6 Mathematical notation in table entries . 8
2.7 Markdown/HTML in table entries . 9
2.8 Reference marks . 9
2.9 Setting minimum and maximum widths for table entries . 10
2.10 Use with table objects from other packages . 10
2.11 Next steps . 10

3 Terminology and concepts 10
3.1 Table parts . 10
3.2 The augmented row-column grid; table cells . 11
3.3 The hierarchical structure of headers . 11
3.4 Table elements: entries, blocks, hvrules . 12

3.4.1 Entries . 13
3.4.2 Blocks of cells . 13
3.4.3 Horizontal and vertical rules (hvrules) . 14

3.5 Styles . 14
3.6 Confusing conventions . 15

4 Customizing textTables and pltdTables 16
4.1 Modifying a textTable . 16
4.2 Modifying a pltdTable . 17

4.2.1 Changing style and scale . 17
4.2.2 Viewing the elements of a plotted table . 17
4.2.3 Fine-tuning graphical properties of table elements: props functions 18
4.2.4 Adding blocks or hvrules . 21
4.2.5 Adding reference marks . 22
4.2.6 Modifications at the ggplot2 level . 22

4.3 Setting default styles: tablesggSetOpt . 23

1

5 More about styles 23
5.1 Style specification and matching: Entry and block styles . 23
5.2 Style specification and matching: hvrule styles . 24
5.3 Editing or creating styles . 25

Appendix A: textTable objects 25

Appendix B: Blocks associated with row and column headers 26
B.1 Header blocks with subtypes A, B, and C . 26
B.2 Row header blocks when plot argument rowheadInside is TRUE 28
B.3 Blocks representing groups of rows (rowgroupSize > 0) . 28

Appendix C: Setting minimum and maximum widths for table entries 29
minwidth . 29
maxwidth and automatic text wrapping . 29

Appendix D: Tables as graphs 30

References 30

1 Introduction
The tablesgg package displays presentation-quality tables as plots on an R graphics device. There are many
packages that will format tables for display. (See the design-principles vignette of the huxtable package
[Hugh-Jones, 2020] for a list and comparisons). tablesgg is, to my knowledge, unique in combining two
features:

• It is aware of the logical structure of the table being presented, and makes use of that for automatic
layout and styling of the table. This avoids the need for most manual adjustments to individual rows,
columns, or cells to achieve an attractive result.

• It displays tables using ggplot2 graphics [Wickham, 2016], on any of R’s graphics devices. Therefore
a table can be presented anywhere a graph could be, with no more effort. External software such as
LaTeX or HTML or their viewers is not required.

tablesgg does not create tables from raw data, it displays tables created by other means. It has methods to
display matrices; data frames; contingency tables created by R’s built-in table and xtabs functions; tables
created by R’s ftable function; and tables created by the packages tables [Murdoch, 2020] and xtable
[Dahl, et al, 2019]. Methods can be added to display other table-like objects as well.

Two quick examples illustrate these points. First, a simple listing of a data frame. The package provides the
data set iris2, which is the same as R’s built-in iris data frame but with the four measurements per flower
reshaped to long format rather than wide:
library(tablesgg)

str(iris2)

'data.frame': 600 obs. of 5 variables:
$ plant : int 1 2 3 4 5 6 7 8 9 10 ...
$ Species : Factor w/ 3 levels "setosa","versicolor",..: 1 1 1 1 1 1 1 1 1 1 ...
$ flower_part: Factor w/ 2 levels "Sepal","Petal": 1 1 1 1 1 1 1 1 1 1 ...
$ direction : Factor w/ 2 levels "Length","Width": 1 1 1 1 1 1 1 1 1 1 ...
$ value : num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...

The common starting point for table display in this package is a textTable object, created by the generic
function of the same name. There is a plot method for textTable objects, so displaying the first few rows
of the iris data requires just

2

plot(textTable(head(iris2)))

1
2
3
4
5
6

setosa
setosa
setosa
setosa
setosa
setosa

Sepal
Sepal
Sepal
Sepal
Sepal
Sepal

Length
Length
Length
Length
Length
Length

5.1
4.9
4.7
4.6
5.0
5.4

1
2
3
4
5
6

plant Speciesflower_part direction value

(Throughout this vignette, the ggplot theme is set to use a transparent background for all plots, as follows:
library(ggplot2)
theme_update(plot.background=element_rect(fill=NA))

)

To create more sophisticated data summary tables I recommend the tables package [Murdoch, 2020].
tablesgg defines a textTable method for the tabular objects created by that package, so displaying them
can be done in one line. For example, to display means and standard deviations for each measurement and
species in the iris data, first create the table,
library(tables)
iris2_tab <- tabular(Species*Heading()*value*Format(digits=2)*(mean + sd) ~

Heading("Flower part")*flower_part*Heading()*direction,
data=iris2)

and then plot it:
plot(textTable(iris2_tab))

5.01
0.35

5.94
0.52

6.59
0.64

3.43
0.38

2.77
0.31

2.97
0.32

1.46
0.17

4.26
0.47

5.55
0.55

0.25
0.11

1.33
0.20

2.03
0.27

setosa

versicolor

virginica

mean
sd

mean
sd

mean
sd

Flower part

Sepal Petal

Length Width Length WidthSpecies

1.1 Package features
• A full set of tools is provided to control the appearance of tables, including titles, footnotes and reference

marks, horizontal and vertical rules, and spacing of rows and columns. Many properties can be set
automatically by specifying styles, such as the default styles used above. The user can also define
custom styles.

• There are tools for low-level manipulation of the appearance of individual table elements if desired.

• All sizes and dimensions in displayed tables are specified in physical units (points for font size, millimeters
for everything else). Therefore a plotted table has a well-defined physical size, independent of the size
of the graphics device on which it is displayed. The user can easily increase or decrease the displayed
size by a scale factor, maintaining the relative proportions of table elements.

3

• Table entries can use markdown/HTML tags to mix different fonts, font faces, colors, and text sizes
within a single entry. (Requires the ggtext package [Wilke, 2020].)

• Automatic wrapping of entry text to a user-specified width is available. (Requires the ggtext [Wilke,
2020] and quadprog [Turlach, 2019] packages.)

• Since the plotted tables are ordinary ggplot objects, the facilities of ggplot2 and its various extension
packages are available to modify or manipulate the table. For example, the table can be inserted as an
image within another plot.

• Any table-like object can be displayed just by writing a textTable method for the object class. See
Appendix A.

1.2 Some limitations
• Splitting a very long or wide table into multiple, smaller subtables is currently not supported.

• Mathematical symbols and notation in table entries are implemented using R’s plotmath facility. This is
more limited than what is available through LaTeX or HTML. A particular limitation is that plotmath
ignores line breaks in text strings, so math notation cannot be used in multi-line entries. Also plotmath
and markdown/HTML cannot mixed within the same entry.

1.3 Logical structure of a data summary table
The conceptual model for tables used by this package is similar to that used in the tables package [Murdoch,
2020]. The table of summary statistics for the iris data, shown above, will be used as an example.

The rows of a table are defined by combinations of one or more discrete variables (here, species and type of
summary statistic—mean or standard deviation). The columns are defined by combinations of one or more
other discrete variables (here, flower part and measurement direction). The table body contains the values
associated with each combination of row and column variables (e.g., each unique combination of species,
flower part, direction, and summary statistic), formatted as character strings.

The idea that a table consists of row variables, column variables, and a text string associated with each
combination of values of those variables is quite general. For example, consider the first table above, a
simple listing of the first few observations in a data frame. The row variable of this table is just the row or
observation number. The column variable is more subtle: it is a categorical variable that takes values in the set
c("plant", "Species", "flower_part", "direction", "value"), corresponding to the column names
of the data frame. And the table body entries are the formatted values associated with each combination of
row number and column name. Note that table entries are always treated as character strings, so the fact
that the original values in the data frame had different types (numeric or factor) does not matter.

When there is more than one row variable, or more than one column variable, they are treated as nested from
outermost to innermost. So in the second table above, summary statistic types are nested within species,
and measurement directions are nested within flower part. Nesting implies a hierarchical or tree structure
for the table rows and columns, and this structure is used in styling the table. Note for example the extra
space inserted between levels of the outermost row and column variables (between the different species and
between the two flower parts), and how horizontal rules (lines) are used to group the columns associated
with each flower part. This can be done automatically by the tablesgg package because it is aware of this
hierarchical structure.

1.4 Remainder of this vignette
Section 2 describes how to get started with tablesgg and illustrates some of the main features. Section 3
discusses the model and terminology for tables used by tablesgg in more detail. This material is important
for users who wish to customize the appearance of their tables. Customization of table display for individual
tables is discussed in section 4, and section 5 describes how to define custom styles that can be applied to
any table.

4

2 Getting started
2.1 textTables and pltdTables
The starting point for all displays generated by this package is a textTable object. These objects are created
by the generic function of the same name. The package includes methods to create textTables from a variety
of table-like objects. For example the data.frame method creates a textTable that represents a simple
listing of a data frame. The tabular method creates a textTable from the data summary tables produced
by the tables package. To see all the methods currently available, enter
methods(textTable)

[1] textTable.data.frame textTable.default* textTable.ftable
[4] textTable.matrix textTable.table textTable.tabular
[7] textTable.tblEntries* textTable.xtable textTable.xtableList
see '?methods' for accessing help and source code

Appendix A describes how to write methods for other types of objects.

As the name suggests, all parts of a table in a textTable object—the table body, row and column headers,
and any annotation such as titles or footnotes—are text strings. That is, the process of converting any object
to a textTable includes formatting numbers or other non-text into the character strings that are to be
displayed in the final table.

