Package ‘swamp’

October 14, 2022
Type Package

Title Visualization, Analysis and Adjustment of High-Dimensional Data
in Respect to Sample Annotations

Version 1.5.1

biocViews

Depends impute, amap, gplots, MASS

Imports methods

Author Martin Lauss

Maintainer Martin Lauss <martin.lauss@med.lu.se>

Description Collection of functions to connect the structure of the data with the informa-
tion on the samples. Three types of associations are covered: 1. linear model of principal compo-
nents. 2. hierarchical clustering analysis. 3. distribution of features-sample annotation associa-
tions. Additionally, the inter-relation between sample annotations can be analyzed. Simple meth-
ods are provided for the correction of batch effects and removal of principal components.

License GPL (>=2)

LazyLoad yes

RoxygenNote 7.0.2

NeedsCompilation no

Repository CRAN

Date/Publication 2019-12-06 15:10:02 UTC

R topics documented:

swamp-package L. oL e e e e 2
adjust.linearmodel 5
combat. e 7
confounding L 8
COtTECted.D . . o . o e e e e e e e e e 10
dense.plot e 12
feature.assoc 14
hca.plot e 16

2 swamp-package

heatest L 17
Kill.pe . . o o e e e 19
PIINCE o 20
prince.plot 22
prince.varplot 24
quickadjustref 25
quickadjust.Zero L e e e e e e e e 27
Index 29
swamp-package Visualization, Analysis and Adjustment of High-Dimensional Data in

Respect to Sample Annotations

Description

The package contains functions to connect the structure of the data with sample information. Three
types of analyses are covered: 1. linear models of principal components. 2. hierarchical cluster-
ing analysis. 3. distribution of associations between individual features and sample annotations.
Additionally, the inter-relation between sample annotations can be analyzed. We include methods
for batch adjustment by a. median-centering, b. linear models and c. empirical bayes (combat). A
method to remove principal components from the data is also included.

Details
The DESCRIPTION file:
Package: swamp
Type: Package
Title: Visualization, Analysis and Adjustment of High-Dimensional Data in Respect to Sample Annotations
Version: 1.5.1
biocViews:
Depends: impute, amap, gplots, MASS
Imports: methods
Author: Martin Lauss
Maintainer: Martin Lauss <martin.lauss @med.lu.se>
Description: Collection of functions to connect the structure of the data with the information on the samples. Three types
License: GPL (>=2)
LazyLoad: yes
Packaged: Wed Dec 06 09:58:46 2019; lauss

RoxygenNote: 7.0.2

Index of help topics:
adjust.linearmodel Batch adjustment using a linear model
combat ComBat algorithm to combine batches.

confounding Heatmap of interrelation of sample annotations

swamp-package 3

corrected.p Correction of p-values for associations between
features and sample annotation

dense.plot Density plots of feature associations in
observed and permuted data

feature.assoc Associations of the features to a sample
annotation in observed and reshuffled data.

hca.plot Dendrogram with according sample annotations

hca.test Tests for annotation differences among sample
clusters

kill.pc Removes principal components from a data matrix

prince Linear models of prinicipal conponents
dependent on sample annotations

prince.plot Heatmap of the associations between principal
components and sample annotations

prince.var.plot ScreePlot of the data variation covered by the
principal components

quickadjust.ref Batch adjustment by median-scaling to a
reference batch

quickadjust.zero Batch adjustment by median-centering

swamp-package Visualization, Analysis and Adjustment of
High-Dimensional Data in Respect to Sample
Annotations

This package aims to find the associations between a high-dimensional data matrix, typically ob-
tained form high-throughput analysis, to the sample annotations, be they technical (e.g. batch sur-
rogates) or biological information. High-dimensional data usually has a much larger number of
features than samples. This requires specific analysis to see "how the data looks like" and in which
way the technical and biological information on the samples is reflected in the dataset. Sample
annotations can be analyzed for their association to principal componenents (prince(), prince.plot(),
prince.var.plot()) as well as clusters from HCA (hca.plot(), hca.test()). The distribution of associa-
tion of sample annotations to the features can be plotted and analysed (feature.assoc(), dense.plot(),
corrected.p()). Batch surrogate variables might be associated with biological annotations, hence
making batch adjustment of the data problematic. The associations between the sample annota-
tions can be calculated and plotted (confounding()). If unwanted batch effects have been identi-
fied in the previous steps, two simple methods are provided to adjust the data (quickadjust.zero(),
quickadjust.ref()). Another batch adjustment uses linear models, with the advantage to remove
numerical variables and several variables at once (adjust.linearmodel()). In addition, the popular
ComBat batch adjustment has been adopted for the package to combine batches of small sample
size (combat()). Principal components confounded by batch variables can be reomved from the
data (kill.pc()). To use the functions of this package, the data matrix has to be a numeric matrix
and the sample annotations have to be a data.frame with numeric or factors with 2 or more levels.
NAs are allowed in both the data matrix and the annotation dataframe, except for the functions
adjust.linearmodel() and combat().

Author(s)

Martin Lauss

Maintainer: Martin Lauss <martin.lauss @med.lu.se>

4 swamp-package

Examples

#i#### first you need a dataset (matrix)
set.seed(100)
g<-matrix(nrow=1000,ncol=50,rnorm(1000*50),dimnames=1list(paste("Feature”,1:1000),
paste(”Sample”,1:50)))
g[1:100,26:50]1<-g[1:100,26:50]1+1 ## lets put in some larger values
set.seed(200)
#i#### second you need sample annotations (data.frame)
o<-data.frame(Factori=factor(c(rep("A",25),rep("B",25))),
Factor2=factor(rep(c("A","B"),25)),
Numericl=rnorm(50),row.names=colnames(g))
Level "B" of Factor 1 marks the samples with the larger values

perform the functions

principal components
res1<-prince(g,o,top=10,permute=TRUE)
prince.plot(prince=res1)
to plot p values of linear models: 1m(principal components ~ sapmle annotations).
to see if the variation in the data is associated with sample annotations.
res2<-prince.var.plot(g, show.top=50,npermute=10)
to see how many principal components carry informative variation

hierarchical clustering analysis
hca.plot(g,o0)

to show a dendrogram with sample annotations below
res3<-hca.test(g,o0,dendcut=2, test="fisher")

