Package 'svplots'

October 14, 2022

Type Package

Title Sample Variance Plots (Sv-Plots)

Version 0.1.0

Author Uditha Amarananda Wijesuriya <u.wijesuriya@usi.edu>

Maintainer Uditha Amarananda Wijesuriya <u.wijesuriya@usi.edu>

Description

Two versions of sample variance plots, Sv-plot1 and Sv-plot2, will be provided illustrating the squared deviations from sample variance. Besides indicating the contribution of squared deviations for the sample variability, these plots are capable of detecting characteristics of the distribution such as symmetry, skewness and outliers. A remarkable graphical method based on Sv-plot2 can determine the decision on testing hypotheses over one or two population means. In sum, Sv-plots will be appealing visualization tools. Complete description of this methodology can be found in the article, Wijesuriya (2020) <doi:10.1080/03610918.2020.1851716>.

License GPL-3

Encoding UTF-8

RoxygenNote 7.1.1

Depends R (>= 3.0.2)

Imports ggplot2

Suggests testthat (>= 3.0.0), knitr, rmarkdown, stats

Config/testthat/edition 3

VignetteBuilder knitr

NeedsCompilation no

Repository CRAN

Date/Publication 2021-04-07 08:40:02 UTC

R topics documented:

svplot1.									•	•	•	•			•			•	•		•		 		•				•		2
svplot2.			•						•	•	•	•							•		•			•	•				•		3
test1mu		•	•	•		•		•	•	•	•	•	•	•	•	•	•		•	•	•	•		•	•	•	•	•	•	•	4

svplot1

test1musm																				•								5
test2mu																												6
test2musm	•		•	•	 •	•		•	•	•	•	•	•	•		•	•	•	•	•	•	•	•		•	•	•	8
																												10

Index

svplot1

Creates Sv-plot1, the first version of the sample variance plots.

Description

Sv-plot1 identifies the characteristics of the distribution illustrating squared deviations in the sample variance by squares for each data value.

Usage

Arguments

Х	an n by 1 matrix, equivalently, a column vector of length n , where n is number of observations.
title	title of the plot, <i>Sv-plot1</i> by default.
xlab	x-axis label, x by default.
lbcol	left bound color, grey5 by default.
lscol	left square color, grey60 by default.
rbcol	right bound color, grey45 by default.
rscol	right square color, grey75 by default.
	other graphical parameters.

Value

Sv-plot1

References

Wijesuriya, U. A. (2020). Sv-plots for identifying characteristics of the distribution and testing hypotheses. *Communications in Statistics-Simulation and Computation*, doi: 10.1080/03610918.2020.1851716.

svplot2

Examples

```
set.seed(0)
X1 <- matrix(rnorm(50,mean=2,sd=5))
svplot1(X1)
X2 <- matrix(rf(50,df1=10,df2=5))
svplot1(X2)
X3 <- matrix(rbeta(50,shape1=10,shape2=2))
svplot1(X3,title="",lbcol="blue",lscol="blue",rbcol="red",rscol="grey75")</pre>
```

svplot2

Creates Sv-plot2, the second version of the sample variance plots.

Description

Sv-plot2 identifies the characteristics of the distribution illustrating squared deviation values in the sample variance against each data value.

Usage

Arguments

Х	an n by 1 matrix, equivalently, a column vector of length n , where n is number of observations.
title	title of the plot, <i>Sv-plot2</i> by default.
xlab	x-axis label, x by default.
lbcol	left bound color, grey5 by default.
lsdcol	left squared deviation color, grey60 by default.
rbcol	right bound color, grey45 by default.
rsdcol	right squared deviation color, grey75 by default.
	other graphical parameters.

Value

Sv-plot2

References

Wijesuriya, U. A. (2020). Sv-plots for identifying characteristics of the distribution and testing hypotheses. *Communications in Statistics-Simulation and Computation*, doi: 10.1080/03610918.2020.1851716.

Examples

```
set.seed(0)
X1 <- matrix(rnorm(50,mean=2,sd=5))
svplot2(X1)
X2 <- matrix(rf(50,df1=10,df2=5))
svplot2(X2)
X3 <- matrix(rbeta(50,shape1=10,shape2=2))
svplot2(X3,lbcol="blue",lsdcol="blue",rbcol="red",rsdcol="red")
```

test1mu	Tests the hypothesis over population mean based on one sample by
	Sv-plot2.

Description

Decision on hypothesis testing over single mean is made by graphing sample and population Sv-plot2s along with the threshold line. If the intersection point of two Sv-plot2s locates on or above the threshold line, the null hypothesis is rejected at specified significance level, otherwise, failed to reject.