The package defines a plot method for textTables. Plotting a textTable creates a pltdTable object, which
is also a ggplot. As with any other graph created by ggplot2, printing the object causes it to be displayed
on the currently active graphics device.

To illustrate, let’s return to the tables shown in the Introduction. The listing of the first few rows of the
iris2 data frame was produced by
plot(textTable(head(iris2)))

The row.names argument to the data.frame method of textTable controls whether row names are displayed
(FALSE suppresses them), and if so, what label is used for the column containing them:
plot(textTable(head(iris2), row.names="Obs. #"))

1
2
3
4
5
6

setosa
setosa
setosa
setosa
setosa
setosa

Sepal
Sepal
Sepal
Sepal
Sepal
Sepal

Length
Length
Length
Length
Length
Length

5.1
4.9
4.7
4.6
5.0
5.4

1
2
3
4
5
6

plant Speciesflower_part direction valueObs. #

The second table in the Introduction was created using the tables package:
iris2_tab <- tabular(Species*Heading()*value*Format(digits=2)*(mean + sd) ~

Heading("Flower part")*flower_part*Heading()*direction,
data=iris2)

iris2_tab is an object of class tabular, which is converted to a textTable and displayed as follows.
plot(textTable(iris2_tab))

(In fact, tablesgg includes a plot method for tabular objects, which does the conversion to textTable
automatically. So just plot(iris2_tab) would also work.)

We now consider some options and enhancements to these basic tables. See the help pages for the functions
mentioned for more details and additional capabilities.

5

2.2 Table annotation
Annotation can be added to a table in the form of title, subtitle, and foot lines, via the title, subtitle, and
foot arguments to textTable. Each of these is a character vector, with each element in a vector generating
a new entry that spans the full width of the table. Title lines appear at the top, followed by subtitle lines.
Footlines appear at the bottom of the table. For example,
ttbl <- textTable(iris2_tab, title="The iris data",

subtitle=c("Summary statistics by species",
"A second subtitle line"),

foot="sd = standard deviation")

plot(ttbl)

The iris data
Summary statistics by species
A second subtitle line

sd = standard deviation

5.01
0.35

5.94
0.52

6.59
0.64

3.43
0.38

2.77
0.31

2.97
0.32

1.46
0.17

4.26
0.47

5.55
0.55

0.25
0.11

1.33
0.20

2.03
0.27

setosa

versicolor

virginica

mean
sd

mean
sd

mean
sd

Flower part

Sepal Petal

Length Width Length WidthSpecies

The same arguments can be used in the call to plot to add or replace existing annotation in a textTable.
Change the main title, remove the subtitles.
plot(ttbl, title="A new title", subtitle=character(0))

A new title

sd = standard deviation

5.01
0.35

5.94
0.52

6.59
0.64

3.43
0.38

2.77
0.31

2.97
0.32

1.46
0.17

4.26
0.47

5.55
0.55

0.25
0.11

1.33
0.20

2.03
0.27

setosa

versicolor

virginica

mean
sd

mean
sd

mean
sd

Flower part

Sepal Petal

Length Width Length WidthSpecies

2.3 Table size and scaling
Plotted tables (pltdTable objects) have a well-defined physical size, which can be extracted using the
pltdSize function. By default the size is reported in millimeters, but inches or centimeters can be requested
using the units argument. The first value is the width and the second is the height.
plt <- plot(iris2_tab, title="The iris data")
pltdSize(plt)

6

[1] 77.04089 52.58743
attr(,"device")
[1] "pdf"
attr(,"units")
[1] "mm"

If desired, this can be used to open a graphics device or grid viewport of exactly the right size to hold the
table. For example
sz <- pltdSize(plt, units="in") # R expects device dimensions in inches
dev.new(width=sz[1], height=sz[2])
plt

The size is determined by the fonts used for table entries, the amount of space allocated for horizontal and
vertical rules, and other graphical parameters. These are set by styles, which are discussed in sections 3
and 5 below. The result is called the natural size of the table. However the physical size can be modified
by two arguments to plot. scale is a multiplier that increases or decreases the size of all table elements
proportionally.
plt2 <- plot(iris2_tab, scale=0.8, title="The iris data (scale=0.8)")
plt2

The iris data (scale=0.8)

5.01
0.35

5.94
0.52

6.59
0.64

3.43
0.38

2.77
0.31

2.97
0.32

1.46
0.17

4.26
0.47

5.55
0.55

0.25
0.11

1.33
0.20

2.03
0.27

setosa

versicolor

virginica

mean
sd

mean
sd

mean
sd

Flower part

Sepal Petal

Length Width Length WidthSpecies

Argument plot.margin is a numeric vector of length 4 that specifies how much extra empty space should be
added around the sides of the table, in millimeters (as always). This is equivalent to the theme element of
the same name in ggplot2, and sides follow same order: top, right, bottom, left. plot.margin is added after
any scaling by scale, and is included in the table size reported by pltdSize.

Note that if the active graphics device or viewport is smaller than the physical size of the plotted table, then
parts of the table will be clipped off and not visible.

2.4 Positioning the table on the graphics device
As mentioned previously, a pltdTable object must be “printed” in order for it to be displayed on the currently
active graphics device. There is a special print method for these objects which ensures that the table is
displayed at the correct size. In addition, it allows specifying where on the device surface the table should
appear.

The default is that the table is drawn centered in the current graphics viewport (usually the whole graphics
device surface). This can be changed using either the position or the just, vpx and vpy arguments to
print. See the documentation for print.pltdTable for details.

2.5 Grouping rows: rowheadInside and rowgroupSize

Two arguments to the plot method for textTables allow visual grouping of table rows. Setting
rowheadInside to TRUE moves the outermost row header column inside the table, making the table narrower
and longer. Setting rowgroupSize to a positive integer causes extra space to be inserted after every
rowgroupSize rows.

7

plt1 <- plot(iris2_tab, title="The iris data", subtitle="With rowheadInside = TRUE",
rowheadInside=TRUE)

plt2 <- plot(textTable(iris2[1:9,]), title="The first 9 rows of 'iris2'",
subtitle="In groups of 4 (rowgroupSize=4)", rowgroupSize=4)

print(plt1, position=c("left", "center"))
print(plt2, position=c("right", "center"), newpage=FALSE)

The iris data
With rowheadInside = TRUE

5.01
0.35

5.94
0.52

6.59
0.64

3.43
0.38

2.77
0.31

2.97
0.32

1.46
0.17

4.26
0.47

5.55
0.55

0.25
0.11

1.33
0.20

2.03
0.27

Species: setosa

Species: versicolor

Species: virginica

mean
sd

mean
sd

mean
sd

Flower part

Sepal Petal

Length Width Length Width

The first 9 rows of 'iris2'
In groups of 4 (rowgroupSize=4)

1
2
3
4

5
6
7
8

9

setosa
setosa
setosa
setosa

setosa
setosa
setosa
setosa

setosa

Sepal
Sepal
Sepal
Sepal

Sepal
Sepal
Sepal
Sepal

Sepal

Length
Length
Length
Length

Length
Length
Length
Length

Length

5.1
4.9
4.7
4.6

5.0
5.4
4.6
5.0

4.4

1
2
3
4

5
6
7
8

9

plant Speciesflower_part direction value

2.6 Mathematical notation in table entries
Mathematical notation can be included in table entries, including annotation. This is done by setting the
entry text in a textTable to a string representing a plotmath expression (see ?plotmath), and prefixing it
with the characters ‘MATH_’. For example, to include math in the title,
ttbl <- textTable(iris2_tab, title=paste0("MATH_plain('The length of vector')~",

"group('(', list(a, b), ')')~plain('is ')~",
"sqrt(a^2 + b^2)"))

plot(ttbl)

The length of vector (a, b) is a2 + b2

5.01
0.35

5.94
0.52

6.59
0.64

3.43
0.38

2.77
0.31

2.97
0.32

1.46
0.17

4.26
0.47

5.55
0.55

0.25
0.11

1.33
0.20

2.03
0.27

setosa

versicolor

virginica

mean
sd

mean
sd

mean
sd

Flower part

Sepal Petal

Length Width Length WidthSpecies

See ?plotmath for a full description of the available symbols and notation. plotmath expressions can be
included in a textTable when it is created, as above, or can be added or edited afterward using the props
functions discussed in section 4.2.3. Note that plotmath ignores control characters such as newline (\n) in
expressions.

8

2.7 Markdown/HTML in table entries
If the ggtext package [Wilke, 2020] has been installed, entry text can include markdown/HTML tags. These
allow one to mix different fonts, font faces and sizes, and colors within a single entry. To indicate that entry
text is to be interpreted as markdown/HTML, prefix it with MKDN_. For example,
txt1 <- paste0(

"MKDN_Some blue text **in bold.**
",
"And *italic text.*
",
"And some large text.")

txt2 <- "MKDN_Super- and subscripts: *x*² + 5*x* + *C*_{*i*}"
plt <- plot(textTable(matrix(c(txt1, txt2), ncol=1)),

title="Illustrate markdown", scale=1.2)

print(plt)

Illustrate markdown

Somebluetext in bold.
And italic text.

And somelargetext.
Super−andsubscripts:x2 + 5x + Ci

• This feature can be turned on and off using the package option allowMarkdown (see ?tablesggSetOpt).
By default the option is set to TRUE if ggtext is installed and FALSE if not.

• Not all HTML tags are supported. See ?ggtext::geom_richtext for examples of what is available.
Note that line breaks are indicated by \n in plain text, but by the
 tag in HTML.

• Markdown/HTML and plotmath cannot be mixed in the same entry.