to test if the major clusters show differences in sample annotations

feature associations
res4a<-feature.assoc(g,o$Factor1,method="correlation”)

to calculate correlation between one sample annotation and each feature
res4b<-feature.assoc(g,o$Factorl,method="t.test"”,gl=res4a$permuted.data)
res4c<-feature.assoc(g,o$Factorl,method="AUC",gl=res4a$permuted.data)
dense.plot(res4a)

to plot the distribution of correlations in the observed data

in comparison to permuted data
dense.plot(res4b)
dense.plot(res4c)
resb<-corrected.p(res4a)

to correct for multiple testing and find out how many features are

significantly associated to the sample annotation
names(which(res5$padjust<0.05))
names(which(res5%adjust.permute<e.05))
names(which(res5%adjust.rank<e.05))

associations between sample annotations
res4<-confounding(o,method="fisher")
to see how biological and technical annotations are inter-related

adjust.linearmodel 5

adjustment for batch effects
gadjl1<-quickadjust.zero(g,o$Factorl)

to adjust for batches (o$Factori)

using median centering of the features for each batch
prince.plot(prince(gadj1,o,top=10))

gadj2<-quickadjust.ref(g,o$Factoril,"B")

to adjust for batches (o$Factor)

by adjusting the median of the features to the median of a reference batch.
prince.plot(prince(gadj2$adjusted.data,o,top=10))

gadj3<-kill.pc(g,pc=1)
to remove one or more principal components (here pcl) from the data
prince.plot(prince(gadj3,o0,top=10))

linl<-adjust.linearmodel (g, o$Numeric1)
to adjust for numerical variables using a linear model
prince.plot(prince(linl,o,top=10))

comi<-combat(g,o$Factorl,batchcolumn=1)
to use the empirical Bayes framework of ComBat, popular for small-sample sizes
prince.plot(prince(coml,o,top=10))

adjust.linearmodel Batch adjustment using a linear model

Description
The function uses a linear model for each feature: with the feature as dependent variable and tech-
nical variables (batches) as regressors.

Usage

adjust.linearmodel(g, o.batches, robust.lm = F, small.memory = F)

Arguments
g the input data in form of a matrix with features as rows and samples as columns.
NAs are allowed.
o.batches contains the batch variable(s). a numeric or factor vector, or a dataframe.
robust.1m default=F, if set to true robust linear models are performed by rlm of package

MASS. The calculations take longer than using Im because a loop is used.

small.memory default=F, if set to true robust a loop through the rows is used in the Im function.
This reduces the risk of running out of memory, however computation time is
longer.

6 adjust.linearmodel

Details

For each feature a Im(feature~., batches) is performed. The residuals of the fitted model are re-
turned. (The means of the features of g are added to the residuals, as the residuals are centered,
which may not be desired.) Note the following possibilties of using a linear model for batch adjust-
ment: 1. Technical variables (Batches) can be numeric. 2. Numerical technical variables can be
used in transformed forms (log, exp,...). 3. Several batch variables, be it numeric or factors, can be
corrected at once, by just adding more regressors to the model. By default the function performs
Im. If robust.Im = T, robust linear models are performed using the rlm funcion of MASS. NAs are
not allowed in g. Samples that contain NAs in o.batches are returned unadjusted.

Value

A numeric matrix which is the adjusted dataset.

Note

robust linear models require the package MASS

Author(s)

Martin Lauss

Examples

data as a matrix
set.seed(100)
g<-matrix(nrow=1000,ncol=50,rnorm(1000x50),dimnames=1list(paste("Feature”,1:1000),
paste(”Sample”,1:50)))
g[1:100,26:50]1<-g[1:100,26:50]1+1 # the first 100 features show
higher values in the samples 26:50
patient annotations as a data.frame, annotations should be numbers and factors
but not characters.
rownames have to be the same as colnames of the data matrix
set.seed(200)
o<-data.frame(Factor1=factor(c(rep("A",25),rep("B",25))),
Factor2=factor(rep(c("A","B"),25)),
Numericl=rnorm(50), Numeric2=colMeans(g),row.names=colnames(g))

##unadjusted.data
res1<-prince(g,o,top=10)
prince.plot(resl)

#i#batch adjustment
linl<-adjust.linearmodel(g,o$Numeric2)
lin2<-adjust.linearmodel(g,o[,c("Numeric2”,"Factor2"”)]) # also correct for Factor2

##prince.plot
prince.plot(prince(linl,o,top=10))
prince.plot(prince(lin2,o0,top=10))

combat

combat

ComBat algorithm to combine batches.

Description

Performs ComBat as described by Johnson et al.

Usage

combat(g, o.withbatch, batchcolumn = NULL, par.prior = T, prior.plots = T)

Arguments

g
o.withbatch

batchcolumn

par.prior

prior.plots

Details

the input data in form of a matrix with features as rows and samples as columns.

the batch annotation as a factor vector or within a dataframe that contains addi-
tional biological co-variates. make sure that the order of annotation is the same
as in g. rownames (0) must be identical to colnames (g). when submitting a
data.frame o.withbatch it can contain only factors.

Required. Specify the batch column number of a dataframe ; set to 1 for a vector.
All columns have to be factors, no NAs allowed.

if T’ uses the parametric adjustments, if ’F’ uses the nonparametric adjust-
ments. if you are unsure what to use, try the parametric adjustments (they run
faster) and check the plots to see if these priors are reasonable.

if "T” will give prior plots with black as a kernal estimate of the empirical batch
effect density and red as the parametric estimate.

The R-code of the ComBat algorithm has been taken from the webpage jlab.byu.edu/ComBat and
input and output were adopted to the swamp package. ComBat uses parametric and non-parametric
empirical Bayes frameworks for adjusting data for batch effects. The method is robust to outliers
and performs particularly well with small sample sizes. ComBat can handle only categorical batch
variables in its current development stage. Biological covariates can be added to the model (also

categorical).

Value

A numeric matrix which is the adjusted dataset.

Note

R coded algorithm directly from Johnson WE

Author(s)

Martin Lauss

8 confounding

References

Johnson WE, Li C, Rabinovic A. Adjusting batch effects in microarray expression data using em-
pirical Bayes methods. Biostatistics. 2007 Jan;8(1):118-27.