Usage

Arguments

Х	an n by 1 matrix, equivalently, a column vector of length n , where n is number of observations.
mu0	hypothesized population mean, $mu0=3.5$ by default.
alpha	significance level, <i>alpha=0.05</i> by default.
unkwnsigma	population standard deviation is unknown, TRUE by default.
sigma	population standard deviation, NULL by default.
xlab	x-axis label, x by default.
title	title of the plot, Single mean: Hypothesis testing by Sv-plot2 by default.
samcol	sample Sv-plot2 color, grey5 by default.
popcol	sample Sv-plot2 color, grey45 by default.
thrcol	threshold color, <i>black</i> by default.
	other graphical parameters.

4

test1musm

Value

Decision on testing hypotheses over single population mean by Sv-plot2.

References

Wijesuriya, U. A. (2020). Sv-plots for identifying characteristics of the distribution and testing hypotheses. *Communications in Statistics-Simulation and Computation*, doi: 10.1080/03610918.2020.1851716.

Examples

test1	musm
-------	------

Tests the hypothesis over population mean based on one sample summary statistics by Sv-plot2.

Description

Decision on hypothesis testing over single mean is made by graphing sample and population Svplot2s along with the threshold line. Intersecting Sv-plots on or above the horizontal line concludes the alternative hypothesis.

Usage

Arguments

n	sample size, $n=20$ by default.
xbar	sample average, $xbar=3$ by default.
S	sample standard deviation, $s=2$ by default.
mu0	hypothesized population mean, $mu0=4.5$ by default.
alpha	significance level, <i>alpha=0.05</i> by default.
unkwnsigma	population standard deviation is unknown, TRUE by default.
sigma	population standard deviation, NULL by default.
xlab	x-axis label, x by default.
title	title of the plot, <i>Single mean: Hypothesis testing by Sv-plot2 by default</i> by default.

test2mu

samcol	sample Sv-plot2 color, grey5 by default.
popcol	sample Sv-plot2 color, grey45 by default.
thrcol	threshold color, <i>black</i> .
	other graphical parameters.

Value

Decision on testing hypotheses over single population mean by Sv-plot2.

References

Wijesuriya, U. A. (2020). Sv-plots for identifying characteristics of the distribution and testing hypotheses. *Communications in Statistics-Simulation and Computation*, doi: 10.1080/03610918.2020.1851716.

Examples

```
## For summary data
    test1musm(n=20,xbar=3,s=2,mu0=4.5,alpha=0.05, unkwnsigma=TRUE,sigma=NULL,xlab="x",
    title="Single mean summary: Hypothesis testing by Sv-plot2",
    samcol="grey5",popcol="grey45",thrcol="black")
```

test2mu	Tests the hypothesis over two population means based on two samples
	by Sv-plot2.

Description

Decision on hypothesis testing over two means is made by graphing two sample Sv-plot2s along with the threshold line. If the intersection point of two Sv-plot2s locates on or above the threshold line, the null hypothesis is rejected at specified significance level, otherwise, failed to reject.

Usage

Arguments

X1	an $n1$ by 1 matrix, equivalently, a column vector of length $n1$, where $n1$ is number of observations.
X2	an $n2$ by 1 matrix, equivalently, a column vector of length $n2$, where $n2$ is number of observations.
paired	for dependent samples TRUE, FALSE by default.
eqlvar	population variances are equal, FALSE by default.

test2mu

unkwnsigmas	population standard deviations are unknown, TRUE by default.
sigma1	population1 standard deviation, NULL by default.
sigma2	population2 standard deviation, NULL by default.
alpha	significance level, <i>alpha=0.05</i> by default.
xlab	x-axis label, x by default.
title	title of the plot, Two means: Hypothesis testing by Sv-plot2 by default.
sam1col	sample1 Sv-plot2 color, grey5 by default.
sam2col	sample2 Sv-plot2 color, grey45 by default.
thrcol	threshold color, <i>black</i> by default.
	other graphical parameters.

Value

Decision on testing hypotheses over two population means by Sv-plot2.

References

Wijesuriya, U. A. (2020). Sv-plots for identifying characteristics of the distribution and testing hypotheses. *Communications in Statistics-Simulation and Computation*, doi: 10.1080/03610918.2020.1851716.

Examples

```
set.seed(5)
test2mu(X1=matrix(rnorm(10,mean=3,sd=2)),X2=matrix(rnorm(20,mean=4,sd=2.5)),
       paired=FALSE,eqlvar=FALSE,unkwnsigmas=TRUE,
       sigma1=NULL,sigma2=NULL,alpha=0.05,
       sam1col="grey5",sam2col="grey45",thrcol="black")
test2mu(X1=matrix(rnorm(10,mean=3,sd=2)),X2=matrix(rnorm(20,mean=4,sd=2.5)),
       paired=FALSE,eqlvar=TRUE,unkwnsigmas=TRUE,
       sigma1=NULL,sigma2=NULL,alpha=0.05,
       sam1col="grey5",sam2col="grey45",thrcol="black")
test2mu(X1=matrix(rnorm(50,mean=3,sd=2)),X2=matrix(rnorm(30,mean=4,sd=2.5)),
       xlab="x",title="Two means: Hypothesis testing by Sv-plot2",
       paired=FALSE,eqlvar=FALSE,unkwnsigmas=TRUE,
       sigma1=NULL,sigma2=NULL,alpha=0.05,
       sam1col="grey5",sam2col="grey45",thrcol="black")
test2mu(X1=matrix(rnorm(50,mean=3,sd=2)),X2=matrix(rnorm(30,mean=4,sd=2.5)),
       paired=FALSE,eqlvar=FALSE,unkwnsigmas=FALSE,
       sigma1=2, sigma2=4.920782, alpha=0.05,
       sam1col="grey5",sam2col="grey45",thrcol="black")
X1=matrix(rnorm(10,mean=3,sd=2))
X2=2*X1
test2mu(X1,X2,
       paired=TRUE,eqlvar=FALSE,unkwnsigmas=TRUE,
       sigma1=NULL,sigma2=NULL,alpha=0.05,
       sam1col="blue",sam2col="red",thrcol="black")
```