2.8 Reference marks
A reference mark is a symbol placed before or after entry text to indicate a cross-reference; e.g. for footnotes.
Reference marks can be added to either a textTable or pltdTable using the addRefmark function. The
following adds a footnote to explain the abbreviation “sd”, and cross-references entries containing the
abbreviation to the footnote:
ttbl <- textTable(iris2_tab, foot="sd = standard deviation")
ttbl <- addRefmark(ttbl, mark="a", before="sd =", after="sd$", raise=TRUE)

plot(ttbl)

5.01
0.35

5.94
0.52

6.59
0.64

3.43
0.38

2.77
0.31

2.97
0.32

1.46
0.17

4.26
0.47

5.55
0.55

0.25
0.11

1.33
0.20

2.03
0.27

setosa

versicolor

virginica

mean

mean

mean

Flower part

Sepal Petal

Length Width Length WidthSpecies

asd= standarddeviation

sda

sda

sda

9

Argument mark is the character or symbol to be used as the reference mark. before and after are regular
expressions (see ?regex) that identify which table entries are to have the mark placed at their beginning
or end, respectively. raise indicates whether the reference mark is to be displayed as a superscript (using
plotmath or markdown).

In the example the after regular expression matches all three row headers corresponding to standard
deviations, since they all have the same entry text. For finer control, such as to mark only the first appearance,
the props functions can be used with a pltdTable object, as described in section 4.2.3.

2.9 Setting minimum and maximum widths for table entries
The graphical properties minwidth and maxwidth, set either by a style or with one of the props functions,
can be used to control the width of individual table entries (and thereby the widths of the columns they
span). For example, setting the minimum or maximum width of a table’s title will control the width of the
whole table, since the title spans all columns. See Appendix C for details.

2.10 Use with table objects from other packages
Packages like tables and xtable do two things: they create table-like objects (with classes tabular and
xtable, respectively), and they generate LaTeX or HTML code to style those objects for rendering to a
PDF viewer or browser. This package provides methods to convert the table-like objects from the first step
into textTables. Then the styling and rendering (to a graphics device) are done using the facilities of this
package, not those of the original package.

2.11 Next steps
The next section describes the model and terminology that the tablesgg package uses for tables. It is
important to understand these concepts in order to fine-tune or customize the appearance of your tables.

3 Terminology and concepts
3.1 Table parts
A table has seven parts, illustrated by the shaded regions here.

The iris data
Summary statistics by species
A second subtitle line

sd = standard deviation

5.01
0.35

5.94
0.52

6.59
0.64

3.43
0.38

2.77
0.31

2.97
0.32

1.46
0.17

4.26
0.47

5.55
0.55

0.25
0.11

1.33
0.20

2.03
0.27

setosa

versicolor

virginica

mean
sd

mean
sd

mean
sd

Flower part

Sepal Petal

Length Width Length WidthSpecies

Title

Subtitle

Row header

Row header labels

Column header

Body

Foot lines

title

subtitle

rowhead

rowheadLabels

colhead

body

foot

Part Part ID

• Parts title, subtitle, and foot are collectively referred to as the table annotation. Each is optional.
They can each contain multiple entries, which will be displayed on separate lines. They span the full
width of the table.

10

• Parts rowhead and colhead contain the row headers and column headers of the table, respectively.
Visually they simply provide labels for rows and columns of the table body. Conceptually they represent
combinations of values of row and column variables, which are discussed further below.

• Part body contains the body of the table: the values associated with each combination of row and
column variables, formatted as text strings.

• Part rowheadLabels is optional and contains labels for the row header variables; that is, labels for each
column of rowhead.

body, rowhead, and colhead can be thought of as matrices that fit together into a larger matrix, with body
in the lower right quadrant, rowhead in the lower left quadrant, and colhead in the upper right quadrant.
The upper left quadrant is called the stub of the table; part rowheadLabels occupies the bottom row of the
stub.

The number of rows and columns in each table part can be obtained with the summary function, applied to
either a textTable or pltdTable:
summary(ttbl)

'textTable' with augmented row-column grid dimensions: (13, 6)
Table parts:
nr nc
title 1 NA
subtitle 2 NA
rowhead 6 2
rowheadLabels 1 2
colhead 3 4
body 6 4
foot 1 NA

The number of columns for annotation parts is reported as NA because they don’t have a fixed number of
columns; they span however many columns are required by the other parts. Not every part needs to be
present in a given table, and nr and/or nc will be 0 for empty parts.

3.2 The augmented row-column grid; table cells
When we speak of the rows and columns of a table, we are typically referring to the rows and columns of the
table body. However it is clear from the figure in section 3.1 that the arrangement of the other table parts can
be thought of as adding additional rows and columns, creating an augmented row-column grid for the table:

• Each row header variable (column of rowhead) adds a column.

• Each column header variable (row of colhead) adds a row.

• Each line of annotation (in title, subtitle, or foot) adds a row.

The adim function reports the number of rows and columns in this augmented grid:
adim(ttbl)

[1] 13 6

In the tablesgg package all references to positions within a plotted table are with respect to the augmented
row-column grid. Each location in the grid is called a cell of the table.

3.3 The hierarchical structure of headers
As mentioned in the introduction, the model for a data summary table used by this package is one in which:

11

• There are one or more discrete variables in a data set. These are arbitrarily partitioned into row
variables and column variables. (In the iris data table above, the column variables are flower part
(Sepal or Petal) and measurment type (Length or Width). The row variables are Species and summary
statistic type (mean or sd).)

• Each combination of values of row variables corresponds to one row of the table body, and each
combination of values of column variables corresponds to one column of the body.

• For each combination of values of the row and column variables, a single text string is generated,
representing the value associated with that combination. These text strings form the entries in the
body of the table.

The combinations of values of the row variables are displayed in the table as the row header, and the
combinations of values of the column variables as the column header. Each column of rowhead corresponds
to one row variable and is called a layer of the header. Layers are numbered from innermost (closest to the
table body) to outermost. Thus in the iris table, statistic type is layer 1 of the row header and species is layer
2. Similarly each row of colhead corresponds to one column variable, with a layer number that increases
from innermost (measurement type) to outermost (flower part).

Within a header, the variables are treated as nested, inner (lower numbered) layers within outer layers.
(This is independent of whether the variables would be considered nested or crossed for statistical modeling
purposes.) Thus in the iris data table, measurement type is considered nested within flower part, and statistic
type is considered nested within species.

Nesting implies a hierarchical or tree structure for the rows of rowhead and the columns of colhead. Layer
number indicates how close to the bottom of the hierarchy a row or column variable is. The level then
numbers the nodes within a layer. In the example, species, at layer 2, has three nodes or levels: 1 (setosa), 2
(versicolor), and 3 (virginica). Statistic type, at layer 1, has six nodes or levels: 1 (mean), 2 (sd), 3 (mean), 4
(sd), etc. Note that because of the nesting structure, “mean” for species versicolor is not assumed to have any
relation to “mean” for setosa; for the purposes of displaying the table, they are entirely different levels of
statistic type and have different node/level numbers.

This structure can be used to help style the appearance of the table. For example, by default additional space
is inserted between different levels of the row or column header hierarchy at layers 2 or higher (e.g. between
different species in the example). Similarly, horizontal rules are used to group columns at different levels of
the column header hierarchy in layers 2 or higher (e.g., spanning the two measurement types for each flower
part). The way this styling is specified is discussed in section 5.

3.4 Table elements: entries, blocks, hvrules
As implemented in this package, plotted tables have three types of elements, namely entries, blocks, and
hvrules. Elements are the smallest pieces of a table whose display can be individually controlled. In a sense
they are the “atoms” of the table display. Each type of element is described in more detail below, but elements
of all types share the following characteristics:

• Each element has an ID, a character string that is unique within the element type. To see the ID’s of
all the elements of a given type in a table, use the ids function.

• Each element has a set of graphical properties that specify how it is to be displayed. For example,
the font, color, and border for a table entry; or the line type and thickness for an hvrule. ?elements
documents the available graphical properties for each element type.

• Each element has a special property called enabled. This is either TRUE or FALSE, and controls whether
the element is displayed at all.

• Elements have additional descriptors related to their role in the logical structure of the table, such as
the table part they are associated with, and their position within that part. These additional descriptors
vary depending on the element type, and are described in ?elements.

12

3.4.1 Entries

Recall that a cell is a single position within the augmented row-column grid of the table. A table entry is the
text string (and associated properties) assigned to a cell, or to a rectangular set of contiguous cells. In the
latter case we say the entry spans multiple cells. For example, in the table in section 3.1 above

• There are two subtitle entries. The first spans all the cells in row 2 of the augmented grid (columns
1-6), and the second all the cells in row 3.

• The column header entry “Petal” spans two columns in the second row of colhead, corresponding to
columns 5-6 in row 5 of the augmented grid.

• The body entry “6.59” occupies a single cell, at row 11, column 3 of the augmented grid.

The key points are that (a) the term entry includes text appearing in any part of the table, not just the body;
and (b) entries can span multiple cells.

The standard ID’s for entries have the form ‘part,row number,column number ’ for table parts that are matrices
(the body, row and column headers, and row header labels), and ‘part,element number ’ for table parts that
are vectors (table annotation). Note that in entry ID’s only, ‘row number ’ and ‘column number ’ refer to
rows and columns within the table part, not to row and column numbers of the augmented row-column grid.
When an entry spans more than one row or column, the smallest row or column number is used. Thus in the
above table, the ID of the column header entry “Petal” is the string “colhead,2,3”.

3.4.2 Blocks of cells

A block is simply a rectangular set of contiguous table cells. Any number of blocks may be defined for a
given table, and blocks may overlap. A block may be empty, having 0 rows or 0 columns. Blocks serve three
purposes:

• They provide a convenient way to refer to a collection of cells, or to the entries occupying those cells.
The display properties of the whole collection can be set in a single operation.