Examples

data as a matrix

set.seed(100)

g<-matrix(nrow=1000,ncol=50,rnorm(1000%50),dimnames=1ist(paste("Feature”,1:1000),

paste("”Sample”,1:50)))

g[1:100,26:50]1<-g[1:100,26:50]1+1 # the first 100 features show

higher values in the samples 26:50

patient annotations as a data.frame, annotations should be numbers and factors

but not characters.

rownames have to be the same as colnames of the data matrix

set.seed(200)

o<-data.frame(Factori=factor(c(rep("A",25),rep("B",25))),
Factor2=factor(rep(c("A","B"),25)),
Factor3=factor(c(rep("X",15),rep("Y",20),rep("2",15))),
Numericl=rnorm(50),
row.names=colnames(g))

##unadjusted.data
res1<-prince(g,o,top=10)
prince.plot(resl)

#i#tbatch adjustment for Factor 3
comi<-combat(g,o$Factor3,batchcolumn=1)

##batch adjustment for Factor 3; with covariate
com2<-combat(g,ol,c("Factor2”,"Factor3"”)],batchcolumn=2)

#i#prince.plot
prince.plot(prince(coml,o,top=10))
prince.plot(prince(com2,0,top=10))

confounding Heatmap of interrelation of sample annotations

Description

The function tests the relationships of the sample annotations and plots the heatmap of the p-values.

Usage

confounding(o, method = "chisq”, workspace = 2e+@7, smallest = -20,
diagonal.zero = F, label = colnames(o), note = T, notecol = "black”,
notecex = 1, breaks = 50, col = c(heat.colors(48), "white"), key =T,
cexRow = 1, cexCol = 1, margins = c(7,7), colsep = NULL,
rowsep = NULL, sepcolor = "black”, sepwidth = c(0.05,0.05))

confounding 9

Arguments

o the sample annotations in the form of a data.frame, with the sample names as
rownames(0). o can contain factors with 2 or more levels and numeric variables;
no character variables are allowed. NAs are allowed and cases are removed at
calculations.

method statistical test to be used when two factors are tested, this can be either "fisher"
or "chisq" to use fisher.test() or chisq.test(), respectively. default = "chisq".
fisher.test is however preferable as it is an exact test. Note that fisher.test() is
computationally expensive and can cause R to crash.

workspace workspace to use if test="fisher".

smallest a numeric value. log10(p-values) less than smallest are set to smallest for plot-

ting. default = -20. e.g. a logl10 p-value of -37 will be set to -20. Smallest has
to be less than 0.

diagonal.zero setto TRUE to force diagonal p-values to be 0.

label vector containing names of the sample annotation. default=colnames(o)
note set to TRUE to print the p-values in the cells of the plot.
notecol to determine the color of the notes.
notecex to determine the font size of the notes.
breaks either a number (default=50) or a numeric vector (default would be seq(-20,0,length.out=50))
of breaks for the colors.
col a vector of colors with a length of breaks-1. default=c(heat.colors(48), "white")).
key whether the color key should be printed, default=TRUE.
cexRow font size of row label. default=1.
cexCol font size of column label. default=1.
margins a vector with the margins for columns and rows. default=c(7,7).
colsep same as in heatmap.2 function.
rowsep same as in heatmap.2 function.
sepcolor same as in heatmap.2 function.
sepwidth same as in heatmap.2 function.
Details

Technical and biological annotations are often interrelated, leading to confounding. This function
tests the interelation of all sample annotations, be they technical batch surrogates or biological
measures. Two sample annotations are compared at a time. If both are factors, fisher.test() or chisq()
test can be used. Note that fisher.test() is computationally expensive and might cause R to crash at
large sample numbers. If one sample annotation is numeric a linear modeal is used in the form of
Im(numeric sample annotation~other sample annotation). The p-value is derived from the F-statistic
of the linear model. The p-value from Im() is equivalent to the cor.test() p-value in the case of two
numeric variables. NAs in the sample annotations are allowed and result in deletion of the NA case.
It should be noted however, that different number of NAs in various sample annotations lead to
different power of the comparisons. Matrices that specify for each comparison the test and sample
number used are returned. With NAs in the data it is possible that a pair of sample annotations

10 corrected.p

does not provide two different values each. In such a pair that does not show variance for both
annotations the output is set to NA. The function uses heatmap.2() from the package gplots to plot
the p-values.

Value

a list with components

p.values anumeric square matrix that contains the p-values for associations between sam-
ple annotations.

n a numeric square matrix that contains the number of samples at each test.

test.function a character square matrix that contains the test function used at each test.

classes a character vector that contains the classes of the variables in o.

Note

requires the package gplots

Author(s)

Martin Lauss

Examples

patient annotations as a data.frame, annotations should be numbers and factors

but not characters.

set.seed(200)

o<-data.frame(Factori=factor(c(rep("A",25),rep("B",25))),
Factor2=factor(rep(c("A","B"),25)),
Factor3=factor(c(rep("X",15),rep("Y",20),rep("2",15))),
Numericl=rnorm(50))

calculate and plot interrelations
res4<-confounding(o,method="fisher")

corrected.p Correction of p-values for associations between features and sample
annotation

Description

The function corrects for multiple testing of associations of features to sample annotation. Adjust-
ment is done by padjust() or by the p-values from permuted data.

corrected.p 11

Usage
corrected.p(feature.assoc, correction = "fdr"”, adjust.permute =T,
adjust.rank = T, ties.method = "first")
Arguments

feature.assoc a list with the p-values of feature associations, typically created by the func-
tion feature.assoc(). (If not created by feature.assoc() the list has to contain the
elements observed.p and permuted.p.)

correction adjustment method to use for padjust(). default="fdr". must be one of "holm",
"hochberg", "hommel", "bonferroni”, "BH", "BY", "fdr" or "none".

adjust.permute if set to TRUE (default), the p-values will be adjusted by observed.p divided by
permuted.p for each rank in observed.p and permuted.p.

adjust.rank if set to TRUE (default), the p-values will be adjusted by calculating for every
observed p-value the proportion of smaller permuted.p values to smaller ob-
served.p values.

ties.method if adjust.permute=TRUE or adjust.rank=TRUE the method for handling ties can
be either "first" or "random". Tied p-values are likely when using "AUC" as
method to measure feature associations. default="first".

