Package ‘svIDE’

October 14, 2022

Type Package

Version 0.9-54

Date 2018-06-28

Title Functions to Ease Interactions Between R and IDE or Code Editors
Author Philippe Grosjean [aut, cre]

Maintainer Philippe Grosjean <phgrosjean@sciviews.org>

Depends R (>=2.6.0)

Imports utils, tcltk, svMisc, XML

Description Function for the GUI API to interact with external IDE/code editors.
License GPL-2

URL http://www.sciviews.org/SciViews-R

BugReports https://r-forge.r-project.org/tracker/?group_id=194
NeedsCompilation no

Repository CRAN

Date/Publication 2018-06-28 13:45:20 UTC

R topics documented:

sVIDE-package e e e 2
createSyntaxFile L 2
getFunctions L e e 4
getKeywords L e 4
guiDDEInstall e 5
kpfTranslate e 7
makelconGallery 9
SOUICE . . . v o o o 10
sourceFormat e 11
Index 13

http://www.sciviews.org/SciViews-R
https://r-forge.r-project.org/tracker/?group_id=194

2 createSyntaxFile

svIDE-package Functions to Ease Interactions Between R and IDE or Code Editors

Description

Function for the GUI API to interact with external IDE/code editors.

Details
Package: svIDE
Type: Package
Version: 0.9-54
Date: 2018-06-28
License: GPL 2 or above, at your convenience
Author(s)
Philippe Grosjean

Maintainer: Ph. Grosjean <phgrosjean @sciviews.org>

createSyntaxFile Create a syntax definition or a calltip file for R language

Description

A .svl syntax file describes the syntax of the language for SciViews GUIs. It is used mainly for
syntax coloring of text in editors. The calltip file (by default, Rcalltips.txt) is a database with formal
calls of R functions, to be used by code editors to display function calltips.

Usage

createSyntaxFile(svlfile = "R.svl"”, pos = 2:length(search()))
createCallTipFile(file = "Rcalltips.txt"”, pos = 2:length(search()),

field.sep = "=", only.args = FALSE, return.location = FALSE)
Arguments
svlfile the name or location of the .svl file you want to create.
file the name or location of the calltip file you want to create.
pos a vector of integers indicating which positions in the search path should be

recorded in the file.

createSyntaxFile 3

field.sep the field separator to use between the function name and its calltip in the file.
only.args do we record the full calltip (myfun(argl, arg2 =TRUE, ...)), or only the
function arguments (arg1, arg2, ...).

return.location

when TRUE, the package where this function is located in returned between
square brackets at the end of the line.

Value

These functions return nothing. They are invoked for their side effects of creating a file.

Note

SciViews-R uses a file named "R.svl’ and located in <SciViewsDir>/bin/languages. This function
generates such a file. Do resist to the temptation to generate a very long list of keywords by load-
ing many packages. SciViews cannot handle a list longer that 32k, that is roughly, 2000 - 2500
keywords.

createCallTipFile() sometimes issues warnings because it cannot get arguments from some
keywords. You can ignore these warnings.

Author(s)

Philippe Grosjean <phgrosjean @sciviews.org>

See Also

getFunctions, getKeywords

Examples

Not run:

Create a syntax highlighting file for all currently loaded R packages
createSyntaxFile("Rtemp.svl"”)

Show and delete it

file.show("Rtemp.svl"”, delete.file = TRUE)

Create a calltips file for all currently loaded R packages
createCallTipFile("Rtemp.ctip”, return.location = TRUE)

Show and delete it

file.show("Rtemp.ctip”, delete.file = TRUE)

You can also customize the calltip file and select the package
Here we include only functions from base package (the last item
in the search path)
createCallTipFile("Rtemp2.ctip”, pos = length(search()),

field.sep = ";", only.args = TRUE)
Show and delete it
file.show("Rtemp2.ctip”, delete.file = TRUE)

End(Not run)

4 getKeywords

getFunctions Get all functions in a given environment

Description

Get a list of all visible functions in a given environment.

Usage

getFunctions(pos)
Arguments

pos the position in the search path.
Value

A list of character strings with functions names.

Author(s)

Philippe Grosjean <phgrosjean @sciviews.org>

See Also

getKeywords, createSyntaxFile

Examples

getFunctions(1) # Functions defined in .GlobalEnv
length(getFunctions(length(search()))) # Number of functions in package:base

getKeywords get all keywords for syntax highlighting

Description

Get all visible keywords in one or several environment, excluding operators and reserved keywords.

Usage

getKeywords(pos = 2:1length(search()))

Arguments

pos a vector of integers with all positions in the search path where to look at.

guiDDElInstall 5

Value

A vector of character strings with keywords.