• A block can be assigned certain graphical properties of its own, independent of the entries it contains.
This can be used to highlight a region of the table by adding background shading or a border.
For example, in the figure in section 3.1, different background colors were used to highlight blocks
corresponding to the seven table parts.

• Blocks provide the framework for adding horizontal and vertical rules to a table. This is discussed in
the next subsection.

By default a standard set of blocks is defined for all tables. These include:

• table: The whole table (all cells).

• title, subtitle, colhead, rowhead, rowheadLabels, body, foot: The standard table parts. (If there
are interior row header entries, rowhead and body are omitted because the interleaving of headers and
body means neither are valid blocks.)

• titles: The union of the title and subtitle parts.

• stub: The cells above the row headers and to the left of the column headers.

• colhead_and_stub, rowhead_and_stub: The unions of stub with colhead and rowhead, respectively.

• colhead_and_body, rowhead_and_body: The unions of body with colhead and rowhead, respectively.

Additional blocks are defined to represent the hierarchical structure of row and column headers. They have
ID’s that begin with strings “rowblock” or “colblock”. See Appendix B for details.

A user can define arbitrary additional blocks for a table using the addBlock function; see section 4.2.4 for
examples.

13

3.4.3 Horizontal and vertical rules (hvrules)

In the context of tables, rules refer to horizontal or vertical lines that are used to separate or group table
parts or sections. The table in section 3.1 includes five such horizontal lines (and no vertical lines). The
tablesgg package generalizes this idea and uses the term hvrule to refer to something more flexible: a thin
rectangle that is inserted between rows or columns, which may or may not contain a visible line. The effect
of an hvrule with no visible line is simply to add extra space between rows or columns. This can be seen in
the example: hvrules were used to add space between the subtitles and the column header, between the row
header and body, between levels of species, and between the two flower parts.

By default, this package creates hvrules that run along each of the four sides of each standard block. They
are given ID’s of the form ‘block id_side’, where ‘side’ is one of “top”, “bottom”, “left”, or “right”. However
the enabled property is set to FALSE for most of them so that they are not displayed, and thus add no space
to the table. As for any element, the user can enable or disable selected hvrules and/or modify their graphical
properties; see section 4. In addition, the user can define arbitrary additional hvrules with the addHvrule
function; see section 4.2.4 for examples.

An important point to note is that hvrules are entirely distinct from borders. Borders are a graphical property
of entries or blocks, while hvrules are their own type of element. One should not try to use borders to create
table rules, nor use hvrules to create borders around other elements. To illustrate the difference, the following
figure shows the same table twice, highlighting entry borders on the left, and shading in hvrule rectangles on
the right. As can be seen, the amount of space inserted between rows or columns by an hvrule can vary;
space is one of the graphical properties of hvrules.

Highlight borders of table entries
Summary statistics by species
A second subtitle line

sd = standard deviation

5.01
0.35

5.94
0.52

6.59
0.64

3.43
0.38

2.77
0.31

2.97
0.32

1.46
0.17

4.26
0.47

5.55
0.55

0.25
0.11

1.33
0.20

2.03
0.27

setosa

versicolor

virginica

mean
sd

mean
sd

mean
sd

Flower part

Sepal Petal

Length Width Length WidthSpecies

Highlight hvrules
Summary statistics by species
A second subtitle line

sd = standard deviation

5.01
0.35

5.94
0.52

6.59
0.64

3.43
0.38

2.77
0.31

2.97
0.32

1.46
0.17

4.26
0.47

5.55
0.55

0.25
0.11

1.33
0.20

2.03
0.27

setosa

versicolor

virginica

mean
sd

mean
sd

mean
sd

Flower part

Sepal Petal

Length Width Length WidthSpecies

Also note that hvrules do not change a table’s augmented row-column grid. Instead, horizontal rules are
assigned a nominal row number that is the half-integer between the row numbers of the two rows it separates.
For example, the horizontal rule running between augmented row numbers 3 and 4 in the figure above (i.e.,
below the subtitles) has a row number of 3.5. A horizontal rule always spans an integer number of columns.
Analogously, a vertical rule has a nominal column number that is a half-integer, and spans an integer number
of rows.

3.5 Styles
In processing a textTable into a pltdTable that is ready for display, graphical properties like font, text
justification, color, etc., have to be assigned to each table element. The initial assignment of graphical
properties is specified by a set of styles, one each for entries, blocks, and hvrules. Thus, as the name suggests,

14

styles control the visual appearance of elements in the plotted table. Styles are specified via the entryStyle,
blockStyle, and hvruleStyle arguments to plot.

Styles are implemented as styleObj objects. The package includes a few built-in styles that serve as defaults.
Users can edit these or add additional styles as they choose. The way styles are defined and applied is
described in section 5. As an illustration, the following shows the same table plotted twice. On the left the
default entry style is used. Among other things it uses a serif font, a larger font size for the title, and sets
horizontal and vertical justification of text according to each entry’s structural role in the table. On the right
a “base” style is used, which just assigns the same generic graphical parameters to all entries.
plt1 <- plot(ttbl, title="Default style for entries")
plt2 <- plot(ttbl, entryStyle=styles_pkg$entryStyle_pkg_base,

title="The 'base' style for entries")

print(plt1, position=c("left", "center"))
print(plt2, position=c("right", "center"), newpage=FALSE)

Default style for entries
Summary statistics by species
A second subtitle line

sd = standard deviation

5.01
0.35

5.94
0.52

6.59
0.64

3.43
0.38

2.77
0.31

2.97
0.32

1.46
0.17

4.26
0.47

5.55
0.55

0.25
0.11

1.33
0.20

2.03
0.27

setosa

versicolor

virginica

mean
sd

mean
sd

mean
sd

Flower part

Sepal Petal

Length Width Length WidthSpecies

The 'base' style for entries
Summary statistics by species

A second subtitle line

sd = standard deviation

5.01
0.35

5.94
0.52

6.59
0.64

3.43
0.38

2.77
0.31

2.97
0.32

1.46
0.17

4.26
0.47

5.55
0.55

0.25
0.11

1.33
0.20

2.03
0.27

setosa

versicolor

virginica

mean
sd

mean
sd

mean
sd

Flower part

Sepal Petal

Length Width Length WidthSpecies

3.6 Confusing conventions
A potential source of confusion in displaying tables as plots is the differing conventions about coordinate
systems: origin, axis directions, and axis order.

• Tables follow the matrix convention in which the origin is at the upper left, with row numbers increasing
from top to bottom and column numbers increasing from left to right. Dimensions and coordinates are
in (row, column) order, that is, vertical coordinate first, then horizontal.

• The plot convention is to have the origin at the lower left, with the vertical coordinate increasing from
bottom to top, and the horizontal from left to right. Dimensions and coordinates are in (horizontal,
vertical) order.

In this package the matrix convention is followed in almost all cases: for the augmented row-column grid,
the dimensions of tables and their parts, horizontal and vertical justification of entry text within cells, and
descriptors for table elements. The plot convention is used only for the following two aspects of pltdTable
objects:

• The pltdSize function returns physical dimensions in (horizontal, vertical) order.

• The position, just, vpx, and vpy arguments of the print method also expect values in (horizontal,
vertical) order, with 0 meaning left/bottom and 1 meaning right/top.

The other difference in conventions to be aware of is that tablesgg uses millimeters for dimensions, whereas
R graphics functions use inches. This should only matter to the user when opening a graphics device based

15

on pltdSize; specify units="in" to get table size in inches.

4 Customizing textTables and pltdTables
Facilities are available to modify existing textTable and pltdTable objects, without re-creating them from
the original source objects. One can also change the default styles used to assign graphical properties to table
elements.

4.1 Modifying a textTable

There is an update method for textTable objects. It allows one to change or remove the table’s annotation
(titles, subtitles, foot lines) and labels for the row header columns (rowheadLabels).

A textTable can also be subscripted in the usual matrix way, to create a new textTable with fewer (or
rearranged) rows or columns. The subscripts are applied to the augmented row-column grid. For example,
the following will remove the first column header row (“Flower part”) from the example table, and reverse
the order of the “Sepal” and “Petal” sets of columns:
subttbl <- ttbl[-4, c(1,2,5,6,3,4)]
Also change annotation:
subttbl <- update(subttbl, title="Example of subscripting a 'textTable'")

plot(subttbl)

Example of subscripting a 'textTable'
Summary statistics by species
A second subtitle line

sd = standard deviation

1.46
0.17

4.26
0.47

5.55
0.55

0.25
0.11

1.33
0.20

2.03
0.27

5.01
0.35

5.94
0.52

6.59
0.64

3.43
0.38

2.77
0.31

2.97
0.32

setosa

versicolor

virginica

mean
sd

mean
sd

mean
sd

Petal Sepal

Length Width Length WidthSpecies

The above subscripting required us to count rows and columns of the augmented grid, and would have to be
modified if, for example, we changed the number of title or subtitle lines in the table. The helper functions
arow and acol allow the subscripts to be specified in a less fragile way:
i <- arow(ttbl, "colhead")[1] # row number of first column header row
j1 <- acol(ttbl, "rowhead") # column numbers for row header
j2 <- acol(ttbl, "colhead") # column numbers for column header
subttbl2 <- ttbl[-i, c(j1, j2[c(3,4,1,2)])]
subttbl2 <- update(subttbl2, title="Example of subscripting a 'textTable'")
identical(subttbl, subttbl2)

[1] TRUE

Subscripting cannot be used to move rows or columns between different table parts (e.g., between headers
and the table body).