Details

As high-dimensional data contains many features, the p-values of feature associations have to be
corrected for multiple testing. The number of features that are significantly associated with sample
annotation can show how strog the data is connected to the respective sample annotation. The
p-values can be adjusted using the standard correction methods of padjust(). Additionally two
methods that use the p-values from permuted data are proposed. First, p-values are adjusted by
observed.p divided by permuted.p for each rank in observed.p and permuted.p. For instance if the
third lowest p-value in the observed associations is 1e-9 and the third lowest p value in the permuted
data is le-4, this p-value is correced by le-9 divided by le-4 which is le-5. Second, p-values are
adjusted by calculating for every observed p-value the proportion of smaller permuted. p values
to smaller observed.p values. For instance, we have a p-value of le-3 which is ranked as the 300-
lowest p-value in the observed data. In the permuted data there are 3 p-values that are lower than
le-3. In the 300 p-values we suspect 3 of them to occur by chance, hence the adjusted p-value is
3 divided by 300 which is 0.01. This correction method can yield p-values of 0 and is less robust
when only a few permuted.p are smaller than the observed.p. Both proposed correction methods
may acutally show similar results to padjust(observed.p,method="fdr")

Value
a list with components

padjust a numeric vector containing the corrected p-values using padjust().

adjust.permute anumeric vector containing the corrected p-values using observed.p divided by
permuted.p at each rank

adjust.rank a numeric vector containing the corrected p-values by calculating for every
observed p-value the proportion of smaller permuted.p values to smaller ob-
served.p values

12 dense.plot

Author(s)

Martin Lauss

Examples

data as a matrix

set.seed(100)

g<-matrix(nrow=1000,ncol=50,rnorm(1000x50),dimnames=1list(paste("Feature”,1:1000),

paste("”Sample”,1:50)))

g[1:100,26:50]1<-g[1:100,26:50]+1 # the first 100 features show

higher values in the samples 26:50

patient annotations as a data.frame, annotations should be numbers and factor

but not characters.

rownames have to be the same as colnames of the data matrix

set.seed(200)

o<-data.frame(Factor1=factor(c(rep("A",25),rep("B",25))),
Factor2=factor(rep(c("A","B"),25)),
Numericl=rnorm(50),row.names=colnames(g))

#calculate feature associations

res4a<-feature.assoc(g,o$Factor1,method="correlation”)

#correct the p-values

resb<-corrected.p(res4a)
names(which(res5$padjust<@.05))
names(which(res5%adjust.permute<e.05))
names(which(res5%$adjust.rank<e.05))

dense.plot Density plots of feature associations in observed and permuted data

Description

The function plots the distribution of feature associations for a specified sample annotation for both
observed and reshuffled data.

Usage

dense.plot(feature.assoc, 1ty = 1:2, col = 1:2, 1wd = c(2, 2), ylab = "",

nn

main = , cex.main = 1, cex.lab = 1, cex.axis = 1)

Arguments

feature.assoc A list of feature associations, typically created by the function feature.assoc().
(If not created by feature.assoc() the list has to contain the elements observed,
permuted and method.)

1ty a numeric vector containing the line types for the observed and permuted density
lines. default=1:2.

dense.plot 13

col the colors for the observed and permuted density lines. default=1:2.
lwd the line widths. default=c(2,2).
ylab optional labeling of y-axis.
main optional titel.
cex.main optional titel font size.
cex.lab optional axis label font size.
cex.axis optional axis font size.
Details

The function plots the distribution of associations of features with a sample annotation calculated
by feature.assoc(). The function uses plot.density() for the observed data and adds the permuted
data using lines(density()). The x-axis is dependent on the method used to measure association, e.g.
if the method was "correlation", then xlim is c(-1,1) and xlab="Corrlation".

Author(s)

Martin Lauss

Examples

data as a matrix

set.seed(100)

g<-matrix(nrow=1000,ncol=50,rnorm(1000x50),dimnames=1list(paste("Feature”,1:1000),

paste(”Sample”,1:50)))

g[1:100,26:50]1<-g[1:100,26:50]+1 # the first 100 features show

higher values in the samples 26:50

patient annotations as a data.frame, annotations should be numbers and factor

but not characters.

rownames have to be the same as colnames of the data matrix

set.seed(200)

o<-data.frame(Factori=factor(c(rep("A",25),rep("B",25))),
Factor2=factor(rep(c("A","B"),25)),
Numericl=rnorm(50),row.names=colnames(g))

calculate the associations to Factor 1
res4a<-feature.assoc(g,o$Factor1,method="correlation”)
res4b<-feature.assoc(g,o$Factorl,method="t.test"”,gl=res4a$permuted.data)
uses t.test instead, reuses the permuted data generated in res4a
res4c<-feature.assoc(g,o$Factorl,method="AUC",gl=res4a$permuted.data)
uses AUC instead, reuses the permuted data generated in res4a

plot distribution of associations in observed and permuted data
dense.plot(res4a)
dense.plot(res4b)
dense.plot(res4c)

14

feature.assoc

feature.assoc

Associations of the features to a sample annotation in observed and
reshuffled data.

Description

This function calculates the associations of each feature of the data matrix to a specified sample
annotation. Either Pearson correlation, t-test statistic, Area Under Curve or R squared is used as
measure of association. In parallel, the features in permuted data are tested for comparison.

Usage
feature.assoc(g, y, method = "correlation”, g1 = NULL, exact = 1)
Arguments

g the input data in form of a matrix with features as rows and samples as columns.
Missing values are allowed.

y a factor or numeric vector which contains the sample information. Typically a
variable of the data.frame o used in the remaining functions of this package. y
can be a factor with 2 or more levels or a numeric vector. y cannot be a character
vecor. y has to be of the same length as ncol (g). Missing values are allowed
and those cases are removed from the calculations.

method if y is a factor with two levels, this method is used for calculation of the asso-
ciation. The method can be one of "correlation", "t.test", or "TAUC". If y is a
factor with >2 levels Im() is used automatically, if y is numeric cor() is used
automatically to determine the associations.

gl As there are different ways to generate a randomized dataset, a pre-calculated
permutation set can be specified here. Else the permutation data is generated
within the function by reshuffling the values for each feature. gl has to be a
matrix with the same dimensions as g.

exact if method="AUC", exact determines how wilcox.test() treats ties.

