A package for survival analysis in R

Terry Therneau

December 17, 2024

Contents

1 Introduction
1.1 History o e e e e
1.2 Survival data
1.3 Overview e e
1.4 Mathematical Notation
2 Survival curves
2.1 One event type, one event per subject,
2.2 Repeated events
2.3 Competing risks
2.3.1 Simpleexample
2.3.2 Monoclonal gammopathy Lo
2.4 Multi-state data
24.1 Myeloid data
2.5 Influence matrix e
2.6 Differences in survival L
2.7 Robust variance e
2.8 State space figures
2.8.1 Furthernotes
3 Cox model
3.1 One event type, one event per subject,
3.2 Repeating Events Lo
3.3 Competing risks L
3.3.1 MGUS . . . e
3.4 Multiple event types and multiple events per subject
3.4.1 Data e e e e
3.4.2 Fits
3.4.3 Timelinedata e
3.5 Testing proportional hazards 0.
3.5.1 Constructed variables,
3.5.2 Score tests e
3.5.3 Computational details
3.6 Profile likelihood e

N O WwW

14
17
17
20
23
24
37
39
39
40
41

4 Accelerated Failure Time models

4.1 Usage e
4.2 Strata e
4.3 Penalized models
4.4 Specifying a distributiono
4.5 Residuals e
4.5.1 Response e e
4.5.2 Deviance e e e e e e e
4.5.3 Dibeta
4.5.4 Working Lo
4.5.5 Likelihood displacement residuals
4.6 Predicted values
4.6.1 Linear predictor and response
4.6.2 Terms e e e e e e e
4.6.3 Quantiles
4.7 Fitting themodelo
4.8 Derivatives e e
4.9 Distributions
4.9.1 Gaussian e
4.9.2 Extreme value
4.9.3 Logistic e
4.9.4 Other distributions e
5 Tied event times
5.1 Cox model estimates
5.2 Cumulative hazard and survival, .
5.3 Predicted cumulative hazard and survival from a Cox model

6 Multi-state models

A Changes from version 2.44 to 3.1
A1 Changesinversion 3
A2 Survfit . ..o
A3 Coxph e

T
7
78
78
79
81
81
81
81
82
82
82
82
82
83
84
86
87
87
87
88
88

90
90
93
93

95

Chapter 1

Introduction

1.1 History

Work on the survival package began in 1985 in connection with the analysis of medical research
data, without any realization at the time that the work would become a package. Eventually, the
software was placed on the Statlib repository hosted by Carnegie Mellon University. Multiple
version were released in this fashion but I don’t have a list of the dates — version 2 was the first
to make use of the print method that was introduced in ‘New S’ in 1988, which places that
release somewhere in 1989. The library was eventually incorporated directly in S-Plus, and from
there it became a standard part of R.

I suspect that one of the primary reasons for the package’s success is that all of the functions
have been written to solve real analysis questions that arose from real data sets; theoretical
issues were explored when necessary but they have never played a leading role. As a statistician
in a major medical center, the central focus of my department is to advance medicine; statistics
is a tool to that end. This also highlights one of the deficiencies of the package: if a particular
analysis question has not yet arisen in one of my studies then the survival package will also have
nothing to say on the topic. Luckily, there are many other R packages that build on or extend
the survival package, and anyone working in the field (the author included) can expect to use
more packages than just this one. I certainly never foresaw that the library would become as
popular as it has.

This vignette is an introduction to version 3.x of the survival package. We can think of
versions 1.x as the S-Plus era and 2.1 — 2.44 as maturation of the package in R. Version 3 had 4
major goals.

e Make multi-state curves and models as easy to use as an ordinary Kaplan-Meier and Cox
model.

e Deeper support for absolute risk estimates.
e Consistent use of robust variance estimates.

e (Clean up various naming inconsistencies that have arisen over time.

With over 600 dependent packages in 2019, not counting Bioconductor, other guiding lights
of the change are

e We can’t do everything (so don’t try).

e Allow other packages to build on this one. That means clear documentation of all of the
results that are produced, the use of simple S3 objects that are easy to manipulate, and
setting up many of the routines as a pair. For example, concordance and concordancefit;
the former is the user front end and the latter does the actual work. Other package authors
might want to access the lower level interface, while accepting the penalty of fewer error
checks.

e Don’t mess it up!

This meant preserving the current argument names as much as possible. Appendix A.1
summarizes changes that were made which are not backwards compatible.

The two other major changes are to collapse many of vignettes into this single large one, and
the parallel creation of an actual book. Documentation is an ongoing process, and there are still
things the package can do which are not well described. That said, we’ve recognized that the
package needs more than a vignette. With the book’s (eventual) appearance this vignette can
also be more brief, essentially leaving out a lot of the theory.

Version 3 will not appear all at once, however; it will take some time to get all of the
documentation sorted out in the way that we like.

1.2 Survival data

The survival package is concerned with time-to-event analysis. Such outcomes arise very often
in the analysis of medical data: time from chemotherapy to tumor recurrence, the durability
of a joint replacement, recurrent lung infections in subjects with cystic fibrosis, the appearance
of hypertension, hyperlipidemia and other comorbidities of age, and of course death itself, from
which the overall label of “survival” analysis derives. A key principle of all such studies is that
“it takes time to observe time”, which in turn leads to two of the primary challenges.

1. Incomplete information. At the time of an analysis, not everyone will have yet had the
event. This is a form of partial information known as censoring: if a particular subject
was enrolled in a study 2 years ago, and has not yet had an event at the time of analysis,
we only know that their time to event is > 2 years.

2. Dated results. In order to report 5 year survival, say, from a treatment, patients need to be
enrolled and then followed for 5+ years. By the time recruitment and follow-up is finished,
analysis done, the report finally published the treatment in question might be 8 years old
and considered to be out of date. This leads to a tension between early reporting and long
term outcomes.

Survival data is often represented as a pair (¢;,d;) where ¢ is the time until endpoint or last
follow-up, and ¢ is a 0/1 variable with 0= “subject was censored at ¢’ and 1 =“subject had
an event at t”; or in R code as Surv(time, status). The status variable can be logical, e.g.,
vtype==’death’ where vtype is a variable in the data set. An alternate view is to think of time

o) o] [

Transplant

\

Entry

e =

Death

Figure 1.1: Four multiple event models.

lliness

I I

Death

to event data as a multi-state process as is shown in figure 1.1. The upper left panel is simple
survival with two states of alive and dead, “classic” survival analysis. The other three panels
show repeated events of the same type (upper right)

competing risks for subjects on a liver transplant waiting list(lower left) and the illness-death
model (lower right). In this approach interest normally centers on the transition rates or hazards
(arrows) from state to state (box to box). For simple survival the two multistate/hazard and
the time-to-event viewpoints are equivalent, and we will move freely between them, i.e., use
whichever viewpoint is handy at the moment. When there more than one transition the rate
approach is particularly useful.

The figure also displays a 2 by 2 division of survival data sets, one that will be used to
organize other subsections of this document.

One event Multiple events

per subject per subject
One event type 1 2
Multiple event types 3 4

1.3 Overview

The summary below is purposefully very terse. If you are familiar with survival analysis and with
other R modeling functions it will provide a good summary. Otherwise, just skim the section to
get an overview of the type of computations available from this package, and move on to section
3 for a fuller description.

Surv() A packaging function; like I() it doesn’t transform its argument. This is used for the
left hand side of all the formulas.
e Surv(time, status) — right censored data

e Surv(time, endpoint==’death’) — right censored data, where the status variable is
a character or factor

e Surv(tl, t2, status) — counting process data
e Surv(tl, ind, type=’left’) — left censoring

e Surv(time, fstat — multiple state data, fstat is a factor
aareg Aalen’s additive regression model.

e The timereg package is a much more comprehensive implementation of the Aalen
model, so this document will say little about aareg

coxph() Cox’s proportional hazards model.

e coxph(Surv(time, status) ~x, data=aml) — standard Cox model

e coxph(Surv(tl, t2, stat) ~ (age + surgery)* transplant) — time dependent
covariates.

e y <- Surv(tl, t2, stat)
coxph(y ~ strata(inst) * sex + age + treat) — Stratified model, with a sepa-
rate baseline per institution, and institution specific effects for sex.

e coxph(y ~ offset(xl) + x2) — force in a known term, without estimating a coef-
ficient for it.

cox.zph Computes a test of proportional hazards for the fitted Cox model.
e zfit <- cox.zph(coxfit); plot(zfit)
pyears Person-years analysis

survdiff One and k-sample versions of the Fleming-Harrington G? family. Includes the logrank
and Gehan-Wilcoxon as special cases.

e survdiff (Surv(time, status) ~ sex + treat) — Compare the 4 sub-groups formed
by sex and treatment combinations.
e survdiff (Surv(time, status) ~ offset(pred)) - One-sample test
survexp Predicted survival for an age and sex matched cohort of subjects, given a baseline
matrix of known hazard rates for the population. Most often these are US mortality
tables, but we have also used local tables for stroke rates.
e survexp(entry.dt, birth.dt, sex) — Defaults to US white, average cohort survival
e pred <- survexp(entry, birth, sex, futime, type=’individual’) Data toen-
ter into a one sample test for comparing the given group to a known population.

survfit Fit a survival curve.

e survfit(Surv(time, status)) — Simple Kaplan-Meier
e survfit(Surv(time, status) ~ rx + sex) — Four groups
e fit <- coxph(Surv(time, stat) ~ rx + sex)

survfit (fit, list(rx=1, sex=2)) — Predict curv

survreg Parametric survival models.

e survreg(Surv(time, stat) ~ x, dist=’loglogistic’) - Fit a log-logistic distri-
bution.
Data set creation e survSplit break a survival data set into disjoint portions of time

e tmerge create survival data sets with time-dependent covariates and/or multiple
events

e survcheck sanity checks for survival data sets

1.4 Mathematical Notation

We start with some mathematical background and notation, simply because it will be used later.
A key part of the computations is the notion of a risk set. That is, in time to event analysis
a given subject will only be under observation for a specified time. Say for instance that we
are interested in the patient experience after a certain treatment, then a patient recruited on

March 10 1990 and followed until an analysis date of June 2000 will have 10 years of potential
follow-up, but someone who recieved the treatment in 1995 will only have 5 years at the analysis
date. Let Y;(t),% = 1,...,n be the indicator that subject 7 is at risk and under observation at
time t. Let N;(t) be the step function for the ith subject, which counts the number of “events”
for that subject up to time t. There might me things that can happen multiple times such
as rehospitalization, or something that only happens once such as death. The total number of
events that have occurred up to time ¢t will be N () = > N;(t), and the number of subjects at
risk at time ¢ will be Y (¢) = Y Yi(t). Time-dependent covariates for a subject are the vector
X;(t). It will also be useful to define d(t) as the number of deaths that occur exactly at time ¢.