16

4.2 Modifying a pltdTable

It is possible to change the graphical properties of table elements in an existing plotted table, as well as shrink
or expand its overall displayed size. One can also add additional blocks or hvrules to the table. However
it is not possible to make changes that alter the table’s augmented row-column grid, such as adding new
entries or annotation. For that one must go back to the starting textTable, or to the object from which the
textTable was generated.

4.2.1 Changing style and scale

There is an update method for pltdTable objects. It allows one to change the styles used to assign graphical
properties to table entries, blocks, and hvrules. It also accepts the scale argument, a multiplier to change
the displayed size of the table by shrinking or expanding all elements proportionally. Note that scaling is
not cumulative; it is always relative to the natural size of the table as determined by its styles. Thus in the
following
plt1 <- plot(ttbl)
plt2 <- update(plt1, scale=0.8)
plt3 <- update(plt2, scale=1.0)
rbind(pltdSize(plt1), pltdSize(plt2), pltdSize(plt3))

[,1] [,2]
[1,] 77.04089 62.69298
[2,] 61.83271 50.26097
[3,] 77.04089 62.69298

the third plot is the same size as the first, not the second.

The update method also accepts the plot.margin argument to change the amount of padding space added
around the four sides of the plot.

4.2.2 Viewing the elements of a plotted table

The elements function extracts and returns the elements of a plotted table, as data frames. Each data frame
has one row per element, and columns that include the element ID, descriptors of the role, position, and
characteristics of the element in the table, and the graphical properties assigned to it. See the function
documentation for a description of each of these columns.

The elements function has an argument enabledOnly, with a default of TRUE, to extract only the enabled
elements of the appropriate type.

The following shows the first few entry elements of the table from the previous subsection:
head(elements(plt1, type="entry"))

id part subpart partrow partcol headlayer level_in_layer
title,1 title,1 title <NA> 1 NA 6 1
subtitle,1 subtitle,1 subtitle <NA> 1 NA 4 1
subtitle,2 subtitle,2 subtitle <NA> 2 NA 5 1
foot,1 foot,1 foot <NA> 1 NA 1 1
body,1,1 body,1,1 body <NA> 1 1 0 1
body,2,1 body,2,1 body <NA> 2 1 0 2
text type arow1 arow2 acol1 acol2
title,1 The iris data character 1 1 1 6
subtitle,1 Summary statistics by species character 2 2 1 6
subtitle,2 A second subtitle line character 3 3 1 6
foot,1 sd = standard deviation character 13 13 1 6
body,1,1 5.01 numeric 7 7 3 3

17

body,2,1 0.35 numeric 8 8 3 3
enabled textspec multicolumn multirow hjust vjust color alpha size
title,1 TRUE plain TRUE FALSE 0 0 black 1 11
subtitle,1 TRUE plain TRUE FALSE 0 0 black 1 9
subtitle,2 TRUE plain TRUE FALSE 0 0 black 1 9
foot,1 TRUE plain TRUE FALSE 0 0 black 1 9
body,1,1 TRUE plain FALSE FALSE 1 1 black 1 10
body,2,1 TRUE plain FALSE FALSE 1 1 black 1 10
family fontface lineheight angle hpad vpad fill fill_alpha
title,1 serif 1 0.9 0 1 0.7 <NA> 1
subtitle,1 serif 1 0.9 0 1 0.7 <NA> 1
subtitle,2 serif 1 0.9 0 1 0.7 <NA> 1
foot,1 serif 1 0.9 0 1 0.5 <NA> 1
body,1,1 serif 1 0.9 0 1 0.7 <NA> 1
body,2,1 serif 1 0.9 0 1 0.7 <NA> 1
border_size border_color minwidth maxwidth
title,1 0.5 <NA> -0.4 NA
subtitle,1 0.5 <NA> -0.4 NA
subtitle,2 0.5 <NA> -0.4 NA
foot,1 0.5 <NA> -0.4 NA
body,1,1 0.5 <NA> -1.0 Inf
body,2,1 0.5 <NA> -1.0 Inf

4.2.3 Fine-tuning graphical properties of table elements: props functions

To make changes to the overall appearance of a table in a way that is readily applied to other tables, it is
simplest to edit or create a new style object for the corresponding table elements. See section 5. However for
one-off changes, or for fine control of individual table elements, there are more direct tools: the props<-,
propsa<-, and propsd<- functions.

These are “setter” or replacement functions, designed to appear on the left-hand side of an assignment. Their
first argument is the pltdTable to be modified. Additional arguments identify the specific elements to be
changed. The right-hand side of the assignment is an object that both indicates the type of elements being
changed (entries, blocks, or hvrules) and lists the new properties to be given to those elements. For example,
plt <- plot(ttbl)
props(plt, id="body") <- element_entry(fontface=3, fill="gray85")
props(plt, id="subtitle,2") <- element_entry(text="Properties changed",

fill="gray85")
props(plt, id="rowhead_right") <- element_hvrule(linetype=1, color="black")

plt

18

The iris data
Summary statistics by species
Properties changed

sd = standard deviation

5.01
0.35

5.94
0.52

6.59
0.64

3.43
0.38

2.77
0.31

2.97
0.32

1.46
0.17

4.26
0.47

5.55
0.55

0.25
0.11

1.33
0.20

2.03
0.27

setosa

versicolor

virginica

mean
sd

mean
sd

mean
sd

Flower part

Sepal Petal

Length Width Length WidthSpecies

changes the display of all entries in the table body to italics (fontface=3), with a gray background; changes
the second line of the subtitle; and puts a visible line in the vertical rule separating the row header from the
body of the table. Note that one of the available properties for entries is text, here used to change the text
of the second subtitle line.

The right-hand side of the assignment must be an element_* object, where * is either entry, block,
hvrule, or refmark. These objects are modeled on element_text, element_rect, etc. objects from the
ggplot2 package. They are created by functions of the same names. Arguments to the functions specify
values of graphical properties; any property not specified in the element_* object is left unchanged. Note
particularly that the enabled property allows one to turn on and off the display of individual elements. See
the documentation of the elements function for full lists of the available properties.

On the left-hand side of the assignment, one specifies which table elements are to receive the new properties.
The only difference between the three props functions is the form of the specification. props<- uses element
or part ID’s. It is convenient for changing properties of table annotation or whole sections of the table, as
shown above. (To see the ID’s of all the elements in a table, use the ids function.)

props<- can also select table entries based on their text content: the regex argument takes a regular
expression, and matching entries are selected. For example, to add reference marks to explain the abbreviation
“sd”:
plt <- plot(textTable(iris2_tab, foot="sd = standard deviation"))
props(plt, regex="^sd$") <- element_refmark(mark="*", side="after")
props(plt, regex="^sd =") <- element_refmark(mark="*", side="before")

plt

*sd = standard deviation

5.01
0.35

5.94
0.52

6.59
0.64

3.43
0.38

2.77
0.31

2.97
0.32

1.46
0.17

4.26
0.47

5.55
0.55

0.25
0.11

1.33
0.20

2.03
0.27

setosa

versicolor

virginica

mean
sd*

mean
sd*

mean
sd*

Flower part

Sepal Petal

Length Width Length WidthSpecies

propsa<- selects table elements using explicit row and column numbers within the augmented row-column
grid:

19

propsa(plt, arows=c(5, 7, 9), acols=5) <- element_entry(color="red")

plt

*sd = standard deviation

5.01
0.35

5.94
0.52

6.59
0.64

3.43
0.38

2.77
0.31

2.97
0.32

1.46
0.17

4.26
0.47

5.55
0.55

0.25
0.11

1.33
0.20

2.03
0.27

setosa

versicolor

virginica

mean
sd*

mean
sd*

mean
sd*

Flower part

Sepal Petal

Length Width Length WidthSpecies

The helper functions arow and acol return row and column numbers associated with table elements or parts.
For example, to put all the mean values in bold:
propsa(plt, arows=arow(plt, hpath=c(NA, "mean")),

acols=acol(plt, id="body")) <- element_entry(fontface=2)

plt

*sd = standard deviation

5.01
0.35

5.94
0.52

6.59
0.64

3.43
0.38

2.77
0.31

2.97
0.32

1.46
0.17

4.26
0.47

5.55
0.55

0.25
0.11

1.33
0.20

2.03
0.27

setosa

versicolor

virginica

mean
sd*

mean
sd*

mean
sd*

Flower part

Sepal Petal

Length Width Length WidthSpecies

propsd<- selects table elements using the values of element descriptors. Internally entries, blocks, and hvrules
are represented as data frames, with one row per element, and columns describing their content, position, and
structural role in the table. (See ?elements for the descriptor columns for each type of element.) Argument
subset of propsd<- is an expression involving those columns, that evaluates to a logical vector; the elements
for which this vector is TRUE will be selected. (NA in the logical vector is treated as FALSE.) Thus the subset
argument works in the same way as R’s built-in subset function to select rows from a data frame. For
example
plt <- plot(textTable(iris2_tab))
propsd(plt, subset=(enabled)) <- element_hvrule(color="red")
propsd(plt, subset=(part == "colhead" & headlayer == 1)) <-

element_entry(angle=90, hjust=0.5, vjust=1.0)

plt

20

5.01
0.35

5.94
0.52

6.59
0.64

3.43
0.38

2.77
0.31

2.97
0.32

1.46
0.17

4.26
0.47

5.55
0.55

0.25
0.11

1.33
0.20

2.03
0.27

setosa

versicolor

virginica

mean
sd

mean
sd

mean
sd

Flower part

Sepal Petal

Le
ng

th

W
id

th

Le
ng

th

W
id

th

Species

As illustrated in the second line above, a useful descriptor on which to base element selection is enabled, to
change the properties of just the hvrules or blocks that are currently enabled for display.