Details

For each feature the association to the sample annotation is calculated. If the sample annotaion
is a factor with 2 levels, it can be chosen whether Pearson correlation, t.test statistic or Area Un-
der Curve (AUC) is used as measure of association. The uncorrected p-values for the strength of
associations are calculated by cor.test(), t.test() and wilcox.test() respectively. The distribution of
these associations can be seen using dense.plot() function. For instance this can reveal a group of
positively associated features. The order of the levels in levels(y) is decisive, e.g. for correlation
the factors are transformed by as.numeric(), whereby the first level becomes 1 and the second level
becomes 2. Hence, a positive association means higher values in samples with level 2 and a negative
assocation means higher values in level 1. This should also be true for t.test and AUC, but please
re-check. If the annotation is a factor with more than 2 levels, Im() is automatically used with R

feature.assoc

15

squared as the measure of association and the p-value as obtained from the F statistic. If the annota-
tion is a numeric vector, correlation is used (with cor.test() for p-value). NAs are allowed in both the
data matrix and the annotation vector and is treated by case-wise deletion for the calculations. To
see the relelvance of the associations, the calculations are repeated with permuted data, which can
be either pre-entered as gl or otherwise is calculated within the function by reshuffling the values

for each feature.

Value

a list with components

observed

permuted

observed.p

permuted.p

method

class.of.y

permuted.data

Author(s)

Martin Lauss

Examples

a numeric vector containing the association of features to sample annotation in
the observed data.

a numeric vector containing the association of features to sample annotation in
the permuted data.

a numeric vector containing the p-values for association of features to sample
annotation in the observed data.

a numeric vector containing the p-values for association of features to sample
annotation in the permuted data.

the method used as measure of association, which can be one of "correlation",
"t.test", "AUC" or "linear.model".

a character that states the class of y.

the matrix of the permuted data.

data as a matrix

set.seed(100)

g<-matrix(nrow=1000,ncol=50,rnorm(1000%50),dimnames=1ist(paste("Feature”,1:1000),
paste(”Sample”,1:50)))

g[1:100,26:50]1<-g[1:100,26:50]1+1 # the first 100 features show

higher values in the samples 26:50

patient annotations as a data.frame, annotations should be numbers and factor

but not characters.

rownames have to be the same as colnames of the data matrix

set.seed(200)

o<-data.frame(Factori=factor(c(rep("A",25),rep("B",25))),
Factor2=factor(rep(c("A","B"),25)),
Numericl=rnorm(50),row.names=colnames(g))

calculate the associations to Factor 1
res4a<-feature.assoc(g,o$Factor1,method="correlation”)
res4b<-feature.assoc(g,o$Factorl,method="t.test"”,gl=res4a$permuted.data)
uses t.test instead, reuses the permuted data generated in res4a
res4c<-feature.assoc(g,o$Factor1,method="AUC",gl=res4a$permuted.data)

16 hca.plot

uses AUC instead, reuses the permuted data generated in res4a
str(res4a)

hca.plot Dendrogram with according sample annotations

Description

The function plots the dendrogram from hierarchical cluster analysis with colorcoded sample anno-
tations below.

Usage
hca.plot(g, o, method = "correlation”, link = "ward"”, colored = palette(),
border = NA, code = colnames(o), cex.code =1,
breaks = round(nrow(oreihe)/4),
cutcolors = colorpanel (breaks, low = "green”, mid = "black”, high = "red"))
Arguments

g the input data in form of a matrix with features as rows and samples as columns.
the corresponding sample annotations in the form of a data.frame. A single
sample annotation variable as a vector is allowed and will be transformed to
a data.frame. rownames (o) must be identical to colnames (g). o can contain
factors and numeric variables. No character variables are allowed. NAs are
allowed and blank spaces are plotted.

method the distance method for the clustering. default="correlation". hcluster from
the package amap is used and method must be one of "euclidean”, "maximum",
"manhattan”, "canberra" "binary" "pearson”, "correlation", "spearman" or "kendall".

link the agglomeration principle for the clustering. default="ward". hcluster from
the package amap is used and link must be one of "ward", "single", "complete",
"average", "mcquitty”, "median" or "centroid".

colored a vector of colors in which factor variables of o will be colorcoded. default are
the 8 colors of palette(). the first level is plotted in the first color, the second in
the second color and so on. for annotation with more than 8 levels colors should
be added here.

border a color for the borders in the annotation rectangels rect(). default=NA.

code vector containing names of the sample annotations. default=colnames(o).

cex.code font size of code.

breaks a number that determines in how many bins a numeric annotation is cut using
the cut() function.

cutcolors a vector of color in which numeric variables will be colored. length(cutcolors)

has to be the number of breaks. a colorpanel is default to plot the numeric values
as a color gradient, with low values in green and high values in red.

hca.test 17

Details

The data is clustered using the amap package. The plot works for sample annotations as a data.frame
or as a single vector. NAs are allowed in both data matrix and sample annotation data.frame. If the
annotation is a factor, the annotations come in the colororder specified by colored. If the annotation
is numeric, breaks and cutcolors is used which is currently set to be a colorpanel().

Note

requires the packages amap and gplots

Author(s)

Martin Lauss

Examples

data as a matrix
set.seed(100)
g<-matrix(nrow=1000,ncol=50,rnorm(1000%50) ,dimnames=1ist(paste("Feature”,1:1000),
paste(”Sample”,1:50)))
g[1:100,26:50]1<-g[1:100,26:50]1+1 # the first 100 features show higher values in the samples 26:50
patient annotations as a data.frame, annotations should be numbers and factor but not characters.
rownames have to be the same as colnames of the data matrix
set.seed(200)
o<-data.frame(Factori=factor(c(rep("A",25),rep("B",25))),
Factor2=factor(rep(c("A","B"),25)),
Numericl=rnorm(50),row.names=colnames(g))

hca plot
hca.plot(g,o0)

hca.test Tests for annotation differences among sample clusters

Description

The main clusters of a dendrogram are tested for different patient annotations.