Chapter 2

Survival curves

2.1 One event type, one event per subject

The most common depiction of survival data is the Kaplan-Meier curve, which is a product of
survival probabilities:

SKM(t) = H Y(S)),(S)d(S) . (2.1)

the product being over all observed event times s less than the time point of interest. Graphically,
the Kaplan-Meier survival curve appears as a step function with a drop at each death. Censoring
times are often marked on the plot as “4” symbols. KM curves are created with the survfit
function. The left-hand side of the formula will be a Surv object and the right hand side contains
one or more categorical variables that will divide the observations into groups. For a single curve
use ~ 1 as the right hand side.

> fitl <- survfit(Surv(futime, fustat) ~ resid.ds, data=ovarian)
> print(fitl, rmean= 730)
Call: survfit(formula = Surv(futime, fustat) ~ resid.ds, data = ovarian)

n events rmean* se(rmean) median 0.95LCL 0.95UCL

resid.ds=1 11 3 666 35.4 NA 638 NA
resid.ds=2 15 9 463 62.1 464 329 NA
* restricted mean with upper limit = 730

> summary(fitl, times= (0:4)%182.5, scale=365)
Call: survfit(formula = Surv(futime, fustat) ~ resid.ds, data = ovarian)

resid.ds=1
time n.risk n.event survival std.err lower 95% CI upper 957, CI

0.0 11 0 1.000 0.0000 1.000 1
0.5 11 0 1.000 0.0000 1.000 1
1.0 10 1 0.909 0.0867 0.754 1
1.5 8 0 0.909 0.0867 0.754 1

2.0 6 2 0.682 0.1536 0.438 1

resid.ds=2
time n.risk n.event survival std.err lower 95} CI upper 957, CI

0.0 15 0 1.000 0.000 1.000 1.000
0.5 12 3 0.800 0.103 0.621 1.000
1.0 10 3 0.600 0.126 0.397 0.907
1.5 4 3 0.375 0.130 0.190 0.738
2.0 4 0 0.375 0.130 0.190 0.738

The default printout is very brief, only one line per curve, showing the number of observations,
number of events, median survival, and optionally the restricted mean survival time (RMST) in
each of the groups. In the above case we used the value at 2.5 years = 913 days as the upper
threshold for the RMST, the value of 453 for females represents an average survival for 453 of
the next 913 days after enrollment in the study. The summary function gives a more complete
description of the curve, in this case we chose to show the values every 6 months for the first
two years. In this case the number of events (n.event) column is the number of deaths in the
interval between two time points, all other columns reflect the value at the chosen time point.

Arguments for the survfit function include the usual data, weights, subset and na.action
arguments common to modeling formulas. A further set of arguments have to do with standard
errors and confidence intervals, defaults are shown in parenthesis.

e se.fit (TRUE): compute a standard error of the estimates. In a few rare circumstances
omitting the standard error can save computation time.

o conf.int (.95): the level of confidence interval, or FALSE if intervals are not desired.
e conf.type ("log’): transformation to be used in computing the confidence intervals.

e conf.lower ("usual’): optional modification of the lower interval.

For the default conf . type the confidence intervals are computed as exp[log(p)+1.96se(log(p))]
rather than the direct formula of p£1.96(se)(p), where p = S(t) is the survival probability. Many
authors have investigated the behavior of transformed intervals, and a general conclusion is that
the direct intervals do not behave well, particularly near 0 and 1, while all the others are ac-
ceptable. Which of the choices of log, log-log, or logit is “best” depends on the details of any
particular simulation study, all are available as options in the function. (The default corresponds
to the most recent paper the author had read, at the time the default was chosen; a current
meta review might give a slight edge to the log-log option.)

The conf.lower option is mostly used for graphs. If a study has a long string of censored
observations, it is intuitive that the precision of the estimated survival must be decreasing due
to a smaller sample size, but the formal standard error will not change until the next death.
This option widens the confidence interval between death times, proportional to the number at
risk, giving a visual clue of the decrease in n. There is only a small (and decreasing) population
of users who make use of this.

The most common use of survival curves is to plot them, as shown below.

10

> plot(fitl, col=1:2, xscale=365.25, lwd=2, mark.time=TRUE,
xlab="Years since study entry", ylab="Survival")
> legend(750, .9, c("No residual disease", "Residual disease"),
col=1:2, lwd=2, bty='n')

Q
i

— No residual disease
—— Residual disease

0.8

Survival
0.6

0.4

0.2

0.0

I I I I I I I
0.0 0.5 1.0 15 2.0 2.5 3.0

Years since study entry

Curves will appear in the plot in the same order as they are listed by print; this is a quick
way to remind ourselves of which subset maps to each color or linetype in the graph. Curves can
also be labeled using the pch option to place marks on the curves. The location of the marks is
controlled by the mark.time option which has a default value of FALSE (no marks). A vector
of numeric values specifies the location of the marks, optionally a value of mark.time=TRUE will
cause a mark to appear at each censoring time; this can result in far too many marks if n is
large, however. By default confidence intervals are included on the plot of there is a single curve,
and omitted if there is more than one curve.

Other options:

e xaxs(’r’) It has been traditional to have survival curves touch the left axis (I will not
speculate as to why). This can be accomplished using xaxs=’8’, which was the default
before survival 3.x. The current default is the standard R style, which leaves space between
the curve and the axis.

e The follow-up time in the data set is in days. This is very common in survival data, since it
is often generated by subtracting two dates. The xscale argument has been used to convert
to years. Equivalently one could have used Surv(futime/365.25, status) in the original

11

call to convert all output to years. The use of scale in print and summary and xscale in
plot is a historical mistake.

Subjects who were not followed to death are censored at the time of last contact. These
appear as + marks on the curve. Use the mark.time option to suppress or change the
symbol.

By default pointwise 95% confidence curves will be shown if the plot contains a single
curve; they are by default not shown if the plot contains 2 or more groups.

Confidence intervals are normally created as part of the survfit call. However, they can
be omitted at that point, and added later by the plot routine.

There are many more options, see help(’plot.survfit?).

The result of a survfit call can be subscripted. This is useful when one wants to plot only a
subset of the curves. Here is an example using a larger data set collected on a set of patients with
advanced lung cancer [6], which better shows the impact of the Eastern Cooperative Oncolgy
Group (ECOG) score. This is a simple measure of patient mobility:

0: Fully active, able to carry on all pre-disease performance without restriction

1:Restricted in physically strenuous activity but ambulatory and able to carry out work of
a light or sedentary nature, e.g., light house work, office work

2: Ambulatory and capable of all selfcare but unable to carry out any work activities. Up
and about more than 50% of waking hours

3: Capable of only limited selfcare, confined to bed or chair more than 50% of waking
hours

4: Completely disabled. Cannot carry on any selfcare. Totally confined to bed or chair

> fit2 <- survfit(Surv(time, status) ~ sex + ph.ecog, data=lung)
> fit2

Call: survfit(formula = Surv(time, status) ~ sex + ph.ecog, data = lung)

1 observation deleted due to missingness
n events median 0.95LCL 0.95UCL

sex=1, ph.ecog=0 36 28 353 303 558
sex=1, ph.ecog=1 71 54 239 207 363
sex=1, ph.ecog=2 29 28 166 105 288
sex=1, ph.ecog=3 1 1 118 NA NA
sex=2, ph.ecog=0 27 9 705 350 NA
sex=2, ph.ecog=1 42 28 450 345 687
sex=2, ph.ecog=2 21 16 239 199 444

12

> plot(fit2[1:3], 1lty=1:3, 1lwd=2, xscale=365.25, fun='event',
xlab="Years after enrollment", ylab="Survival")

> legend(550, .6, paste("Performance Score", 0:2, sep=' ='),
1ty=1:3, lwd=2, bty='n')

> text (400, .95, "Males", cex=2)

e

) Males ===

o | e

o

[Te) -
- o] ¢
S —— Performance Score =0
g - = Performance Score =1
() J— Performance Score =2

S -

N

o

©

o

I I I I I I
0.0 0.5 1.0 15 2.0 25

Years after enrollment

The argument fun=’event’ has caused the death rate D = 1 — S to be plotted. The choice
between the two forms is mostly personal, but some areas such as cancer trial always plot survival
(downhill) and other such as cardiology prefer the event rate (uphill).