4.2.4 Adding blocks or hvrules

The addBlock and addHvrule functions allow one to add arbitrary additional blocks or hvrules to a plotted
table. Unlike the blocks and hvrules that are automatically generated and styled when a textTable is plotted,
addition of elements using these functions is entirely manual: their location and span with respect to the
augmented row-column grid must be set explicitly, and their graphical properties are unaffected by styles
applied to the table.

Location and span are specified by arguments arows and acols. For a new block, each is a numeric
vector. The minimum and maximum values in the vector specify the first and last rows, and first and last
columns, contained in the block. Graphical properties are specified by argument props, which should be an
element_block object as described in the previous subsection. As an example, continuing with the previous
(modified) table,
plt <- addBlock(plt, arows=c(6, 7), acols=c(3, 4),

props=element_block(border_color="red", border_size=1.0),
enabled=TRUE)

plt

5.01
0.35

5.94
0.52

6.59
0.64

3.43
0.38

2.77
0.31

2.97
0.32

1.46
0.17

4.26
0.47

5.55
0.55

0.25
0.11

1.33
0.20

2.03
0.27

setosa

versicolor

virginica

mean
sd

mean
sd

mean
sd

Flower part

Sepal Petal

Le
ng

th

W
id

th

Le
ng

th

W
id

th

Species

adds (and makes visible) a block that highlights the cells in rows 6-7 of columns 3 and 4. Leaving enabled at
its default value of FALSE allows one to define a block without making it visible, in which case props can be
omitted. The id argument allows one to set the string used as the block ID, so that the block can be referred
to later.

When using addHvrule to create a new horizontal rule, arows should be a single value: the half-integer
bracketed by the table rows between which the rule runs. acols should be a numeric vector whose range

21

specifies the column numbers spanned by the rule. For a vertical rule the roles of arows and acols are
reversed: arows is a numeric vector indicating the row numbers spanned by the rule, and acols is the
half-integer bracketed by the table columns between which it runs. Graphical properties for the rule are
specified by setting the props argument to an element_hvrule object. Thus the following adds a new,
dashed vertical rule between columns 4 and 5, spanning just the body of the table:
plt <- addHvrule(plt, direction="vrule", acols=4.5, arows=arow(plt, "body"),

props=element_hvrule(linetype=2, color="blue"), enabled=TRUE)

plt

5.01
0.35

5.94
0.52

6.59
0.64

3.43
0.38

2.77
0.31

2.97
0.32

1.46
0.17

4.26
0.47

5.55
0.55

0.25
0.11

1.33
0.20

2.03
0.27

setosa

versicolor

virginica

mean
sd

mean
sd

mean
sd

Flower part

Sepal Petal

Le
ng

th

W
id

th

Le
ng

th

W
id

th

Species

Again, argument enabled controls whether the hvrule is displayed (TRUE by default for hvrules), and id can
be used to assign it an ID string.

4.2.5 Adding reference marks

Reference marks (section 2.8) are modifications of table entries, not table elements in themselves. Nevertheless,
for convenience there is an element_refmark function that can be used on the right-hand side of props
function assignments to set reference marks on entries. This was illustrated in section 4.2.3 above.

A second way to add reference marks is the addRefmark function. It works for both textTables and
pltdTables, and was illustrated in section 2.8.

4.2.6 Modifications at the ggplot2 level

A pltdTable object is also a ggplot, and can be used and modified as such. Nevertheless in most cases it is
best to do styling and modification using the tools provided by the tablesgg package. The main reason is
that most ggplot2 plots do not have a fixed physical size—they adapt to the size of the current graphics
device or viewport when they are displayed. pltdTable objects do have a specific physical size, and there is
a dedicated print method to make sure they are displayed that way. Modifying a pltdTable with ggplot2
operations, such as plt + ggtitle("A title"), will produce a result that may not display properly using
either the pltdTable or ggplot print methods.

An exception is the ggplot2 theme element plot.background, which sets a background color and
optional border around the whole table. For example, all of the displays in this vignette use
plot.background=element_rect(fill=NA) to make the background transparent. If one wishes to
put a border or box around the whole table it is in fact preferable to do it like this:
plt + theme(plot.background=element_rect(fill=NA, color="black", size=1))

rather than trying to create an outer border using hvrules or entry borders.

22

4.3 Setting default styles: tablesggSetOpt

The default element styles (and default plot.margin) can be accessed and changed using functions
tablesggOpt and tablesggSetOpt. See their documentation for the details.

5 More about styles
The role of styles is to automate the assignment of graphical properties to table elements. They make it
easy to obtain a consistent and attractive appearance across multiple tables, even if the tables differ in their
structure and complexity. This section describes how styles are specified, and how they are then applied to
tables.

Styles are implemented as styleObj objects, created by the function of the same name. There are three
types, corresponding to the three element types (entries, blocks, and hvrules). A plotted table will make use
of one style of each type.

A styleObj object is a data frame. Each row can be thought of as a pattern plus a set of graphical properties.
Table elements that are to be styled are compared to the patterns. If the pattern in a style row matches
a table element, the graphical properties in that row are assigned to the element. If more than one style
row matches an element, the properties from the last matching row override the earlier ones. The matching
process is done automatically when a textTable is plotted, or when a pltdTable is updated with new styles.

Specification of style patterns and how they are matched to elements is similar for table entries and blocks,
and is described first. The process for hvrules is more complicated and is described second.

5.1 Style specification and matching: Entry and block styles
First note that table entries and blocks internally are stored in objects that are themselves data frames, with
one row per element. (These data frames can be accessed using the elements function.) Columns include
element descriptors such as the table part associated with the element, its position in the table, whether
the element spans multiple rows or columns, and other information. See ?elements for lists of the standard
descriptors.

In styles for table entries and blocks, the pattern part of the styleObj object consists of a single column named
condition. condition should contain character strings that can be interpreted as expressions involving
element descriptors. Each condition expression, when evaluated within an entries or blocks data frame,
should produce a logical vector with one value per element. (Vectors of length 1 are recycled to the necessary
length.) Elements for which the condition expression in a style row evaluates to TRUE are considered to
match that row of the style, and are assigned the graphical properties in that row.

As an illustration, the following shows the package’s default style for table entries:
styles_pkg$entryStyle_pkg_1

condition hjust vjust color alpha size family
1 part == "body" 1.0 1.0 black 1 10 serif
2 part == "rowhead" & !multirow 0.0 1.0 black 1 10 serif
3 part == "rowhead" & multirow 0.0 0.0 black 1 10 serif
4 part == "rowhead" & headlayer == 0 0.5 0.5 black 1 10 serif
5 part == "colhead" & !multicolumn 1.0 1.0 black 1 10 serif
6 part == "colhead" & multicolumn 0.5 1.0 black 1 10 serif
7 part == "rowheadLabels" 0.0 1.0 black 1 10 serif
8 part == "title" 0.0 0.0 black 1 11 serif
9 part == "subtitle" 0.0 0.0 black 1 9 serif
10 part == "foot" 0.0 0.0 black 1 9 serif
fontface lineheight angle hpad vpad fill fill_alpha border_size border_color
1 1 0.9 0 1 0.7 NA 1 0.5 NA

23

2 1 0.9 0 1 0.7 NA 1 0.5 NA
3 1 0.9 0 1 0.7 NA 1 0.5 NA
4 3 0.9 0 1 0.7 NA 1 0.5 NA
5 1 0.9 0 1 0.7 NA 1 0.5 NA
6 1 0.9 0 1 0.7 NA 1 0.5 NA
7 1 0.9 0 1 0.7 NA 1 0.5 NA
8 1 0.9 0 1 0.7 NA 1 0.5 NA
9 1 0.9 0 1 0.7 NA 1 0.5 NA
10 1 0.9 0 1 0.5 NA 1 0.5 NA
minwidth maxwidth
1 -1.0 Inf
2 -1.0 Inf
3 -1.0 Inf
4 -1.0 Inf
5 -1.0 Inf
6 -1.0 Inf
7 -1.0 Inf
8 -0.4 NA
9 -0.4 NA
10 -0.4 NA

The first style row has pattern part == "body", and so the graphical properties in that row will be assigned
to every entry in the table body. The second and third rows assign graphical properties to row header entries,
with a different vertical justification of text (vjust) depending on whether the entry spans more than one
row. The fourth row applies when the table is plotted with rowheadInside=TRUE: the outermost row header
entries are moved inside the table and assigned a header layer number of 0. These entries will be in italics
(fontface equal to 3). part, multirow, headlayer, and so on are all standard entry descriptors.

The default style for blocks has a single row:
styles_pkg$blockStyle_pkg_1[, 1:5]

condition fill fill_alpha border_size border_color
1 NA gray85 1 0.5 NA

An NA value (or equivalently an empty string) as a style row’s condition is treated specially: it matches any
element. The row’s graphical properties will be applied to all elements, unless overridden by a later style row. So
by default all blocks are assigned a light gray background (fill=gray85) and no border (border_color=NA).
(However by default all standard blocks also have enabled=FALSE, and so this background will not be
displayed.)

5.2 Style specification and matching: hvrule styles
The creation and styling of hvrules is closely tied to table blocks: by default, four hvrules are created for
each block, one running along each side. (They are initially disabled.) Style specification for hvrules is more
complicated than for table blocks because hvrules effectively separate blocks. Therefore one may want their
appearance to depend on characteristics of the blocks on both sides of the hvrule. For example, one might
want to insert extra space after a block of columns, but only if it is followed by another block of columns, not
if it is the rightmost block in the table.