Note

This function is used by createSyntaxFile() to list all keyword2 items (thus excluding reserved
keywords and operators).

Author(s)

Philippe Grosjean <phgrosjean @sciviews.org>

See Also

getFunctions, createSyntaxFile

Examples

getKeywords(1:2)

guiDDEInstall install a DDE server (Windows only) for external IDE/code editor

Description

These functions install and manage a DDE server to return context-sensitive calltips or completion
lists to external IDE/code editors under Windows.

Usage
guiDDEInstall()
guiCallTip(code, file = NULL, onlyargs = FALSE, width = 60, location = FALSE)
guiComplete(code, file = NULL, sep = "|")
Arguments
code a piece of R code (in a character string) to analyze.
file a file where to return the result (""", or NULL for none). You can use "clipboard”
to send the result to the clipboard under Windows only.
onlyargs do we return the whole calltip or only the function arguments?
width reformat the calltip to with (use 0 for not reformatting it).
location if TRUE then the location (in which package the function resides) is appended to

the calltip between square brackets.

sep the separator to use between the item and its type in the list.

6 guiDDElInstall

Value

These functions should be used to interact with an external program. Their result is returned invisi-
bly for debugging purposes and is not intended to be use in R.

Note

DDE is a communication protocol that exists only under Windows. Consequently, those functions
cannot be used (yet) on other platforms.

On loading of the package, if the option(use.DDE = TRUE) is defined, the DDE server (guiDDEInstall())
is automatically installed when the package is loaded. Also if options(IDE = "[path.to.exe]")
is defined, then that IDE is automatically started afterward.

Author(s)

Philippe Grosjean <phgrosjean @sciviews.org>

See Also

callTip, completion

Examples

Not run:
DDE exchange protocol is available ONLY under Windows!

Also, this cannot be run by examples() but should be OK when pasted
into an interactive R session with the tcltk package loaded

Here is how you can test these features under Windows
options(use.DDE = TRUE)

library(svIDE) # This should automatically start the

DDE server named 'TclEval SciViewsR', according to the option set

Get some data in the user workspace
data(trees)

a<-1

b <- "some text in the first instance of R”

HHHHHHHEHEE AR AR

To test these functions in an external program, we need now

to start a second instance of R. In this second instance, enter:
library(tcltk)

.Tcl("package require dde")

.Tcl("dde services TclEval {}")

You should get 'TclEval SciViewsR' in the list

if the server in the first instance is running

Now, request a calltip for the function 'ls'

This is done in two steps:

1) Execute the command 'guiCallTip' with this code chunk as argument
.Tcl("dde execute TclEval SciViewsR {guiCallTip {res <- 1s(}}")

kpfTranslate 7

2) Retrieve the calltip from the variable SciViewsR_CallTip
.Tcl("dde request TclEval SciViewsR SciViewsR_CallTip")

Another way to trigger DDE commands (for programs that do not support
DDE is to use 'execdde.exe' of the tcltk2 package (see ?tk2dde)

It is also possible to copy the calltip to a file, or to the clipboard

by specifying it after the command (also the two additional arguments

have their default values changed)

.Tcl("dde execute TclEval SciViewsR {guiCallTip {library(} clipboard TRUE 4@ TRUE}")
Look at what is in the clipboard

cat(readClipboard(), "\n")

The process is similar to get completion lists
.Tcl("dde execute TclEval SciViewsR {guiComplete {iris$}}")
.Tcl("dde request TclEval SciViewsR SciViewsR_Complete™)

Get the list of variables in the user workspace of the first R instance

into the clipboard (use also the other arguments to get the type of objects)
.Tcl("dde execute TclEval SciViewsR {guiComplete {3} clipboard TRUE { - }}")

Look at what is in the clipboard

cat(readClipboard(), "\n")

End(Not run)

kpfTranslate Create a POT file or use a PO file to allow translating Komodo project
(.kpf) or package (.kpz).

Description

Komodo Edit/IDE (code editor programs) use projects and packages for easy customization. How-
ever, these projects/packages are static elements that do not allow to use translation facilites easily.
The kpX2pot() and kpXTranslate() functions provide a mechanism to use poEdit (a program
designed to translate strings for software) to ease and automatise translation of such Komodo pro-
jets/packages (see details section for the procedure).

Usage

kpf2pot(kpfFile, potFile)
kpz2pot(kpzFile, potFile)
kpfTranslate(kpfFile, langs, poFiles, kpf2Files)
kpzTranslate(kpzFile, langs, poFiles, kpz2Files)

Arguments

kpfFile a Komodo project file with a .kpf extension to be translated.

kpzFile a Komodo package file with a .kpz extension to be translated.