Mean and median For the Kaplan-Meier estimate, the estimated mean survival is undefined
if the last observation is censored. One solution, used here, is to redefine the estimate to be zero
beyond the last observation. This gives an estimated mean that is biased towards zero, but there
are no compelling alternatives that do better. With this definition, the mean is estimated as

= /OT S(t)dt

where S is the Kaplan-Meier estimate and 7 is the maximum observed follow-up time in the
study. The variance of the mean is

13

where N = " N; is the total counting process and Y = >_Y; is the number at risk.

The sample median is defined as the first time at which $(¢) < .5. Upper and lower confi-
dence intervals for the median are defined in terms of the confidence intervals for S: the upper
confidence interval is the first time at which the upper confidence interval for S is < .5. This
corresponds to drawing a horizontal line at 0.5 on the graph of the survival curve, and using
intersections of this line with the curve and its upper and lower confidence bands. In the very
rare circumstance that the survival curve has a horizontal portion at exactly 0.5 (e.g., an even
number of subjects and no censoring before the median) then the average time of that horizonal
segment is used. This agrees with usual definition of the median for even n in uncensored data.

2.2 Repeated events

This is the case of a single event type, with the possibility of multiple events per subject.
Repeated events are quite common in industrial reliability data. As an example, consider a
data set on the replacement times of diesel engine valve seats. The simple data set valveSeats
contains an engine identifier, time, and a status of 1 for a replacement and 0 for the end of the
inspection interval for that engine; the data is sorted by time within engine. To accommodate
multiple events for an engine we need to rewrite the data in terms of time intervals. For instance,
engine 392 had repairs on days 258 and 328 and a total observation time of 377 days, and will
be represented as three intervals of (0, 258), (258, 328) and (328, 377) thus:

id timel time2 status

1 392 0 258 1
2 392 258 328 1
3392 328 377 0

Intervals of length 0 are illegal for Surv objects. There are 3 engines that had 2 valves repaired
on the same day, which will create such an interval. To work around this move the first repair
back in time by a tiny amount.

> vdata <- with(valveSeat, data.frame(id=id, time2=time, status=status))
> first <- !duplicated(vdata$id)
> vdata$timel <- ifelse(first, 0, c¢(0, vdata$time[-nrow(vdata)]l))
> double <- which(vdata$timel == vdata$time2)
> vdata$timel[double] <- vdata$timel[double] -.01
> vdata$time2[double-1] <- vdata$timel [doublel
> vdatal1:7, c("id", "timel", "time2", "status")]
id timel time2 status
1251 0.00 761.00 0
2 252 0.00 759.00 0
3 327 0.00 98.00 1
4 327 98.00 667.00 0
5 328 0.00 326.00 1
6 328 326.00 652.99 1
7 328 652.99 653.00 1
> survcheck(Surv(timel, time2, status) ~ 1, id=id, data=vdata)

14

Call:
survcheck (formula = Surv(timel, time2, status) ~ 1, data = vdata,
id = id)

Unique identifiers Observations Transitions
41 89 48

Transitions table:

to
from 1 (censored)
(s0) 24 17
1 24 24
Number of subjects with O, 1, ... transitions to each state:
count
state 01234
1 17 9 8 5 2
(any) 17 9 8 5 2

Creation of (start time, end time) intervals is a common data manipulation task when there
are multiple events per subject. A later chapter will discuss the tmerge function, which is very
often useful for this task. The survcheck function can be used as check for some of more common
errors that arise in creation; it also will be covered in more detail in a later section. (The output
will be also be less cryptic for later cases, where the states have been labeled.) In the above
data, the engines could only participate in 2 kinds of transitions: from an unnamed initial state
to a repair, (s0) — 1, or from one repair to another one, 1 — 1, or reach end of follow-up. The
second table printed by survcheck tells us that 17 engines had 0 transitions to state 1, i.e., no
valve repairs before the end of observation for that engine, 9 had 1 repair, etc. Perhaps the most
important message is that there were no warnings about suspicious data.

We can now compute the survival estimate. When there are multiple observations per subject
the id statement is necessary. (It is a good idea any time there could be multiples, even if there
are none, as it lets the underlying routines check for doubles.)

> vfit <- survfit(Surv(timel, time2, status) ~1, data=vdata, id=id)
> plot(vfit, cumhaz=TRUE, xlab="Days", ylab="Cumulative hazard")

15

) |
o :
n
T
©
N
©
e
]
8 4 7
>
S
jun}
O
Lo
0
o
2 -
T T T T
0 200 400 600
Days

By default, the survfit routine computes both the survival and the Nelson cumulative

hazard estimate .
n - dNZ(S)
Alt) = / —
2y 70

Like the KM, the Nelson estimate is a step function, it starts at zero and has a step of size
d(t)/Y (t) at each death. To plot the cumulative hazard the cumhaz argument of survfit is
used. In multi-event data, the cumulative hazard is an estimate of the expected number of
events for a unit that has been observed for the given amount of time, whereas the survival
S estimates the probability that a unit has had 0 repairs. The cumulative hazard is the more
natural quantity to plot in such studies; in reliability analysis it is also known as the mean
cumulative function.

The estimate is also important in multi-state models. An example is the occurene of repeated
infections in children with chronic granultomous disease, as found in the cgd data set.

> cgdsurv <- survfit(Surv(tstart, tstop, status) ~ treat, cgd, id=id)
> plot(cgdsurv, cumhaz=TRUE, col=1:2, conf.times=c(100, 200, 300, 400),
xlab="Days since randomization", ylab="Cumulative hazard")

16

2.0

15

Cumulative hazard
1.0

0.0

0 100 200 300 400

Days since randomization

2.3 Competing risks

The case of multiple event types, but only one event per subject is commonly known as competing
risks. We do not need the (timel, time2) data form for this case, since each subject has only
a single outcome, but we do need a way to identify different outcomes. In the prior sections,
status was either a logical or 0/1 numeric variable that represents censoring (0 or FALSE) or
an event (1 or TRUE), and the result of survfit was a single survival curve for each group.
For competing risks data status will be a factor; the first level of the factor is used to code
censoring while the remaining ones are possible outcomes.

2.3.1 Simple example

Here is a simple competing risks example where the three endpoints are labeled as a, b and c.

> crdata <- data.frame(time= c(1:8, 6:8),
endpoint=factor(c(1,1,2,0,1,1,3,0,2,3,0),
labels=c("censor", "a", "b", "c")),
istate=rep("entry", 11),
id= LETTERS[1:11])
> tfit <- survfit(Surv(time, endpoint) ~ 1, data=crdata, id=id, istate=istate)
> dim(tfit)

17

states
4

> summary (tfit)

Call: survfit(formula = Surv(time, endpoint) ~ 1, data = crdata, id = id,
istate = istate)

time n.risk n.event Pr(entry) Pr(a) Pr(b) Pr(c)

1 11 1 0.909 0.0909 0.0000 0.000
2 10 1 0.818 0.1818 0.0000 0.000
3 9 1 0.727 0.1818 0.0909 0.000
5 7 1 0.623 0.2857 0.0909 0.000
6 6 2 0.416 0.3896 0.1948 0.000
7 4 2 0.208 0.3896 0.1948 0.208

The resulting object tfit contains an estimate of P(state), the probability of being in each state
at each time ¢. P is a matrix with one row for each time and one column for each of the four
states a—c and “still in the starting state”. By definition each row of P sums to 1. We will also
use the notation p(t) where p is a vector with one element per state and p;(¢) is the fraction in
state j at time ¢. The plot below shows all 4 curves. (Since they sum to 1 one of the 4 curves is
redundant, often the entry state is omitted since it is the least interesting.) In the plot.survfit
function there is the argument noplot="(s0)" which indicates that curves for state (s0) will not
be plotted. If we had not specified istate in the call to survfit, the default label for the initial
state would have been “s0” and t he solid curve would not have been plotted.

> plot(tfit, col=1:4, lty=1:4, lwd=2, ylab="Probability in state")

18

1.0

0.6

Probability in state
0.4
|

0.2
|
|
|
|
|
|
|
|
|
|

0.0

The resulting survfms object appears as a matrix and can be subscripted as such, with a
column for each state and rows for each group, each unique combination of values on the right
hand side of the formula is a group or strata. This makes it simple to display a subset of the
curves using plot or lines commands. The entry state in the above fit, for instance, can be
displayed with plot (t£fit[,1]).

> dim(tfit)
states
4
> tfit$states
[1] "entry" "a" "p" "e"

The curves are computed using the Aalen-Johansen estimator. This is an important concept,
and so we work it out below.

1. The starting point is the column vector p(0) = (1, 0,0, 0), everyone starts in the first state.

2. At time 1, the first event time, form the 4 by 4 transition matrix T}

10/11 1/11 0/11 0/11

0 1 0 0
T(l) = 0 0 1 0 p(]-) :p(O)Tl
0 0 0 1

The first row of T'(1) describes the disposition of everyone who is in state 1 and under
observation at time 1: 10/11 stay in state 1 and 1 subject transitions to state a. There is no

19

one in the other 3 states, so rows 2—4 are technically undefined; use a default “stay in the same
state” row which has 1 on the diagonal. (Since no one ever leaves states a, b, or ¢, the bottom
three rows of T' will continue to have this form.)

3. At time 2 the first row will be (9/10, 0, 1/10, 0), and p(2) = p(1)T(2) = p(0)T(1)T(2).

Continue this until the last event time. At a time point with only censoring, such as time 4,
T would be the identity matrix.

It is straightforward to show that when there are only two states of alive -> dead, then p; (¢)
replicates the Kaplan-Meier computation. For competing risks data such as the simple example
above, p(t) replicates the cumulative incidence (CI) estimator. That is, both the KM and CI are
both special cases of the Aalen-Johansen. The AJ is more general, however; a given subject can
have multiple transitions from state to state, including transitions to a state that was visited
earlier.