Similar to entries and blocks, hvrules are represented internally as a data frame with one row per hvrule.
Columns include: block, the ID of the block that generated the hvrule; side, the side of block along which
the hvrule runs (“top”, “right”, “bottom”, or “left”); and adjacent_blocks, a string listing the ID’s of all
the blocks adjacent to block on the same side as the hvrule. That is, the hvrule separates block from the
blocks in adjacent_blocks. Note that adjacent_blocks may be empty.

In styles for hvrules, the pattern part of the styleObj object consists of three columns: block_condition,

24

side, and adjacent_condition. side is one of “top”, “bottom”, “left” or “right”. block_condition and
adjacent_condition are like the condition column for block styles: they should contain character strings
that can be interpreted as expressions involving block descriptors. Each expression will be evaluated within
the data frame of blocks that generated the hvrules (not the data frame containing the hvrules themselves).
It should produce a logical vector with one element per block; if the value is TRUE for a block, the block
satisfies that expression. See styles_pkg$hvruleStyle_pkg_1 for examples of such expressions.

An hvrule matches a given style row if (a) its generating block satisfies the style row’s block_condition; (b)
they have the same value of side; and (c) one or more of the hvrule’s adjacent_blocks satisfies the style
row’s adjacent_condition.

Any of block_condition, side, and adjacent_condition in a style row may also be set to NA (or
equivalently, to an empty string). In that case the corresponding criterion (a), (b), or (c) is considered to
be satisfied for all hvrules, and so does not limit matches. Note that setting adjacent_condition to NA is
the only way to satisfy criterion (c) if an hvrule’s adjacent_blocks is empty. In all other cases, an empty
adjacent_blocks will never satisfy criterion (c).

5.3 Editing or creating styles
Package users can create new styles by editing an existing one, or creating one from scratch. For the former,
see ?styles_pkg for a list of styles provided by the package. For the latter, prepare a data frame or .csv
file with the appropriate columns for pattern and for graphical properties, and pass it as the first argument
to function styleObj. The graphical property columns that must be present in the data frame are described
in ?elements.

Appendix A: textTable objects
In order to plot any table-like object using this package, it is sufficient to create a textTable method for the
object’s class. Examples of such methods can be seen by running methods(textTable).

The key tasks of a textTable method are to (a) specify the logical structure of the table by defining each of
its seven parts (see section 3.1); and (b) formatting the contents of those parts as character strings. The
resulting textTable object must be a list with the following components:

• body: Character matrix containing the body of the table.
• rowhead: Character matrix with the same number of rows as the table body, containing row headers

for the table. Row headers are displayed as a set of columns to the left of the table body. May be
empty (0 columns).

• rowheadLabels: Character matrix with as many columns as ‘rowhead’ and at most one row, specifying
labels for the rowhead columns. May be empty (0 rows).

• colhead: Character matrix with the same number of columns as the table body, containing column
headers for the table. Column headers are displayed as a set of rows above the table body. If
rowheadLabels are present, colhead must have at least one row, but otherwise it may be empty (0
rows).

• title, subtitle, foot: Character vectors providing annotation for the table. Each may be empty
(length 0).

• partdim: Numeric matrix with one row per table part (i.e., the components listed above), and columns:
– nr, nc: Number of rows, columns in the part (nc equal to NA for annotation parts)).
– arow1, arow2, acol1, acol2: First and last rows, first and last columns occupied by the part

within the table’s augmented row-column grid. arow1 and arow2 should be NA if nr is 0, acol1
and acol2 should be NA if nc is 0.

• rowhier, colhier: Lists describing the hierarchical structure of row and column headers, respectively.
Each list has one component per header layer (column of rowhead, row of colhead), in order from
outermost layer to innermost. In turn, each of these components is a data frame with one row per node
in the hierarchy at that layer.

25

In general a textTable method should define only the first seven of these components (those representing
table parts). The partdim, rowhier, and colhier components are then generated automatically by making
the last line of the method function a call to the default textTable method. That is,
{
... code to create character vectors/matrices for table parts, then ...
z <- list(title=title, subtitle=subtitle, rowhead=rowhead,

rowheadLabels=rowheadLabels, colhead=colhead, body=body, foot=foot)
Invoke 'textTable' on the list to finish up processing and for validity
checks (uses the default method).
textTable(z)
}

Components body, rowhead, and colhead should each have an attribute type. For body this will be a
character matrix with the same dimensions, containing an arbitrary string describing the type of value
represented in each cell (e.g., “numeric”), or NA. For rowhead and colhead, it will be a character vector
with length equal to the number of header layers, again containing a string describing the type of values in
each layer, or NA. type will become one of the descriptors of table entries (see ?elements). Therefore a style
or the propsd<- function can use its value to assign graphical properties to entries.

The components representing table parts should each have an attribute justification. It should be a
character matrix or vector of the same size and shape as the component. Values “l”, “c”, “r” specify left,
centered, and right horizontal justification of text, respectively, for the corresponding table entry. Value NA
means that the type of justification is not specified. (It will be assigned by a style when the textTable is
plotted.)

Both type and justification attributes will be generated automatically, if not already present, by
textTable.default. Values will be set to the default, NA.

Components partdim, rowhier, and colhier are automatically re-derived from the other components
whenever a textTable is updated using update.

As an aside, text justification might logically be considered part of table styling and display, rather than part
of converting entries to character strings. However the fact that tabular and xtable objects may include
justification information makes it desirable that textTable objects provide a way for that information to be
retained.

Appendix B: Blocks associated with row and column headers
In addition to the standard blocks mentioned in section 3.4.2, collections of blocks are defined to represent the
hierarchical structure of row and column headers. These have types rowblock and colblock. To describe
these blocks, some terminology is needed. For concreteness, the description is in terms of column headers;
analogous comments apply to row headers.

When a table is displayed, each row of column headers (corresponding to a row of the colhead matrix in
a textTable object), defines one layer of the header. Layers are numbered from innermost (closest to the
table body) to outermost. Structurally, layers form a hierarchy: header values at a lower numbered (inner)
layer are nested within values at higher numbered (outer) layers. This hierarchy implies a tree-structured
partitioning of table columns according to values of the header variables. A set of contiguous columns that
share the same header value for a layer, and for all layers above it in the hierarchy, belong to a single level of
that layer. Levels are numbered from 1 to the number of levels in a layer.

B.1 Header blocks with subtypes A, B, and C
For each combination of layer number i and level number j in a header, three blocks are defined, with
subtypes “A”, “B”, and “C”. The following figure illustrates the three subtypes for layer 2, level 1 of a table’s
column headers (i.e., the columns for the “Sepal” measurements).

26

Highlight a 'colblock' of subtype 'A'
ID of the highlighted block is 'colblock/A/2/1'

sd = standard deviation

5.01
0.35

5.94
0.52

6.59
0.64

3.43
0.38

2.77
0.31

2.97
0.32

1.46
0.17

4.26
0.47

5.55
0.55

0.25
0.11

1.33
0.20

2.03
0.27

setosa

versicolor

virginica

mean
sd

mean
sd

mean
sd

Flower part

Sepal Petal

Length Width Length WidthSpecies

Highlight a 'colblock' of subtype 'B'
ID of the highlighted block is 'colblock/B/2/1'

sd = standard deviation

5.01
0.35

5.94
0.52

6.59
0.64

3.43
0.38

2.77
0.31

2.97
0.32

1.46
0.17

4.26
0.47

5.55
0.55

0.25
0.11

1.33
0.20

2.03
0.27

setosa

versicolor

virginica

mean
sd

mean
sd

mean
sd

Flower part

Sepal Petal

Length Width Length WidthSpecies

Highlight a 'colblock' of subtype 'C'
ID of the highlighted block is 'colblock/C/2/1'

sd = standard deviation

5.01
0.35

5.94
0.52

6.59
0.64

3.43
0.38

2.77
0.31

2.97
0.32

1.46
0.17

4.26
0.47

5.55
0.55

0.25
0.11

1.33
0.20

2.03
0.27

setosa

versicolor

virginica

mean
sd

mean
sd

mean
sd

Flower part

Sepal Petal

Length Width Length WidthSpecies

A block with subtype “A” consists of just the cells in header layer i whose value corresponds to level number
j. It will thus come from a single row in the column headers of the table. And since all the cells in the block
have the same value, those cells will typically be merged into a single entry when displaying the table.

A block with subtype “B” is bigger: it consists of the cells in the subtype “A” block, plus the header cells
with smaller layer numbers in the same columns. So it extends from layer i down through the rest of the
header rows. And finally a block with subtype “C” is bigger yet: it consists of the cells in the subtype “B”
block plus the cells in the table body in the same columns. That is, it spans the same set of columns as
the subtype “A” and “B” blocks but adds rows down through the table body. Block ID’s have the form
colblock/<subtype>/i/j.

Sets of blocks for the row headers are defined analogously. Each column in the row headers of a displayed
table (corresponding to a column in the rowhead matrix of a textTable object) represents one layer. The
layer closest to the table body is numbered 1 and layer number increases toward the left edge of the table.
A subtype “A” block consists of the cells in layer number i whose value corresponds to level number j in
that layer. It will thus come from a single column in the row headers of the table. A subtype “B” block
consists of the cells in the “A” block, plus the header cells with smaller layer numbers in the same rows. A
subtype “C” block further adds the cells in the table body in the same rows. That is, it spans the same set
of rows as “A” and “B” blocks but adds columns across through the table body. Block ID’s have the form
rowblock/<subtype>/i/j.

27

B.2 Row header blocks when plot argument rowheadInside is TRUE

Moving the outermost layer of row header entries into the interior of the table, where they separate and
label groups of rows, changes the shape of table parts. Specifically, since row headers and body are
interleaved, neither forms a valid rectangular block. However their union is a valid block, with ID and type
rowhead_and_body.