Usage

hca.test(g, o, dendcut = 2, method
test = "chisqg"”, workspace

"correlation”, link = "ward",
2e+07)

18 hca.test

Arguments
g the input data in form of a matrix with features as rows and samples as columns.
the corresponding sample annotations in the form of a data.frame. Sample an-
notation as a single vector is allowed and will be transformed to a data.frame.
rownames (0) must be identical to colnames (g). o can contain factors and nu-
meric variables. No character variables are allowed. NAs are allowed.
dendcut the number of clusters to cut the dendrogram tree (using cutree()). default=2.
method the distance method for the clustering. default="correlation". hcluster from
the package amap is used and method must be one of "euclidean", "maximum",
"manhattan”, "canberra" "binary" "pearson”, "correlation", "spearman" or "kendall".
link the agglomeration principle for the clustering. default="ward". hcluster from
the package amap is used and link must be one of "ward", "single", "complete",
"average", "mcquitty"”, "median" or "centroid".
test the test to use for the annotations that are factors. this can be either "fisher" or
"chisq" to use fisher.test() or chisq.test(), respectively. default = "chisq". How-
ever fisher.test is preferable as it is an exact test. Note that fisher.test() is com-
putationally expensive and can cause R to crash.
workspace workspace to use if test="fisher"
Details

The function clusters the samples using amap and then cuts the dendrogram into a specified num-
ber of clusters. The obtained sample clusters are tested for differences in sample annotations.
fisher.test() or chisq.test() is used if the annotation is a factor, Im(annotation~clusters) is used for
numeric annotations. The p-values for the dependence of sample annotation and sample clusters
are returned.

Value

a list with components

p.values a numeric vector containing the p.values for the annotation variable.
classes the classes of the annotation variables in o.
Note

requires the package amap

Author(s)

Martin Lauss

Examples

data as a matrix

set.seed(100)

g<-matrix(nrow=1000,ncol=50,rnorm(1000x50),dimnames=1list(paste("Feature”,1:1000),
paste(”Sample”,1:50)))

kill.pc 19

g[1:100,26:50]1<-g[1:100,26:50]1+1 # the first 100 features show

higher values in the samples 26:50

patient annotations as a data.frame, annotations should be numbers and factor

but not characters.

rownames have to be the same as colnames of the data matrix

set.seed(200)

o<-data.frame(Factori=factor(c(rep("A",25),rep("B",25))),
Factor2=factor(rep(c("A","B"),25)),
Numericl=rnorm(50),row.names=colnames(g))

perform the test for the main 2 clusters
res3<-hca.test(g,o0,dendcut=2, test="fisher")

use test="chisq"” for large ncol(g) to avoid crash of R
res3$p.values

kill.pc Removes principal components from a data matrix

Description

Does not destroy your personal computer. Really. (No warranty).

Usage

kill.pc(g, pc, imputeknn = F, center = T)

Arguments
g the input data in form of a matrix with features as rows and samples as columns.
pc the principal components to be removed in form of a numeric vector of length
1 or more. e.g. to remove pcl and pc3 use pc=c(1,3), to remove only pc3 use
pc=3.
imputeknn default=FALSE. missing values in the data matrix can be imputed by imputeknn=TRUE.
The function knn.impute from the package impute is used with default settings.
center default=TRUE. the features are mean-centered before singular value decomposi-
ton. this is a pre-requisite for principal component analysis, change only if you
are really convinced that centering is not necessary.
Details

A specific principal component might be associated with several interelated batch surrogate vari-
ables but free from biological associations. In such a case it may be useful to take out such a
principal component from the data. The svd() function resolves the data matrix X into X = U*D*V.
D is then set to zero for the unwanted principal components and the data X is recalculated. If you
use the default center=TRUE make sure you also use prince() with the default center=TRUE. Using
different settings for center for the two functions is not fully compatible.

20 prince

Value

a matrix which is the new data with the specified principal components removed.

Note

requires the package impute.

Author(s)

Martin Lauss

Examples

data as a matrix

set.seed(100)

g<-matrix(nrow=1000,ncol=50,rnorm(1000x50),dimnames=1list(paste("Feature”,1:1000),

paste(”Sample”,1:50)))

g[1:100,26:50]<-g[1:100,26:50]+1 # the first 100 features show

higher values in the samples 26:50

patient annotations as a data.frame, annotations should be numbers and factors

but not characters.

rownames have to be the same as colnames of the data matrix

set.seed(200)

o<-data.frame(Factori=factor(c(rep("A",25),rep("B",25))),
Factor2=factor(rep(c("A","B"),25)),
Numericl=rnorm(50),row.names=colnames(g))

pca on unadjusted data
res1<-prince(g,o,top=10)
prince.plot(res1)

take out pcl
gadj3<-kill.pc(g,pc=1)
prince.plot(prince(gadj3,o0,top=10))

prince Linear models of prinicipal conponents dependent on sample annota-
tions

Description
The function calculates the principal components of the data and finds associations between the
prinicpal components and the sample annotations using linear regressions.

Usage

prince(g, o, top = 25, imputeknn = F, center = T, permute = F)

prince 21

Arguments
g the input data in form of a matrix with features as rows and samples as columns.
the corresponding sample annotations in the form of a data.frame. rownames (0)
must be identical to colnames (g). o can contain factors with 2 or more levels
and numeric variables; no character variables are allowed. NAs are allowed
(these samples are ommited in Im()).
top the number of top principal components to be analyzed, default is set to 25.
imputeknn default=FALSE. missing values in the data matrix can be imputed by imputeknn=TRUE.
The function knn.impute from the package impute is used with default settings.
center default=TRUE. the features are mean-centered before singular value decomposi-
ton. this is a pre-requisite for principal component analysis, change only if you
are really convinced that centering is not necessary.
permute default=FALSE. if set to TRUE a permuted data matrix is generated with the
values for each feature shuffled. The linear models are also calculated for this
permuted dataset.
Details

To calculate the principal components of a data matrix, the function prcomp is used. The function
prcomp uses singular value decomposition instead of eigen decomposition of the covariance matrix,
the actual principal component analysis. As prcomp cannot handle missing values they have to
be imputed beforehands, imputeknn=TRUE can be used for k-nearest neighbor imputation from
package impute, kis 10. A linear model is perfomed to find associations of the principal components
with a dataframe of sample annotations. The f-statistics of Im(principal component i ~ sample
annotation j) is used to derive the p-value for these associations. The results can be plotted using
the prince.plot() function. If permute=TRUE the analysis will be repeated on permuted data, in
which for each feature the values have been randomly shuffled.