2.3.2 Monoclonal gammopathy

The mgus2 data set contains information of 1384 subjects who were who were found to have a
particular pattern on a laboratory test (monoclonal gammopathy of undetermined significance
or MGUS). The genesis of the study was a suspicion that such a result might indicate a predis-
position to plasma cell malignancies such a multiple myeloma; subjects were followed forward to
assess whether an excess did occur. The mean age at diagnosis is 63 years, so death from other
causes will be an important competing risk. Here are a few observations of the data set, one of
which experienced progression to a plasma cell malignancy.

> mgus2[55:59, -(4:7)]
id age sex ptime pstat futime death etime event

556 55 82 F 94 0 94 1 94 death
56 566 78 M 29 1 44 1 29 pcm
57 57 79 F 84 0 84 1 84 death
58 68 72 F 321 0 321 1 321 death
59 59 80 F 147 0 147 1 147 death

To generate competing risk curves create a new (etime, event) pair. Since each subject has
at most 1 transition, we do not need a multi-line (timel, time2) dataset.

event <- with(mgus2, ifelse(pstat==1, 1, 2*death))

event <- factor(event, 0:2, c("censored", "progression", "death"))
etime <- with(mgus2, ifelse(pstat==1, ptime, futime))

crfit <- survfit(Surv(etime, event) ~ sex, mgus2)

crfit

vV V. V V V

Call: survfit(formula = Surv(etime, event) ~ sex, data = mgus2)

n nevent rmean se(rmean)*
sex=F, (s0) 631 0 139.01247 5.682211
sex=M, (s0) 753 0 122.97693 5.742051
sex=F, pcm 631 59 42.77078 4.495519
sex=M, pcm 753 56 31.82962 4.185262

20

sex=F, death 631 370 242.21675 6.745244
sex=M, death 753 490 269.19344 6.630760
*restricted mean time in state (max time = 424)
> plot(crfit, col=1:2, mnoplot="",
1lty=c(3,3,2,2,1,1), 1lwd=2, xscale=12,
xlab="Years post diagnosis", ylab="P(state)")
> legend (240, .65, c("Female, death", "Male, death", "malignancy", "(sO)"),
1ty=c(1,1,2,3), col=c(1,2,1,1), bty='n', lwd=2)

©
—
(o]
g
- g = — Female, death
% —— Male, death
@ = = malignancy
o < (s0)
T -
N
s s e T 1
-— - - J- -
- == e P e i
o
S -
T T T T T T T T
0 5 10 15 20 25 30 35

Years post diagnosis

There are 3 curves for females, one for each of the three states, and 3 for males. The three
curves sum to 1 at any given time (everyone has to be somewhere), and the default action for
plot.survfit is to leave out the “still in original state” curve (s0) since it is usually the least
interesting, but in this case we have shown all 3. We will return to this example when exploring
models.

A common mistake with competing risks is to use the Kaplan-Meier separately on each event
type while treating other event types as censored. The next plot is an example of this for the
PCM endpoint.

> pcmbad <- survfit(Surv(etime, pstat) ~ sex, data=mgus2)

> plot(pcmbad[2], mark.time=FALSE, lwd=2, fun="event", conf.int=FALSE, xscale=12,
xlab="Years post diagnosis", ylab="Fraction with PCM")

> lines(crfit[2,2], lty=2, lwd=2, mark.time=FALSE, conf.int=FALSE)

21

Fraction with PCM

> legend(0, .25, c("Males, PCM, incorrect curve", "Males, PCM, competing risk"),
col=1, 1lwd=2, lty=c(1,2), bty='n')

0.25
|

— Males, PCM, incorrect curve
= = Males, PCM, competing risk

0.10 0.15 0.20
| | |

0.05
|

0.00
|

I I I I I I I I
0 5 10 15 20 25 30 35

Years post diagnosis
There are two problems with the pcmbad fit. The first is that it attempts to estimate the

expected occurrence of plasma cell malignancy (PCM) if all other causes of death were to be
disallowed. In this hypothetical world it is indeed true that many more subjects would progress
to PCM (the incorrect curve is higher), but it is also not a world that any of us will ever inhabit.
This author views the result in much the same light as a discussion of survival after the zombie
apocalypse. The second problem is that the computation for this hypothetical case is only correct
if all of the competing endpoints are independent, a situation which is almost never true. We
thus have an unreliable estimate of an uninteresting quantity. The competing risks curve, on
the other hand, estimates the fraction of MGUS subjects who will experience PCM, a quantity
sometimes known as the lifetime risk, and one which is actually observable.

The last example chose to plot only a subset of the curves, something that is often desirable

in competing risks problems to avoid a “tangle of yarn” plot that simply has too many elements.
This is done by subscripting the survfit object. For subscripting, multi-state curves behave
as a matrix with the outcomes as the second subscript. The columns are in order of the levels
of event, i.e., as displayed by our earlier call to table(event). The first subscript indexes the
groups formed by the right hand side of the model formula, and will be in the same order as
simple survival curves. Thus mfit2[2,2] corresponds to males (2) and the PCM endpoint (2).
Curves are listed and plotted in the usual matrix order of R.

> dim(crfit)

22

strata states
2 3

> crfit$strata

sex=F sex=M

227 227
> crfit$states
[1] n (SO) n llpcmll Ildea-thll

One surprising aspect of multi-state data is that hazards can be estimated independently
although probabilities cannot. If you look at the cumulative hazard estimate from the pcmbad
fit above using, for instance, plot(pcmbac, cumhaz=TRUE) you will find that it is identical to
the cumulative hazard estimate from the joint fit. This will arise again with Cox models.

2.4 Multi-state data

The most general multi-state data will have multiple outcomes and multiple endpoints per sub-
ject. In this case, we will need to use the (timel, time2) form for each subject. The dataset
structure is similar to that for time varying covariates in a Cox model: the time variable will be
intervals (¢1,¢2] which are open on the left and closed on the right, and a given subject will have
multiple lines of data. But instead of covariates changing from line to line, in this case the status
variable changes; it contains the state that was entered at time to. There are a few restrictions.

e An identifier variable is needed to indicate which rows of the dataframe belong to each
subject. If the id argument is missing, the code assumes that each row of data is a
separate subject, which leads to a nonsense estimate when there are actually multiple rows
per subject.

e Subjects do not have to enter at time 0 or all at the same time, but each must traverse a
connected segment of time. Disjoint intervals such as the pair (0, 5], (8,10] are illegal.

e A subject cannot change groups. Any covariates on the right hand side of the formula
must remain constant within subject. (This function is not a way to create supposed
‘time-dependent’ survival curves.)

e Subjects may have case weights, and these weights may change over time for a subject.

The istate argument can be used to designate a subject’s state at the start of each ty,ts
time interval. Like variables in the formula, it is searched for in the data argument. If it is
not present, every subject is assumed to start in a common entry state which is given the name
“(s0)”. The parentheses are an echo of “(Intercept)” in a linear model and show a label that was
provided by the program rather than the data. The distribution of states just prior to the first
event time is treated as the initial distribution of states. In common with ordinary survival, any
observation which is censored before the first event time has no impact on the results.

23

2.4.1 Myeloid data

The myeloid data set contains data from a clinical trial in subjects with acute myeloid leukemia.
To protect patient confidentiality the data set in the survival package has been slightly perturbed,
but results are essentially unchanged. In this comparison of two conditioning regimens, the
canonical path for a subject is initial therapy — complete response (CR) — hematologic stem
cell transplant (SCT) — sustained remission, followed by relapse or death. Not everyone follows
this ideal path, of course.

> myeloid[1:5,]
id trt sex f1t3 futime death txtime crtime rltime

1 1 B £ C 235 1 NA 44 113
2 2 A m B 286 1 200 NA NA
3 3 A £ A 1983 0 NA 38 NA
4 4 B f A 2137 0 245 25 NA
5 5 B f C 326 1 112 56 200

The first few rows of data are shown above. The data set contains the follow-up time and status
at last follow-up for each subject, along with the time to transplant (txtime), complete response
(crtime) or relapse after CR (rltime). Subject 1 did not receive a transplant, as shown by the
NA value, and subject 2 did not achieve CR.

Overall survival curves for the data are shown in figure 2.1. The difference between the
treatment arms A and B is substantial. A goal of this analysis is to better understand this
difference. Code to generate the two curves is below.

> sfit0 <- survfit(Surv(futime, death) ~ trt, myeloid)
> plot(sfitO, xscale=365.25, xaxs='r', col=1:2, lwd=2,
xlab="Years post enrollment", ylab="Survival")
> legend(20, .4, c("Arm A", "Arm B"),
col=1:2, lwd=2, bty='n')

The full multi-state data set can be created with the tmerge routine.

> mdata <- tmerge(myeloid[,1:2], myeloid, id=id, death= event(futime, death),
sct = event(txtime), cr = event(crtime),
relapse = event(rltime))

> temp <- with(mdata, cr + 2*sct + 4*relapse + 8xdeath)

> table(temp)

temp

0 1 2 3 4 8
325 453 363 1 226 320

Our check shows that there is one subject who had CR and stem cell transplant on the same
day (temp=3). To avoid length 0 intervals, we break the tie so that complete response (CR)
happens first. (Students may be surprised to see anomalies like this, since they never appear in
textbook data sets. In real data such issues always appear.)

24

Survival

1.0

0.8

0.6

0.4

0.2

0.0

— ArmA
— ArmB

Years post enrollment

Figure 2.1: Overall survival curves for the two treatments.