8 kpfTranslate

potFile the name of a .pot file providing strings to be translated, if not provided, it is the
same name as the .kpf/.kpz file, but with a .pot extension instead.

langs the language(s) to translate to, for instance, ’fr’ for French, ’de’ for German, ’it’
for Italian, ’en_GB’ for Great Britain’s English, etc.

poFiles the path to the .po files containing the translations. If not provided, it is as-
sumed to be the basename of the .kpf/.kpz file without extension, plus ’-’, plus
langs and with a .po extension. For instance, the default translation file for
myproject.kpf into French is named myproject-fr.po.

kpf2Files the Komodo project files to create with the translations. If not provided, it is
assumed to be the same as the initial project file, but with ’-lang’ appended to
the base name. For instance, the French translation of myproject.kpf would
be myproject-fr.kpf in the same directory, by default.

kpz2Files same as kpf2Files, but for Komodo package files with a .kpz extension.

Details

Komodo Edit/IDE are code editor programs that can be used to edit R code efficiently with the
SciViews-K plugin (see http://www.sciviews.org/SciViews-K). Komodo can be customized by us-
ing projects files (files with a .kpf extension), or tools collected together in the toolbox and that can
be saved on disk in Komodo package files (with a .kpz extension).

Among the tools you can place in a Komodo project or package, there are macros (written in
JavaScript or Python). Thanks to the SciViews-K plugin, you have access to R and R code inside
these macros. This makes it a good candidate for writing GUI elements, including dialog boxes, on
top of your favorite R code editor. You can also add ’snippets’ in those projects/packages. Snippets
are short pieces of code, including R code, you can save and retrieve easily. In the snippets, you can
define replaceable parts, includings parts you replace after prompting the user for their values with
a dialog box. SciViews uses these features extensively, for instance, for the 'R reference’ toolbox
(a kind of electronic reference card for R code).

Unfortunately, these tools do not benefit easily from translation features. So, it is hard to maintain
the same project/package in different languages. The functions provided here ease the maintenance
of such projects/packages translated in various languages. Here is how you can use them:

1) Save your Komodo project or package on disk (click on the project and use context menu to save
it, or select all items you want to package in your toolbox and also use to context menu to create the
package file).

2) Use the kpX2pot () function to create, or update a .pot file. This file lists all translatable strings
found in the project/package. Translatable strings are: (a) names of tools or folders, (b) items
in snippets that are flagged with %ask:R-desc:, %ask:R-tip:, %ask:URL-help:, %ask:RWiki-help:,
Yopref:URL-help:, %pref:RWiki-help, and %tr: (see Komodo help to learn how to use these tags in
snippets), and (c) strings in JavaScript macros that are flagged with _(). For instance, creating a
.pot file for ~/myproject.kpf is as simple as calling kpf2pot ("~/myproject.kpf").

3) Use the poEdit program (search Google to find, download and install this free Open Source trans-
lation utility, if you don’t have it yet) to translate the extracted strings. The first time, you create a
.po file based on the .pot template you just created. For subsequent versions of your project/package,
you reuse the old .po file and select menu entry *Catalog -> Update from POT file...” in poEdit to
update your translation file with new strings found in the recent .pot file. You are better to place

makelconGallery 9

the .po file in the same directory as your project/package and to give it the same name, but re-
placing .kpX by -<lang>.po, where <lang> is the language in which you do the translation. You
can distribute .pot files to a staff of translators that would send you back the created/modified .po
files for compilation. See the poEdit documentation for further help (note that multiline strings and
singular/plural forms are not supported yet by kpXTranslate()).

4) Once you have your .po files ready, you can translate your Komodo project/package in these
languages easily. For instance, a project file ~/myproject.kpf can be translated in French, using
the .po file ~/myproject-fr.po and in Italian using a .po file ~/myproject-it.po. To do so, you
simply type kpfTranslate("~/myproject.kpf”) in R. That produces a ~/myproject-fr.kpf
file that contains your Komodo project translated in French, and a ~/myproject-it.kpf file with
your Italian translation. Please, note that kpzTranslate() currently needs to access the external
zip program for zipping the .kpz file. This program is usually accessible from within Linux or Mac
OS X by default, but needs to be installed (and made accessible through the PATH) under Windows.

5) To open your translated project/package in Komodo, just drag and drop the new file in the central
area of the Komodo window, and the project is open in the projects tabs at left, or the content of the
package is added in you toolbox at right, depending on the type of file you use.

Value
These functions return invisibly TRUE if the targetted files are created, or FALSE otherwise. Use
any(kpfTranslate("myfile.kpf")) to check that ALL translations are done.