Value

a list as a prince object with components

pr the output list of the prcomp function with the principal components contained
in pr¥x.

linp matrix containing the F-test p-values from Im(principal component~sample an-
notation).

rsquared matrix containing the R-squared values from Im(principal component~sample
annotation).

prop numeric vector containing the percentage of the overall variation for each prin-
cipal component.

0 the input data.frame containing the patient annotations.

pr.perm if permute=T it contains the outcome list from prcomp for the permuted data.

linpperm if permute=T it contains the p-values for the permuted data.

rsquaredperm if permute=T it contains the R-squared values for the permuted data.
propperm if permute=T it contains the percentages of variation for the permuted data.

imputed if imputeknn=T it contains the data matrix with the imputed values.

22 prince.plot

Note

requires the package impute

Author(s)

Martin Lauss

Examples

data as a matrix

set.seed(100)

g<-matrix(nrow=1000,ncol=50,rnorm(1000*50),dimnames=1list(paste("Feature”,1:1000),

paste(”Sample”,1:50)))

g[1:100,26:50]1<-g[1:100,26:50]1+1 # the first 100 features show

higher values in the samples 26:50

patient annotations as a data.frame, annotations should be numbers and factor

but not characters.

rownames have to be the same as colnames of the data matrix

set.seed(200)

o<-data.frame(Factori=factor(c(rep("A",25),rep("B",25))),
Factor2=factor(rep(c("A","B"),25)),
Numericl=rnorm(50),row.names=colnames(g))

calculate principal components and use linear models to calculate
their dependence on sample annotations
res1<-prince(g,o,top=10,permute=TRUE)

str(res1)

res1$linp # to see the p values

prince.plot Heatmap of the associations between principal components and sam-
ple annotations

Description

This function uses the calculations performed by prince() and plots the log10 of p-values obtained
by the linear models.

Usage

prince.plot(prince, label = colnames(prince$o), smallest = -20, note = F,
notecol = "black”, notecex =1,
breaks = seq(-20,0,length.out=100), col = heat.colors(99),
margins = c(5, 7), key = T, cexRow = 1, cexCol =1,
xlab = "Principal Components (Variation)", colsep = NULL,
rowsep = NULL, sepcolor = "black”, sepwidth = c(0.05,0.05),
Rsquared = F, breaksRsquared = seq(@,1,length.out=100))

prince.plot 23

Arguments

prince an object generated by the function prince()

label vector containing names of the sample annotation.

smallest a numeric value. log10(p-values) less than smallest are set to smallest for plot-
ting. default = -20. e.g. a logl0 p-value of -37 will be set to -20. Smallest has
to be less than 0.

note set to TRUE to print the p-values in the cells of the plot.

notecol to determine the color of the notes

notecex to determine the font size of the notes

breaks either a number (default=100) or a numeric vector (default would be seq(-20,0,length.out=100))
of breaks for the colors

col a vector of colors with a length of breaks-1. default=heat.colors(99).

margins a vector with the margins for columns and rows. default=c(5,7).

key whether the color key should be printed, default=TRUE.

cexRow font size of label. default=1.

cexCol font size of column labeling. default=1.

xlab an additional character vector to print at the bottom.

colsep same as in heatmap.2 function.

rowsep same as in heatmap.2 function.

sepcolor same as in heatmap.2 function.

sepwidth same as in heatmap.2 function.

Rsquared set to TRUE to print Rsquared values instead of log10 p-values. Missing values

in object o will flaw the comparability of p-values.

breaksRsquared same format as argument breaks. will be used when Rsquared=TRUE

Details

This plot indicates batch effects, and shows the influence of the biological annotations on the overall
variation. The input has to be an object generated by the prince() function. The plot is based on the
heatmap.2 function from the gplots package. Colors, breaks, font size and margins can be changed
and cell notes can be added. The logl0 of p-values from linear model are plotted. If Rsquared is
TRUE the R-squared values from linear model are plotted instead.

Note

requires the package gplots

Author(s)

Martin Lauss

24 prince.var.plot

Examples

data as a matrix

set.seed(100)

g<-matrix(nrow=1000,ncol=50,rnorm(1000%50) ,dimnames=1ist(paste("Feature”,1:1000),

paste(”Sample”,1:50)))

g[1:100,26:50]1<-g[1:100,26:50]1+1 # the first 100 features show

higher values in the samples 26:50

patient annotations as a data.frame, annotations should be numbers and factors

but not characters.

rownames have to be the same as colnames of the data matrix

set.seed(200)

o<-data.frame(Factor1=factor(c(rep("A",25),rep("B",25))),
Factor2=factor(rep(c("A","B"),25)),
Numericl=rnorm(50),row.names=colnames(g))

calculate principal components and use linear models to calculate their
dependence on sample annotations

resi<-prince(g,o,top=10)

plot p-values as heatmap

prince.plot(prince=res1)

prince.var.plot ScreePlot of the data variation covered by the principal components

Description
To identify the number of top principal components with relevant variation, this function plots the
variation contained in the pc for both observed data and reshuffled data.

Usage

prince.var.plot(g, show.top = dim(g)[2], imputeknn = F,
center = T, npermute = 10)

Arguments

g the input data in form of a matrix with features as rows and samples as columns.

show. top the number of top principal components to be shown in the plot (cannot exceed
ncol(g) or nrow(g)).

imputeknn default=FALSE. missing values in the data matrix can be imputed by imputeknn=TRUE.
The function knn.impute from the package impute is used with default settings.

center default=TRUE. the features are mean-centered before singular value decomposi-
ton. this is a pre-requisite for principal component analysis, change only if you
are really convinced that centering is not necessary.

npermute the number of reshuffled datasets. default=10. A permuted data matrix is gen-

erated with the values for each feature shuffled. From the permutation sets the
median percentage of variation for each principal component is taken.

quickadjust.ref 25

Details

The function prcomp() is used to calculate the variation of the data contained in the principal com-
ponents. As prcomp cannot handle missing values they have to be imputed beforehands, using
imputeknn=TRUE.