25

tdata <- myeloid # temporary working copy

tied <- with(tdata, (!is.na(crtime) & !is.na(txtime) & crtime==txtime))

tdata$crtime[tied] <- tdata$crtimeltied] -1

mdata <- tmerge(tdatal[,1:2], tdata, id=id, death= event(futime, death),
sct = event(txtime), cr = event(crtime),
relapse = event(rltime),
priorcr = tdc(crtime), priortx = tdc(txtime))

> temp <- with(mdata, cr + 2*sct + 4*relapse + 8*death)

> table(temp)

temp

0 1 2 4 8
325 454 364 226 320

> mdata$event <- factor(temp, c(0,1,2,4,8),
c("none", "CR", "SCT", "relapse", "death"))
> mdatal[1:7, c("id", "trt", "tstart", "tstop", "event", "priorcr", "priortx")]

vV V V V

id trt tstart tstop event priorcr priortx

1 1 B 0 44 CR 0 0
2 1 B 44 113 relapse 1 0
3 1 B 113 235 death 1 0
4 2 A 0 200 SCT 0 0
5 2 A 200 286 death 0 1
6 3 A 0 38 CR 0 0
7 3 A 1 0

38 1983 none

Subject 1 has a CR on day 44, relapse on day 113, death on day 235 and did not receive a
stem cell transplant. The data for the first three subjects looks good. Check it out a little more
thoroughly using survcheck.

> survcheck(Surv(tstart, tstop, event) ~1, mdata, id=id)

Call:

survcheck(formula = Surv(tstart, tstop, event) ~ 1, data = mdata,
id = id)

Unique identifiers Observations Transitions

646 1689 1364

Transitions table:

to
from CR SCT relapse death (censored)
(s0) 443 106 13 55 29
CR 0 159 168 17 110
SCT 11 0 45 149 158
relapse 0 99 0 99 28
death 0 0 0 0 0
Number of subjects with O, 1, ... transitions to each state:

26

count

state o 1 2 3 4
CR 192454 0 0 O
SCT 282364 0 0 O
relapse 420 226 O O O

0 O

death 326 320 O
(any) 29 201 174 153 89

The second table shows that no single subject had more than one CR, SCT, relapse, or death;
the intention of the study was to count only the first of each of these, so this is as expected.
Several subjects visited all four intermediate states. The transitions table shows 11 subjects
who achieved CR after stem cell transplant and another 106 who received a transplant before
achieving CR, both of which are deviations from the “ideal” pathway. No subjects went from
death to another state (which is good).

For investigating the data we would like to add a set of alternate endpoints.

1. The competing risk of CR and death, ignoring other states. This is used to estimate the
fraction who ever achieved a complete response.

2. The competing risk of SCT and death, ignoring other states.
3. An endpoint that distinguishes death after SCT from death before SCT.

Each of these can be accomplished by adding further outcome variables to the data set, we do
not need to change the time intervals.

> levels(mdata$event)

[1] "none" "CR" "SCT" "relapse" "death"

> templ <- with(mdata, ifelse(priorcr, 0, c(0,1,0,0,2) [event]))
> mdata$crstat <- factor(templ, 0:2, c("none", "CR", "death"))

> temp2 <- with(mdata, ifelse(priortx, 0, c(0,0,1,0,2) [event]))
> mdata$txstat <- factor(temp2, 0:2, c("censor", "SCT", "death"))

> temp3 <- with(mdata, c(0,0,1,0,2) [event] + priortx)

> mdata$tx2 <- factor(temp3, 0:3,

c("censor", "SCT", "death w/o SCT", "death after SCT"))

Notice the use of the priorcr variable in defining crstat. This outcome variable treats
complete response as a terminal state, which in turn means that no further transitions are
allowed after reaching CR.

This data set is the basis for our first set of curves, which are shown in figure 2.2. The plot
overlays three separate survfit calls: standard survival until death, complete response with
death as a competing risk, and transplant with death as a competing risk. For each fit we have
shown one selected state: the fraction who have died, fraction ever in CR, and fraction ever
to receive transplant, respectively. Most of the CR events happen before 2 months (the green
vertical line) and nearly all the additional CRs conferred by treatment B occur between months
2 and 8. Most transplants happen after 2 months, which is consistent with the clinical guide of
transplant after CR. The survival advantage for treatment B begins between 4 and 6 months,
which argues that it could be at least partially a consequence of the additional CR events.

The code to draw figure 2.2 is below. It can be separated into 5 parts:

27

1
R AR AR LR AR LR
1 :
N Entry |’
" Sia
© .y
S 7] - o - = . =
;‘ -~ "'_.ﬁ- -
“ >~ -~
= : -
8 o r I’-'
g Kl I L
- -
g < 0
s o 1 F] -
= .
5 Do Eri] -
5 | ! "*[peath
i
8 . ACR
v o BCR
o -
=} A = Atransplant
o = B transplant
1
) = Adeath
o —— B death
i [Ety] —— [Bear]
o 1
T T T T T T
0 6 12 24 36 48

Months post enroliment

Figure 2.2: Overall survival curves: time to death, to transplant (Tx), and to complete response
(CR). Each shows the estimated fraction of subjects who have ever reached the given state. The
vertical line at 2 months is for reference. The curves were limited to the first 48 months to more
clearly show early events. The right hand panel shows the state-space model for each pair of

curves.

28

V V V V V V V

Vv

vV V V V

vV V V V V

vV Vv

. Fits for the 3 endpoints are simple and found in the first set of lines. The crstat and

txstat variables are factors, which causes multi-state curves to be generated.

. The layout and par commands are used to create a multi-part plot with curves on the left

and state space diagrams on the right, and to reduce the amount of white space between
them.

. Draw a subset of the curves via subscripting. A multi-state survfit object appears to the

user as a matrix of curves, with one row for each group (treatment) and one column for
each state. The CR state is the second column in sfit2, for instance. The CR fit was
drawn first simply because it has the greatest y-axis range, then the other curves added
using the lines command.

. Decoration of the plots. This includes the line types, colors, legend, choice of x-axis labels,

etc.

. Add the state space diagrams. The functions for this are described elsewhere in the vi-

gnette.

I want to have the plots in months, it is simpler to fix time
once rather than repeat xscale many times
tdata$futime <- tdata$futime * 12 /365.25
mdata$tstart <- mdata$tstart * 12 /365.25
mdata$tstop <- mdata$tstop * 12 /365.25
sfitl <- survfit(Surv(futime, death) ~ trt, tdata) # survival
sfit2 <- survfit(Surv(tstart, tstop, crstat) ~ trt,

data= mdata, id = id) # CR
sfit3 <- survfit(Surv(tstart, tstop, txstat) ~ trt,

data= mdata, id =id) # SCT
layout (matrix(c(1,1,1,2,3,4), 3,2), widths=2:1)
oldpar <- par(mar=c(5.1, 4.1, 1.1, .1))
mlim <- c(0, 48) # and only show the first 4 years
plot(sfit2[,"CR"], xlim=mlim,

1ty=3, lwd=2, col=1:2, xaxt='n',
xlab="Months post enrollment", ylab="Fraction with the endpoint")
lines(sfitl, mark.time=FALSE, xlim=mlim,
fun='event', col=1:2, lwd=2)
lines(sfit3[,"SCT"], xlim=mlim, col=1:2,
lty=2, lwd=2)
xtime <- c(0, 6, 12, 24, 36, 48)
axis(1, xtime, xtime) #axis marks every year rather than 10 months
temp <- outer(c("A", "B"), c("CR", "transplant", "death"), paste)
temp[7] <- "
legend (25, .3, templc(1,2,7,3,4,7,5,6,7)], 1lty=c(3,3,3, 2,2,2 ,1,1,1),
col=c(1,2,0), bty='n', 1lwd=2)

abline(v=2, 1lty=2, col=3)
add the state space diagrams

29

~
o
[Entry]- - - - = -[transplant]
©]
o
]
o
o
S
o
o
< |
o
o]
o

T T T T T T
0 6 12 24 36 48

Months from enrollment

Figure 2.3: Correct (solid) and invalid (dashed) estimates of the number of subjects transplanted.

> par(mar=c(4,.1,1,1))

> crisk(c("Entry", "CR", "Death"), alty=3)
> crisk(c("Entry", "Tx", "Death"), alty=2)
> crisk(c("Entry","Death"))

> par (oldpar)

> layout (1)

The association between a particular curve and its corresponding state space diagram is
critical. As we will see below, many different models are possible and it is easy to get confused.
Attachment of a diagram directly to each curve, as was done above, will not necessarily be day-
to-day practice, but the state space should always be foremost. If nothing else, draw it on a
scrap of paper and tape it to the side of the terminal when creating a data set and plots.

Figure 2.3 shows the transplant curves overlaid with the naive KM that censors subjects at
death. There is no difference in the initial portion as no deaths have yet intervened, but the
final portion overstates the transplant outcome by more than 10%.

1. The key problem with the naive estimate is that subjects who die can never have a trans-
plant. The result of censoring them is an estimate of the “fraction who would be trans-
planted, if death before transplant were abolished”. This is not a real world quantity.

30

2. In order to estimate this fictional quantity one needs to assume that death is uninforma-
tive with respect to future disease progression. The early deaths in months 0-2, before
transplant begins, are however a very different class of patient. Non-informative censoring
is untenable.

We are left with an unreliable estimate of an uninteresting quantity. Mislabeling any true state
as censoring is always a mistake, one that will not be repeated here. Here is the code for figure
2.3. The use of a logical (true/false) as the status variable in the Surv call leads to ordinary
survival calculations.