test2musm

Tests the hypothesis over two population means based on two samples summary statistics by Sv-plot2.

Description

Decision on hypothesis testing over two means is made by graphing two sample Sv-plot2s along with the threshold line. Intersecting Sv-plots on or above the horizontal line concludes the alternative hypothesis.

Usage

Arguments

n1	sample1 size, $n1=20$ by default.
n2	sample2 size, $n2=25$ by default.
xbar1	sample1 average, $xbar1=3$ by default.
xbar2	sample2 average, $xbar2=4$ by default.
s1	sample1 standard deviation, $s1=1$ by default.
s2	sample2 standard deviation, $s2=1.5$ by default.
paired	for dependent samples TRUE, FALSE by default.
eqlvar	population variances are equal, FALSE by default.
unkwnsigmas	population standard deviations are unknown, TRUE by default.
sigma1	population1 standard deviation, NULL by default.
sigma2	population2 standard deviation, NULL by default.
sdevdif	standard deviation of the differences, NULL by default.
alpha	significance level, <i>alpha=0.05</i> by default.
xlab	x-axis label, x by default.
title	title of the plot, Two means: Hypothesis testing by Sv-plot2 by default.
sam1col	sample1 Sv-plot2 color, grey5 by default.
sam2col	sample2 Sv-plot2 color, grey45 by default.
thrcol	threshold color, <i>black</i> by default.
	other graphical parameter.

test2musm

Value

Decision on testing hypotheses over two population means by Sv-plot2.

References

Wijesuriya, U. A. (2020). Sv-plots for identifying characteristics of the distribution and testing hypotheses. *Communications in Statistics-Simulation and Computation*, doi: 10.1080/03610918.2020.1851716.

Examples

```
## For summary data
test2musm(n1=20,n2=25,xbar1=3,xbar2=4,s1=1,s2=1.5,
        paired=FALSE,eqlvar=FALSE,unkwnsigmas=TRUE,
         sigma1=NULL,sigma2=NULL,sdevdif=NULL,alpha=0.05,
         xlab="x",title="Two means summary: Hypothesis testing by Sv-plot2",
        sam1col="grey5",sam2col="grey45",thrcol="black")
test2musm(n1=20,n2=25,xbar1=3,xbar2=4,s1=1.5,s2=1.5,
       paired=FALSE,eqlvar=TRUE,unkwnsigmas=TRUE,
       sigma1=NULL,sigma2=NULL,sdevdif=NULL,alpha=0.05,
       xlab="x",title="Two means summary: Hypothesis testing by Sv-plot2",
       sam1col="grey5",sam2col="grey45",thrcol="black")
test2musm(n1=50,n2=35,xbar1=3,xbar2=4,s1=1,s2=1.5,
        paired=FALSE,eqlvar=FALSE,unkwnsigmas=TRUE,
        sigma1=NULL,sigma2=NULL,sdevdif=NULL,alpha=0.05,
         xlab="x",title="Two means summary: Hypothesis testing by Sv-plot2",
         sam1col="grey5",sam2col="grey45",thrcol="black")
test2musm(n1=50,n2=35,xbar1=3,xbar2=4,s1=1,s2=1.5,
        paired=FALSE,eqlvar=FALSE,unkwnsigmas=FALSE,
        sigma1=2,sigma2=3,sdevdif=NULL,alpha=0.05,
        xlab="x",title="Two means summary: Hypothesis testing by Sv-plot2",
         sam1col="grey5",sam2col="grey45",thrcol="black")
test2musm(n1=20,n2=20,xbar1=3,xbar2=4,s1=1,s2=1.5,
        paired=TRUE,eqlvar=FALSE,unkwnsigmas=TRUE,
         sigma1=NULL,sigma2=NULL,sdevdif=2,alpha=0.05,
        xlab="x",title="Two means summary: Hypothesis testing by Sv-plot2",
```

sam1col="grey45",sam2col="grey5",thrcol="black")

9

Index

svplot1, 2
svplot2, 3
test1mu, 4
test1musm, 5
test2mu, 6
test2musm, 8