Value

a list with components

real.variation a vector containing the percentage of variation for each principal component in
the observed data.

permuted.variation
a matrix containing the percentages of variation for each principal component in
the reshuffled data sets.

Note

requires the package impute

Author(s)

Martin Lauss

Examples

data as a matrix
set.seed(100)
g<-matrix(nrow=1000,ncol=50,rnorm(1000%50),dimnames=1ist(paste("Feature”,1:1000),
paste("”Sample”,1:50)))
g[1:100,26:50]1<-g[1:100,26:50]+1
the first 100 features show higher values in the samples 26:50

to plot the variations
res2<-prince.var.plot(g, show.top=50,npermute=10)
str(res2)

quickadjust.ref Batch adjustment by median-scaling to a reference batch

Description
The function adjusts for batches by adjusting the median of the features to the median of a reference
batch.

Usage

quickadjust.ref(g, batches, refbatch)

26 quickadjust.ref

Arguments
g the input data in form of a matrix with features as rows and samples as columns.
NAs are allowed.
batches a factor with two or more levels and with same length as ncol(g), each level has
to contain at least 2 samples.
refbatch a character that determines the reference batch. this character has to be a level
of batches.
Details

The batches are adjusted to a reference batch. The values of the reference batch remain unchanged.
For each feature the median of the batches is determined. NAs are removed for median() calcu-
lations. The median of the reference batch is divided by the median of the non-reference batch,
which is the scaling factor. All values in the non-reference batch are multiplied by the scaling
factor. This way all batches will have the same median as the reference batch for each feature. Scal-
ing factors get inflated when data was already feature-centered before. Hence, this method is only
advisable for uncentered data. This is a quick and simple method of batch adjustment, that proba-
bly does not work for every batch effect, especially when sample numbers per batch are low. The
efficiency of batch adjustment can be checked by prince.plot(prince(g,0)) or prince.plot(prince(g,
data.frame(batch,batch))).

Value
a list with components

adjusted.data A numeric matrix which is the adjusted dataset.
scaling.factors
A numeric matrix containing the scaling factors for each feature in each batch.

Author(s)

Martin Lauss

Examples

The function is currently defined as

data as a matrix

set.seed(100)

g<-matrix(nrow=1000,ncol=50,rnorm(1000%50) ,dimnames=1ist(paste("Feature”,1:1000),

paste(”Sample”,1:50)))

g[1:100,26:50]1<-g[1:100,26:50]1+1 # the first 100 features show

higher values in the samples 26:50

patient annotations as a data.frame, annotations should be numbers and factors

but not characters.

rownames have to be the same as colnames of the data matrix

set.seed(200)

o<-data.frame(Factori=factor(c(rep("A",25),rep("B",25))),
Factor2=factor(rep(c("A","B"),25)),
Numericl=rnorm(50),row.names=colnames(g))

quickadjust.zero 27

##unadjusted.data
resi<-prince(g,o,top=10)
prince.plot(resi)

##batch adjustment
gadj2<-quickadjust.ref(g,o$Factori,"B")
str(gadj2)
##prince.plot
prince.plot(prince(gadj2$adjusted.data,o,top=10))
note the high number of variation covered by the first principal component.
This is caused by infalted scaling factor as the features of the
input matrix g are already centered around zero.
this adjustment method should be used only on uncentered data.

quickadjust.zero Batch adjustment by median-centering

Description

The function centers the median of each feature in each batch to zero.

Usage

quickadjust.zero(g, batches)

Arguments
g the input data in form of a matrix with features as rows and samples as columns.
NAs are allowed.
batches a factor with two or more levels and with same length as ncol(g), each level has
to contain at least 2 samples.
Details

The values of a feature are split up into batches and each part is median-centered to zero, i.e.
the batch median is subtracted from every value in the batch. As a result the feature will have a
median of zero in all batches. NAs are removed for median() calculations. This is a quick and
simple method of batch adjustment, that probably does not work for every batch effect, especially
when sample numbers per batch are low. The efficiency of batch adjustment can be checked by
prince.plot(prince(g,0)) or prince.plot(prince(g, data.frame(batch,batch))).

Value

A numeric matrix which is the adjusted dataset.

Author(s)

Martin Lauss

28 quickadjust.zero

Examples

data as a matrix

set.seed(100)

g<-matrix(nrow=1000,ncol=50,rnorm(1000%50) ,dimnames=1ist(paste("Feature”,1:1000),

paste(”Sample”,1:50)))

g[1:100,26:50]1<-g[1:100,26:50]1+1 # the first 100 features show

higher values in the samples 26:50

patient annotations as a data.frame, annotations should be numbers and factors

but not characters.

rownames have to be the same as colnames of the data matrix

set.seed(200)

o<-data.frame(Factor1=factor(c(rep("A",25),rep("B",25))),
Factor2=factor(rep(c("A","B"),25)),
Numericl=rnorm(50),row.names=colnames(g))

##unadjusted.data
resi<-prince(g,o,top=10)
prince.plot(res1)

##batch adjustment
gadjl1<-quickadjust.zero(g,o$Factorl)
#i#prince.plot
prince.plot(prince(gadj1,o0,top=10))

Index

* cluster
hca.plot, 16
hca.test, 17
kill.pc, 19
prince, 20
prince.plot, 22
prince.var.plot, 24

* design
adjust.linearmodel, 5
combat, 7
kill.pc, 19
quickadjust.ref, 25
quickadjust.zero, 27

x distribution
dense.plot, 12

* htest
confounding, 8
corrected.p, 10
dense.plot, 12
feature.assoc, 14
hca.test, 17

+ package
swamp-package, 2

* regression
prince, 20
prince.plot, 22

adjust.linearmodel, 5

combat, 7
confounding, 8
corrected.p, 10

dense.plot, 12
feature.assoc, 14

hca.plot, 16
hca.test, 17

kill.pc, 19

29

prince, 20
prince.plot, 22
prince.var.plot, 24

quickadjust.ref, 25
quickadjust.zero, 27

swamp (swamp-package), 2
swamp-package, 2

	swamp-package
	adjust.linearmodel
	combat
	confounding
	corrected.p
	dense.plot
	feature.assoc
	hca.plot
	hca.test
	kill.pc
	prince
	prince.plot
	prince.var.plot
	quickadjust.ref
	quickadjust.zero
	Index