> badfit <- survfit(Surv(tstart, tstop, event=="SCT") ~ trt,
id=id, mdata, subset=(priortx==0))
> layout (matrix(c(1,1,1,2,3,4), 3,2), widths=2:1)
> oldpar <- par(mar=c(5.1, 4.1, 1.1, .1))
> plot(badfit, fun="event", xmax=48, xaxt='n', col=1:2, lty=2, lwd=2,
xlab="Months from enrollment", ylab="P(state)")
> axis(1, xtime, xtime)

> lines(sfit3[,2], xmax=48, col=1:2, lwd=2)

> legend(24, .3, c("Arm A", "Arm B"), lty=1, lwd=2,
col=1:2, bty='n', cex=1.2)

> par(mar=c(4,.1,1,1))

> crisk(c("Entry", "transplant"), alty=2, cex=1.2)

> crisk(c("Entry","transplant", "Death"), cex=1.2)

> par (oldpar)

> layout (1)

Complete response is a goal of the initial therapy; figure 2.4 looks more closely at this. As
was noted before arm B has an increased number of late responses. The duration of response is
also increased: the solid curves show the number of subjects still in response, and we see that
they spread farther apart than the dotted “ever in response” curves. The figure shows only the
first eight months in order to better visualize the details, but continuing the curves out to 48
months reveals a similar pattern. Here is the code to create the figure.

> cr2 <- mdata$event

> cr2[cr2=="SCT"] <- "none" # ignore transplants

> crsurv <- survfit(Surv(tstart, tstop, cr2) ~ trt,
data= mdata, id=id, influence=TRUE)

> layout(matrix(c(1,1,2,3), 2,2), widths=2:1)

> oldpar <- par(mar=c(5.1, 4.1, 1.1, .1))

> plot(sfit2[,2], 1lty=3, lwd=2, col=1:2, xmax=12,
xlab="Months", ylab="CR")

> lines(crsurv[,2], 1lty=1, 1lwd=2, col=1:2)

> par(mar=c(4, .1, 1, 1))

> crisk(c("Entry","CR", "Death"), alty=3)

> state3(c("Entry", "CR", "Death/Relapse"))

> par (oldpar)

> layout (1)

31

[Entry]

© |
e i
" [oean]
@ U
o o
N
o

s
|
~

Death/Relapse

L

Months

Figure 2.4: Models for ‘ever in CR’ and ‘currently in CR’; the only difference is an additional
transition. Both models ignore transplant.

32

The above code created yet another event variable so as to ignore transitions to the transplant
state. They become a non-event, in the same way that extra lines with a status of zero are used
to create time-dependent covariates for a Cox model fit.

The survfit call above included the influence=TRUE argument, which causes the influence
array to be calculated and returned. It contains, for each subject, that subject’s influence on the
time by state matrix of results and allows for calculation of the standard error of the restricted
mean. We will return to this in a later section.

> print(crsurv, rmean=48, digits=2)
Call: survfit(formula = Surv(tstart, tstop, cr2) ~ trt, data = mdata,
id = id, influence = TRUE)

n nevent rmean se(rmean)*

trt=4, (s0) 807 o 7.1 0.78
trt=B, (s0) 882 0 5.6 0.65
trt=A, CR 807 206 16.3 1.13
trt=B, CR 882 248 21.2 1.12
trt=A, SCT 807 0 0.0 0.00
trt=B, SCT 882 0 0.0 0.00
trt=A, relapse 807 109 4.3 0.56
trt=B, relapse 882 117 5.5 0.61
trt=A, death 807 171 20.2 1.10
trt=B, death 882 149 15. 1.01

xrestricted mean time in state (max time = 48)

The restricted mean time in the CR state is extended by 21.2 - 16.3 = 4.89 months. A
question which immediately gets asked is whether this difference is “significant”, to which there
are two answers. The first and more important is to ask whether 5 months is an important
gain from either a clinical or patient perspective. The overall restricted mean survival for the
study is approximately 30 of the first 48 months post entry (use print(sfitl, rmean=48)); on
this backdrop an extra 5 months in CR might or might not be an meaningful advantage from
a patient’s point of view. The less important answer is to test whether the apparent gain is
sufficiently rare from a mathematical point of view, i.e., “statistical” significance. The standard
errors of the two values are 1.1 and 1.1, and since they are based on disjoint subjects the values
are independent, leading to a standard error for the difference of v/1.12+1.12 = 1.6. The 5
month difference is more than 3 standard errors, so highly significant.

In summary

e Arm B adds late complete responses (about 4%); there are 206/317 in arm A vs. 248/329
in arm B.

e The difference in 4 year survival is about 6%.
e There is approximately 2 months longer average duration of CR (of 48).

CR — transplant is the target treatment path for a patient; given the improvements listed
above why does figure 2.2 show no change in the number transplanted? Figure 2.5 shows the
transplants broken down by whether this happened before or after complete response. Most

33

,

0.4
1

-
-~
-~

Transplant
@ 4 - a2
o -
rl
o "! \L
£ 1
5 4
? N . Transplant
] i
= ° &
- = A, transplant without CR
o - B, transplant without CR
- A, transplant after CR
- B, transplant after CR
o
=
T T T T T T
0 6 12 24 36 48

Months

Figure 2.5: Transplant status of the subjects, broken down by whether it occurred before or
after CR.

34

of the non-CR transplants happen by 10 months. One possible explanation is that once it is
apparent to the patient/physician pair that CR is not going to occur, they proceed forward with
other treatment options. The extra CR events on arm B, which occur between 2 and 8 months,
lead to a consequent increase in transplant as well, but at a later time of 12-24 months: for a
subject in CR we can perhaps afford to defer the transplant date.

Computation is again based on a manipulation of the event variable: in this case dividing the
transplant state into two sub-states based on the presence of a prior CR. The code makes use
of the time-dependent covariate priorcr. (Because of scheduling constraints within a hospital
it is unlikely that a CR that is within a few days prior to transplant could have affected the
decision to schedule a transplant, however. An alternate breakdown that might be useful would
be “transplant without CR or within 7 days after CR” versus those that are more than a week
later. There are many sensible questions that can be asked.)

> event2 <- with(mdata, ifelse(event=="SCT" & priorcr==1, 6,
as.numeric(event)))
event2 <- factor(event2, 1:6, c(levels(mdata$event), "SCT after CR"))
txsurv <- survfit(Surv(tstart, tstop, event2) ~ trt, mdata, id=id,
subset=(priortx ==0))
> dim(txsurv) # number of strata by number of states
strata states

vV Vv

2 6
> txsurv$states # Names of states
[1] n (SO) n IICRII IISCTII llrelapsell
[5] "death" "SCT after CR"

> layout (matrix(c(1,1,1,2,2,0),3,2), widths=2:1)

> oldpar <- par(mar=c(5.1, 4.1, 1,.1))

> plot(txsurv[,c(3,6)], col=1:2, 1lty=c(1,1,2,2), lwd=2, xmax=48,
xaxt='n', xlab="Months", ylab="Transplanted")

> axis(1, xtime, xtime)
> legend(15, .13, c("A, transplant without CR", "B, transplant without CR",
"A, transplant after CR", "B, transplant after CR"),
col=1:2, 1lty=c(1,1,2,2), lwd=2, bty='n')
> state4() # add the state figure
> par (oldpar)

Figure 2.6 shows the full set of state occupancy probabilities for the cohort over the first 4
years. At each point in time the curves estimate the fraction of subjects currently in that state.
The total who are in the transplant state peaks at about 9 months and then decreases as subjects
relapse or die; the curve rises whenever someone receives a transplant and goes down whenever
someone leaves the state. At 36 months treatment arm B (dashed) has a lower fraction who
have died, the survivors are about evenly split between those who have received a transplant
and those whose last state is a complete response (only a few of the latter are post transplant).
The fraction currently in relapse — a transient state — is about 5% for each arm. The figure omits
the curve for “still in the entry state”. The reason is that at any point in time the sum of the 5
possible states is 1 — everyone has to be somewhere. Thus one of the curves is redundant, and
the fraction still in the entry state is the least interesting of them.

35

Current state

01 02 03 04 05 06 0.7

0.0

"5:¢-.'1,‘

. Transplant

T B/

|CR| |Tx|e|Rel|

Recurrence

Months

I I
36 48

Figure 2.6: The full multi-state curves for the two treatment arms.

36

> sfit4 <- survfit(Surv(tstart, tstop, event) ~ trt, mdata, id=id)
> sfit4$transitions

to
from CR SCT relapse death (censored)
(s0) 443 106 13 55 29
CR 0 159 168 17 110
SCT 11 0 45 149 158
relapse 0 99 0 99 28
death 0 O 0 0 0

> layout(matrix(1:2,1,2), widths=2:1)

> oldpar <- par(mar=c(5.1, 4.1, 1,.1))

> plot(sfit4, col=rep(1l:4,each=2), lwd=2, 1lty=1:2, xmax=48, xaxt='n',
xlab="Months", ylab="Current state")

> axis(1l, xtime, xtime)

> text(c(40, 40, 40, 40), c(.51, .13, .32, .01),
c("Death", "CR", "Transplant", "Recurrence"), col=c(4,1,2,3))

> par(mar=c(5.1, .1, 1, .1))

> state5()

> par (oldpar)

The transitions table above shows 55 direct transitions from entry to death, i.e., subjects who
die without experiencing any of the other intermediate points, 159 who go from CR to transplant
(as expected), 11 who go from transplant to CR, etc. No one was observed to go from relapse
to CR in the data set, this serves as a data check since it should not be possible per the data
entry plan.