Author(s)

Philippe Grosjean <phgrosjean@sciviews.org>

makeIconGallery Create galleries of icons for SciViews-K and Komodo

Description

The "pick icon" dialog box of Komodo uses icon galleries. SciViews-K adds several galleries
for easier access to the icons, and it supplements about 1800 additional icons. The present func-
tion builds those galleries, based on a list of icons manually compiled (compatible with Komodo
Edit/IDE version 9).

Usage

makeIconGallery(flist)

Arguments

flist the path to the ASCII text file containing the URISs of the different icons to collect
together in the gallery. It is supposed to use the .txt extension, which is replaced
by .html in the gallery file.

10 Source

Value

TRUE (success) or FALSE (error) is returned invisibly.

Author(s)

Philippe Grosjean (<phgrosjean@sciviews.org>)

Source Source R code, capture its output and convert it in a different format

Description

This function is deprecated in favor of sourceFormat() and will disappear in the future version
1.0 of this package ! Source() is like source(), but it allows to rework the output (for instance to
print it in HTML format).

Usage

Source(...)

Arguments

Same arguments as for the sourceFormat () function.

Details

This function is usually called by functions that processes commands send by GUI clients.

Value

The formatted output is returned invisibly.

Author(s)

Philippe Grosjean (<phgrosjean@sciviews.org>), after code written by Tom Short

See Also

sourceFormat, source

sourceFormat 11

sourceFormat Source R code, capture its output and convert it in a different format

Description

sourceFormat() is like source(), but it allows to rework the output into a different format (for
instance to print it in HTML format).

Usage

sourceFormat(file, out.form = getOption("R.output.format”), local = FALSE,
echo = FALSE, print.eval = TRUE, verbose = getOption("verbose"),
prompt.echo = getOption(”"prompt"), max.deparse.length = 150,
chdir = FALSE, prompt = FALSE)

Arguments

file a connection or a character string giving the name of the file or URL to read
from.

out.form a string indicating which output format to use (for instance, "html").

local if ’local’ is "TFALSE’, the statements scanned are evaluated in the user’s workspace
(the global environment), otherwise in the environment calling ’source’.

echo logical; if "TRUE’, each expression is printed after parsing, before evaluation.

print.eval logical; if "TRUE’, the result of ’eval(i)’ is printed for each expression ’i’; de-
faults to "echo’.

verbose if "TRUE’, more diagnostics (than just ’echo = TRUE’) are printed during pars-

ing and evaluation of input, including extra info for each expression.

prompt.echo character; gives the prompt to be used if ’echo = TRUE’.
max.deparse.length
integer; is used only if ’echo’ is "TRUE’ and gives the maximal length of the
"echo" of a single expression.

chdir logical; if "TRUE’, the R working directory is changed to the directory contain-
ing ’file’ for evaluating
prompt should a prompt be printed at the end of the evaluation return?
Details

This function is usually called by functions that processes commands send by GUI clients.

Value

The formatted output is returned invisibly.

Author(s)

Philippe Grosjean (<phgrosjean@sciviews.org>), after code written by Tom Short

12 sourceFormat

See Also

source

Index

x GUI API IDE and code editor, language
syntax

svIDE-package, 2

* Interprocess DDE communication, call tip

and completion list

guiDDEInstall, 5

x Make Komodo icon galleries
makeIconGallery, 9

* R code highlighting list functions
getFunctions, 4

* R code highlighting list keywords
getKeywords, 4

* Source R code and format it
Source, 10
sourceFormat, 11

* Syntax highlighting, code coloring
createSyntaxFile, 2

* Translate Komodo snippets
kpfTranslate, 7

* package
svIDE-package, 2

* utilities
createSyntaxFile, 2
getFunctions, 4
getKeywords, 4
guiDDEInstall, 5
kpfTranslate, 7
makeIconGallery, 9
Source, 10
sourceFormat, 11
svIDE-package, 2

callTip, 6

completion, 6

createCallTipFile (createSyntaxFile), 2
createSyntaxFile, 2,4, 5

getFunctions, 3,4, 5
getKeywords, 3, 4, 4
guiCallTip (guiDDEInstall), 5

13

guiComplete (guiDDEInstall), 5
guiDDEInstall, 5

kpf2pot (kpfTranslate), 7
kpfTranslate, 7

kpz2pot (kpfTranslate), 7
kpzTranslate (kpfTranslate), 7

makeIconGallery, 9

Source, 10

source, 10, 12
sourceFormat, 70, 11
sVIDE (svIDE-package), 2
svIDE-package, 2

	svIDE-package
	createSyntaxFile
	getFunctions
	getKeywords
	guiDDEInstall
	kpfTranslate
	makeIconGallery
	Source
	sourceFormat
	Index