When a row header layer is moved inside, its layer number is set to 0. (Conceptually, since it is interleaved
with the table body, it is interior even to header layer 1.) Blocks rowblock/<subtype>/i/j, where i indicates
layer number, are different when i=0 than for other layers. Subtype “A”, rowblock/A/0/j, has one row and
spans all table columns. It contains the label for the j-th level. Subtype “B”, rowblock/B/0/j, contains all
row header entries (if any) nested within level j. Subtype “C”, rowblock/C/0/j, combines rowblock/B/0/j
with all the body rows associated with level j. Thus rowblock/C/0/j spans all table columns. Unlike when
i is greater than 0, neither rowblock/B/0/j nor rowblock/C/0/j contain rowblock/A/0/j.

Highlight asetof layer−0row
headerblocks
('rowheadInside' set to TRUE)

sd = standard deviation

5.01
0.35

5.94
0.52

6.59
0.64

3.43
0.38

2.77
0.31

2.97
0.32

1.46
0.17

4.26
0.47

5.55
0.55

0.25
0.11

1.33
0.20

2.03
0.27

Species: setosa

Species: versicolor

Species: virginica

mean
sd

mean
sd

mean
sd

Flower part

Sepal Petal

Length Width Length Width

A

B

C

rowblock/A/0/2

rowblock/B/0/2

rowblock/C/0/2

Block subtypeBlock ID

B.3 Blocks representing groups of rows (rowgroupSize > 0)
When a table has many rows within a given level of the row header hierarchy, the table may be easier to read
if rows are grouped into smaller sets of fixed size (groups of 5, for example), with some extra space inserted
between groups. To facilitate this, when the rowgroupSize argument to plot is positive, blocks are created
to represent such groups. The block type is “rowblock” and subtype is “G”.

Grouping respects the row header hierarchy: the innermost header layer that has runs of repeated values is
identified (layer i say), and grouping is done separately within each of its levels. The block representing a row
group spans all columns of the table body as well as row header layers out to layer i-1. Block ID’s have the
form rowblock/G/i/j/k, where j is the level number (within layer i) that contains the group, and k is the
group number within that level. Thus i, j, and k are the values of descriptors headlayer, level_in_layer,
and group_in_level for the block.

However if the table has no row headers, or none of the row header layers have runs of repeated values, table
rows are simply grouped into sets of size rowgroupSize. headlayer and level_in_layer will be NA for the
group blocks, and block ID’s will have the form rowblock/G///k, where k is the group number (and value of
group_in_level).

28

Appendix C: Setting minimum and maximum widths for table en-
tries
The graphical properties minwidth and maxwidth, set either by a style or with one of the props functions,
can be used to control the width of individual table entries. (Here width is with respect to the text itself; i.e.,
the direction of reading for English text, and therefore measured vertically if the text is rotated by 90 or 270
degrees.)

Constraints may be expressed in two forms. Positive values are interpreted as absolute widths in millimeters,
and should include the amount of padding specified by hpad (when angle is 0 or 180 degrees) or vpad (when
angle is 90 or 270 degrees). Negative values are interpreted as multiples of the natural width of the text
itself, without including padding. Thus setting minwidth for an entry to -1 will guarantee that the width of
the spanned cell(s) will be at least enough to contain the text without wrapping.

For simplicity the remainder of this description will assume unrotated text, so that width contraints on entries
affect the widths of columns and the width of the table as a whole. When text is rotated to be vertical, width
constraints will instead affect row heights and the height of the table.

minwidth

minwidth constraints are satisfied by expanding column widths as much as necessary: a column will be at
least as wide as the maximum minwidth for any entry contained in that column. When an entry spans
multiple columns, the additional width is allocated proportionally to each of the spanned columns.

An NA value for minwidth means there is no constraint on minimum width for that entry, and is equivalent
to 0. The default entry style styles_pkg$entryStyle_pkg_1 sets minwidth to -1 for all entries in the
table body, row and column headers, and row header labels. The default value for table annotation (title,
subtitle, and foot lines) is -0.4, which means that the table width will always be at least 40% of the natural,
unwrapped width of the annotation text. This prevents excessive amounts of text wrapping when maxwidth
is NA.

maxwidth and automatic text wrapping
maxwidth constraints are satisfied by wrapping: breaking a long line of text into multiple, shorter lines.
Wrapping is available thanks to the geom_textbox function of the ggtext package [Wilke, 2020]. It can be
enabled or disabled in this package via the option tablesggOpt("allowWrap").

An Inf value for maxwidth means there is no constraint on maximum width. (However, in the absence of
constraints, the internal algorithm favors widths as close as possible to the natural, unwrapped width of the
entry text.) This is the default for entries in the table body, row and column headers, and row header labels.

An NA value for maxwidth means the maximum width will be determined passively from the maxwidth
values of other entries in the same table column(s). (It will never be less than minwidth however.) This is
the default for table titles and footnotes, where long text should be wrapped to fit widths implied by the
other table entries. For example, in the following the width of table columns (and hence the table) is based
on the entries in the body and headers, and the title is automatically wrapped to fit:
tablesggSetOpt(allowWrap=TRUE)
plt <- plot(iris2_tab, title=paste0("An unnecessarily long title, used to ",

"illustrate automatic text wrapping"))

print(plt)

29

An unnecessarilylong title, usedto illustrate
automatictextwrapping

5.01
0.35

5.94
0.52

6.59
0.64

3.43
0.38

2.77
0.31

2.97
0.32

1.46
0.17

4.26
0.47

5.55
0.55

0.25
0.11

1.33
0.20

2.03
0.27

setosa

versicolor

virginica

mean
sd

mean
sd

mean
sd

Flower part

Sepal Petal

Length Width Length WidthSpecies

• Setting maxwidth to a finite value greater than -1 and less than the natural width of an entry’s text
means the spanned cell(s) will not be wide enough to hold the text without wrapping. Therefore if
option tablesggOpt("allowWrap") is FALSE, a warning will be given and maxwidth will be ignored.

• The wrapping algorithm in ggtext::geom_textbox only breaks lines at spaces in the text; it does not
hyphenate words or break at punctuation characters.

• The general effect of setting minwidth to a non-zero value is to reduce or prevent text wrapping, while
the general effect of setting maxwidth to NA or a finite value is to encourage wrapping. Settings for
one entry may affect the width and wrapping of other entries, because column widths for the table as a
whole must satisfy the constraints for all their entries.

• Text representing plotmath expressions cannot be wrapped, so maxwidth should be Inf or <= -1 for
such entries.

Appendix D: Tables as graphs
Although it is common to think of tables and graphs as quite different ways of presenting data, a table is
in fact a kind of scatterplot. The key idea of a scatterplot is to display observations in a 2-dimensional
plane, such that their spatial position reflects the values of two variables associated with the observations,
the x-coordinate and y-coordinate. A table does exactly that: it is a planar display of data where the spatial
position of an entry reflects values of associated variables. The x-axis is defined by the combinations of values
of the column variables, and the y-axis by combinations of values of the row variables. The plotting symbol
placed at the appropriate x-y position is simply a text string (a table entry) rather than a more abstract
glyph. Viewed in this way, it is natural to display tables in the same way one displays graphs, as plots on a
graphics device.

References
Dahl, David B., David Scott, Charles Roosen, Arni Magnusson, and Jonathan Swinton. 2019. xtable: Export
Tables to Latex or Html. https://CRAN.R-project.org/package=xtable.

Hugh-Jones, David. 2020. huxtable: Easily Create and Style Tables for Latex, Html and Other Formats.
https://CRAN.R-project.org/package=huxtable.

Murdoch, Duncan. 2020. tables: Formula-Driven Table Generation.
https://CRAN.R-project.org/package=tables.

Turlach, Berwin A. 2019. quadprog: Functions to Solve Quadratic Programming Problems.
https://CRAN.R-project.org/package=quadprog.

30

Wickham, Hadley. 2016. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York.
https://ggplot2.tidyverse.org.

Wilke, Claus O. 2020. ggtext: Improved Text Rendering Support for ‘ggplot2’.
https://CRAN.R-project.org/package=ggtext.

31

	Introduction
	Package features
	Some limitations
	Logical structure of a data summary table
	Remainder of this vignette

	Getting started
	textTables and pltdTables
	Table annotation
	Table size and scaling
	Positioning the table on the graphics device
	Grouping rows: rowheadInside and rowgroupSize
	Mathematical notation in table entries
	Markdown/HTML in table entries
	Reference marks
	Setting minimum and maximum widths for table entries
	Use with table objects from other packages
	Next steps

	Terminology and concepts
	Table parts
	The augmented row-column grid; table cells
	The hierarchical structure of headers
	Table elements: entries, blocks, hvrules
	Entries
	Blocks of cells
	Horizontal and vertical rules (hvrules)

	Styles
	Confusing conventions

	Customizing textTables and pltdTables
	Modifying a textTable
	Modifying a pltdTable
	Changing style and scale
	Viewing the elements of a plotted table
	Fine-tuning graphical properties of table elements: props functions
	Adding blocks or hvrules
	Adding reference marks
	Modifications at the ggplot2 level

	Setting default styles: tablesggSetOpt

	More about styles
	Style specification and matching: Entry and block styles
	Style specification and matching: hvrule styles
	Editing or creating styles

	Appendix A: textTable objects
	Appendix B: Blocks associated with row and column headers
	B.1 Header blocks with subtypes A, B, and C
	B.2 Row header blocks when plot argument rowheadInside is TRUE
	B.3 Blocks representing groups of rows (rowgroupSize > 0)

	Appendix C: Setting minimum and maximum widths for table entries
	minwidth
	maxwidth and automatic text wrapping

	Appendix D: Tables as graphs
	References