2.5 Influence matrix

For one of the curves above we returned the influence array. For each value in the matrix P =
probability in state and each subject ¢ in the data set, this contains the effect of that subject on
each value in P. Formally,

_ 9 ()

Dij(t) = — -

where D;;(¢) is the influence of subject ¢ on p;(t), and p;(t) is the estimated probability for state
Jj at time ¢. This is known as the infinitesimal jackknife (among other labels).

w

> crsurv <- survfit(Surv(tstart, tstop, cr2) ~ trt,
data= mdata, id=id, influence=TRUE)
> curveA <- crsurv([1l,] # select treatment A

> dim(curvel) # P matrix for treatement A
strata states
1 5
> curveA$states
[1] "(sO)" "CR" "SCT" "relapse" "death"

37

> dim(curveA$pstate) # 426 time points, 5 states

[1] 400 5

> dim(curveA$influence) # influence matrix for treatment A
[1] 317 400 5

> table(myeloid$trt)

A B
317 329

For treatment arm A there are 317 subjects and 400 time points in the P matrix. The
influence array has subject as the first dimension, and for each subject it has an image of the
P matrix containing that subject’s influence on each value in P, i.e., influence[1, ,] is the
influence of subject 1 on P. For this data set everyone starts in the entry state, so p(0) = the
first row of pstate will be (1, 0, 0, 0, 0) and the influence of each subject on this row is 0; this
does not hold if not all subjects start in the same state.

As an exercise we will calculate the mean time in state out to 48 weeks. This is the area
under the individual curves from time 0 to 48. Since the curves are step functions this is simple
sum of rectangles, treating any intervals after 48 months as having 0 width.

t48 <- pmin(48, curveA$time)
delta <- diff(c(t48, 48)) # width of intervals
rfun <- function(pmat, delta) colSums(pmat * delta) #area under the curve
rmean <- rfun(curveA$pstate, delta)
Apply the same calculation to each subject's influence slice
inf <- apply(curveA$influence, 1, rfun, delta=delta)
inf is now a 5 state by 310 subject matrix, containing the IJ estimates
on the AUC or mean time. The sum of squares is a variance.
se.rmean <- sqrt(rowSums(inf~2))
round (rbind(rmean, se.rmean), 2)
(s0) CR SCT relapse death
rmean 6.91 16.34 0 4.31 20.24
se.rmean 0.78 1.13 0 0.56 1.10

> print(curveA, rmean=48, digits=2)

V VV V V V V V V.YV

Call: survfit(formula = Surv(tstart, tstop, cr2) ~ trt, data = mdata,
id = id, influence = TRUE)

n nevent rmean se(rmean)x*

(s0) 807 o 7.1 0.78
CR 807 206 16.3 1.13
SCT 807 0 0.0 0.00
relapse 807 109 4.3 0.56
death 807 171 20.2 1.10

*restricted mean time in state (max time = 48)

The last lines verify that this is exactly the calculation done by the print.survfitms func-
tion; the results can also be found in the table component returned by summary.survfitms.

38

In general, let U; be the influence of subject i. For some function f(P) of the probability
in state matrix pstate, the influence of subject ¢ will be §; = f(P + U;) — f(P) and the
infinitesimal jackknife estimate of variance will be >, 42, For the simple case of adding up
rectangles f(P+U;) — f(P) = f(U;) leading to particularly simple code, but this will not always
be the case.

2.6 Differences in survival

There is a single function survdiff to test for differences between 2 or more survival curves.
It implements the G” family of Fleming and Harrington [?]. A single parameter p controls the
weights given to different survival times, p = 0 yields the log-rank test and p = 1 the Peto-
Wilcoxon. Other values give a test that is intermediate to these two. The default value is p = 0.
The log-rank test is equivalent to the score test from a Cox model with the group as a factor
variable.

The interpretation of the formula is the same as for survfit, i.e., variables on the right hand
side of the equation jointly break the patients into groups.

> survdiff (Surv(time, status) ~ x, aml)

Call:
survdiff (formula = Surv(time, status) ~ x, data = aml)

N Observed Expected (0-E)~2/E (0-E)~2/V
x=Maintained 11 7 10.69 1.27 3.4
x=Nonmaintained 12 11 7.31 1.86 3.4

Chisq= 3.4 on 1 degrees of freedom, p= 0.07

2.7 Robust variance

The survfit, coxph and surveg routines all allow for the computation of an infintisimal jackknife
variance estimate. This estimator is widely used in statistics under several names: in generalized
estimating equation (GEE) models is is known as the working-independence variance; in linear
models as White’s estimate, and in survey sampling as the Horvitz-Thompsen estimate. One
feature of the estimate is that it is robust to model misspecification; the argument robust=TRUE
to any of the three routines will invoke the estimator. If robust=TRUE and there is no cluster
or id argument, the program will assume that each row of data is from a unique subject, a
possibly questionable assumption. It is better to provide the grouping explicitly.

If the robust argument is missing (the usual case), then if there is an cluster argument,
non-integer case weights, or there is an id argument and at least one id has multiple events,
then the code assumes that robust=TRUE, and otherwise assumes robust=FALSE. These are
cases where the robust variance is most likely to be desirable. If there is an id argument but
no cluster the default is to cluster by id. If there are non-integer weights but no clustering
information is provided (id or cluster statement), the code will assume that each row of data is
a separate subject. If the response is of (timel, time2) form this assumption is almost certainly

39

incorrect, but the model based variance would have the same assumption so it is a choice between
two evils. Responsibility falls on the user to clarify the proper clustering. (A error or warning
from the code would be defensible, but the package author so dislikes packages that chatter
warnings all the time that he is loath to do so.)

The infinitesimal jackknife (IJ) matrix contains the influence of each subject on the estimator;
formally the derivative with respect to each subject’s case weight. For a single simple survival
curve that has k unique values, for instance, the IJ matrix will have n rows and k columns,
one row per subject. Columns of the matrix sum to zero, by definition, and the variance at a
time point ¢ will be the column sums of (1.J)?. For a competing risk problem the crfit object
above will contain a matrix pstate with k& rows and one column for each state, where k is the
number of unique time points; and the 1J is an array of dimension (n, k, p). In the case of simple
survival and all case weights =1, the 1J variance collapses to the well known Greenwood variance
estimate.

2.8 State space figures

The state space figures in the above example were drawn with a simple utility function statefig.
It has two primary arguments along with standard graphical options of color, line type, etc.

1. A layout vector or matrix. A vector with values of (1, 3, 1) for instance will allocate one
state, then a column with 3 states, then one more state, proceeding from left to right. A
matrix with a single row will do the same, whereas a matrix with one column will proceed
from top to bottom.

2. A k by k connection matrix C' where k is the number of states. If Cj; # 0 then an arrow
is drawn from state 7 to state j. The row or column names of the matrix are used to label
the states. The lines connecting the states can be straight or curved, see the help file for
an example.

The first few state space diagrams were competing risk models, which use the following helper
function. It accepts a vector of state names, where the first name is the starting state and the
remainder are the possible outcomes.

> crisk <- function(what, horizontal = TRUE, ...) {
nstate <- length(what)
connect <- matrix(0, nstate, nstate,
dimnames=1ist(what, what))
connect[1,-1] <- 1 # an arrow from state 1 to each of the others
if (horizontal) statefig(c(l, nstate-1), connect, ...)
else statefig(matrix(c(l, nstate-1), ncol=1), connect, ...)

}

This next function draws a variation of the illness-death model. It has an initial state, an
absorbing state (normally death), and an optional intermediate state.

> state3 <- function(what, horizontal=TRUE, ...) {
if (length(what) != 3) stop("Should be 3 states")

40

connect <- matrix(c(0,0,0, 1,0,0, 1,1,0), 3,3,
dimnames=1ist(what, what))

if (horizontal) statefig(1:2, connect, ...)

else statefig(matrix(1:2, ncol=1), connect, ...)

}

The most complex of the state space figures has all 5 states.

> stateb <- function(what, ...) {
sname <- c("Entry", "CR", "Tx", "Rel", "Death")
connect <- matrix(0, 5, 5, dimnames=1ist(sname, sname))
connect[1, -1] <- c(1,1,1, 1.4)
connect[2, 3:5] <- c(1, 1.4, 1)
connect[3, c(2,4,5)] <- 1
connect[4, c(3,5)] <-1
statefig(matrix(c(1,3,1)), connect, cex=.8, ...)

}

For figure 2.5 I want a third row with a single state, but don’t want that state centered. For
this T need to create my own (x,y) coordinate list as the layout parameter. Coordinates must be
between 0 and 1.

> state4 <- function() {
sname <- c("Entry", "CR", "Transplant", "Transplant")
layout <- cbind(x =c(1/2, 3/4, 1/4, 3/4),
y =c(5/6, 1/2, 1/2, 1/6))
connect <- matrix(0,4,4, dimnames=list(sname, sname))
connect[1, 2:3] <- 1
connect[2,4] <- 1
statefig(layout, connect)

}

The statefig function was written to do “good enough” state space figures quickly and easily,
in the hope that users will find it simple enough that diagrams are drawn early and often.
Packages designed for directed acyclic graphs (DAG) such as diagram, DiagrammeR, or dagR
are far more flexible and can create more nuanced and well decorated results.

2.8.1 Further notes

The Aalen-Johansen method used by survfit does not account for interval censoring, also
known as panel data, where a subject’s current state is recorded at some fixed time such as
a medical center visit but the actual times of transitions are unknown. Such data requires
further assumptions about the transition process in order to model the outcomes and has a more
complex likelihood. The msm package, for instance, deals with data of this type. If subjects
reliably come in at regular intervals then the difference between the two results can be small,
e.g., the msm routine estimates time until progression occurred whereas survfit estimates time
until progression was observed.

41

e When using multi-state data to create Aalen-Johansen estimates, individuals are not al-
lowed to have gaps in the middle of their time line. An example of this would be a data
set with (0, 30, pcm] and (50,70, death| as the two observations for a subject where the
time from 30-70 is not accounted for.

e Subjects must stay in the same group over their entire observation time, i.e., variables on
the right hand side of the equation cannot be time-dependent.

e A transition to the same state is allowed, e.g., observations of (0,50, 1], (50, 75, 3], (75,
89, 4], (89, 93, 4] and (93, 100, 4| for a subject who goes from entry to state 1, then to
state 3, and finally to state 4. However, a warning message is issued for the data set in
this case, since stuttering may instead be the result of a coding mistake. The same result
is obtained if the last three observations were collapsed to a single row of (75, 100, 4].

42

Chapter 3

Cox model

The most commonly used models for survival data are those that model the transition rate
from state to state, i.e., the arrows of figure 1.1. They are Poisson regression (3.1), the Cox or
proportional hazards model (3.2) and the Aalen additive regression model (3.3), of which the
Cox model is far and away the most popular. As seen in the equations they are closely related.

A(t) = ebetaotFrzitBaaat.. 3.1)
A(t) = eﬁO(t)‘Fﬁlfl-‘rﬂzzQ-‘r,..
= A\o(t)efrertPazat.. (32)

(Textbooks on survival use A(t), «(t) and h(t) in about equal proportions. There is no good
argument for any one versus another, but this author started his career with books that used A
so that is what you will get.)

3.1 One event type, one event per subject

Single event data is the most common use for Cox models. We will use a data set that contains
the survival of 228 patients with advanced lung cancer.

> options(show.signif.stars=FALSE) # display statistical intelligence
> cfitl <- coxph(Surv(time, status) ~ age + sex + wt.loss, data=lung)
> print(cfitl, digits=3)

Call:

coxph(formula = Surv(time, status) ~ age + sex + wt.loss, data = lung)

coef exp(coef) se(coef) z)
age 0.02009 1.02029 0.00966 2.08 0.0377
sex -0.52103 0.59391 0.17435 -2.99 0.0028

wt.loss 0.00076 1.00076 0.00619 0.12 0.9024

43

Likelihood ratio test=14.7 on 3 df, p=0.00212
n= 214, number of events= 152
(14 observations deleted due to missingness)
> summary(cfitl, digits=3)
Call:
coxph(formula = Surv(time, status) ~ age + sex + wt.loss, data = lung)

n= 214, number of events= 152
(14 observations deleted due to missingness)

coef exp(coef) se(coef) z Pr(>1zl)
age 0.0200882 1.0202913 0.0096644 2.079 0.0377
sex -0.5210319 0.5939074 0.1743541 -2.988 0.0028

wt.loss 0.0007596 1.0007599 0.0061934 0.123 0.9024

exp(coef) exp(-coef) lower .95 upper .95

age 1.0203 0.9801 1.0011 1.0398
sex 0.5939 1.6838 0.4220 0.8359
wt.loss 1.0008 0.9992 0.9887 1.0130

Concordance= 0.612 (se = 0.027)

Likelihood ratio test= 14.67 on 3 df, p=0.002
Wald test = 13.98 on 3 df, p=0.003
Score (logrank) test = 14.24 on 3 df, p=0.003

> anova(cfitl)

Analysis of Deviance Table
Cox model: response is Surv(time, status)
Terms added sequentially (first to last)

loglik Chisq Df Pr(>|Chil)

NULL -680.39
age -677.78 5.2273 1 0.022235
sex -673.06 9.4268 1 0.002138

wt.loss -673.06 0.0150 1 0.902592

As is usual with R modeling functions, the default print routine gives a short summary and
the summary routine a longer one. The anova command shows tests for each term in a model,
added sequentially. We purposely avoid the innane addition of “significant stars” to any printout.

Age and gender are strong predictors of survival, but the amount of recent weight loss was not
influential.

The following functions can be used to extract portions of a coxph object.
e coef or coefficients: the vector of coefficients

e concordance: the concordance statistic for the model fit

44

e fitted: the fitted values, also known as linear predictors
e logLik: the partial likelihood

e model.frame: the model.frame of the data used in the fit
e model.matrix: the X matrix used in the fit

e nobs: the number of observations

e predict: a vector or matrix of predicted values

e residuals: a vector of residuals

e vcov: the variance-covariance matrix

e weights: the vector of case weights used in the fit

Further details about the contents of a coxph object can be found by help(’coxph.object?’).
The global na.action function has an important effect on the returned vector of residuals, as
shown below. This can be set per fit, but is more often set globally via the options() function.

> cfitla <- coxph(Surv(time, status) ~ age + sex + wt.loss, data=lung,
na.action = na.omit)

> cfitlb <- coxph(Surv(time, status) ~ age + sex + wt.loss, data=lung,
na.action = na.exclude)

> rl <- residuals(cfitila)

> r2 <- residuals(cfitib)

> length(rl)

[1] 214

> length(r2)

[1] 228

The fits have excluded 14 subjects with missing values for one or more covariates. The residual
vector r1 omits those subjects from the residuals, while r2 returns a vector of the same length
as the original data, containing NA for the omitted subjects. Which is preferred depends on
what you want to do with the residuals. For instance mean(r1) is simpler using the first while
plot (lung$ph.ecog, r2) is simpler with the second.

Stratified Cox models are obtained by adding one or more strata terms to the model formula.
In a stratified model each subject is compared only to subjects within their own stratum for
computing the partial likelihood, and then the final results are summed over the strata. A useful
rule of thumb is that a variable included as a stratum is adjusted for in the most general way,
at the price of not having an estimate of its effect. One common use of strata is to adjust for
the enrolling institution in a multi-center study, as below. We see that in this case the effect of
stratification is slight.

> cfit2 <- coxph(Surv(time, status) ~ age + sex + wt.loss + strata(inst),
data=lung)
> round(cbind(simple= coef (cfitl), stratified=coef(cfit2)), 4)

45

simple stratified

age 0.0201 0.0235
sex -0.5210 -0.5160
wt.loss 0.0008 -0.0017

Predicted survival curves from a Cox model are obtained using the survfit function. Since
these are predictions from a model, it is necessary to specify whom the predictions should be
for, i.e., one or more sets of covariate values. Here is an example.

> dummy <- expand.grid(age=c(50, 60), sex=1, wt.loss=b)
> dummy

age sex wt.loss
1 50 1 5
2 60 1 5
> csurvl <- survfit(cfitl, newdata=dummy)
> csurv2 <- survfit(cfit2, newdata=dummy)
> dim(csurvl)
data

2

> dim(csurv2)

strata data

18 2
> plot(csurvl, col=1:2, xscale=365.25, xlab="Years", ylab="Survival")
> dummy2 <- data.frame(age=c(50, 60), sex=1:2, wt.loss=5, inst=c(6,11))
> csurv3 <- survfit(cfit2, newdata=dummy2)
> dim(csurv3)
strata
2

46

1.0

Survival
0.6

0.4
|

0.2

0.0

I I I I I I
0.0 0.5 1.0 15 2.0 25

Years

The simplifying aspects of the Cox model that make is so useful are exactly those that should
be verified, namely proportional hazards, additivity, linearity, and lack of any high leverage
points. The first can be checked with the cox.zph function.

> zpl <- cox.zph(cfitl)

> zpl

chisq df P
age 0.5077 1 0.48
sex 2.5489 1 0.11

wt.loss 0.0144 1 0.90
GLOBAL 3.0051 3 0.39

> plot(zpl[2], resid=FALSE)
> abline(coef (cfitl) [2] ,0, 1lty=3)

47

05 10 15

0.0

Beta(t) for sex
0.5

-1.0

-1.5

-2.0

I I I I I I I I
56 150 200 280 350 450 570 730

Time
None of the test statistics for PH are remarkable. A simple check for linearity of age is to
replace the term with a smoothing spline.

> cfit3 <- coxph(Surv(time, status) ~ pspline(age) + sex + wt.loss, lung)
> print(cfit3, digits=2)
Call:
coxph(formula = Surv(time, status) ~ pspline(age) + sex + wt.loss,
data = lung)

coef se(coef) se2 Chisq DF p
pspline(age), linear 0.02011 0.00931 0.00931 4.66393 1.0 0.031
pspline(age), nonlin 3.02601 3.1 0.402
sex -0.53145 0.17549 0.17513 9.17105 1.0 0.002
wt.loss 0.00056 0.00619 0.00618 0.00818 1.0 0.928

Iterations: 4 outer, 12 Newton-Raphson
Theta= 0.8

Degrees of freedom for terms= 4.1 1.0 1.0
Likelihood ratio test=18 on 6.1 df, p=0.006
n= 214, number of events= 152

(14 observations deleted due to missingness)
> termplot(cfit3, term=1, se=TRUE)
> cfit4 <- update(cfitl, . ~ . + age*sex)

48

Partial for pspline(age)

> anova(cfitl, cfitd)

Analysis of Deviance Table
Cox model: response is Surv(time, status)

Model 1: ~ age + sex + wt.loss

Model 2: ™ age + sex + wt.loss + age:sex
loglik Chisq Df Pr(>|Chil)

1 -673.06

2 -672.88 0.3473 1 0.5557

N —

- -

I I I
40 50 60

age

The age effect appears reasonbly linear. Additivity can be examined by adding an age by sex

interaction, and again is not remarkable.

Children with chronic granulotomous disease (CGD) are subject to repeated infections due to a
compromised immune system. The cgd0 data set contains results of a clinical trial of gamma
interferon as a treatment, the data set cdg contains the data reformatted into a (tstart, tstop,
status) form: each child can have multiple rows which describe an interval of time, and status=1
if that interval ends with an infection and 0 otherwise. A model with a single baseline hazard,
known as the Andersen-Gill model, can be fit very simply. The study recruited subjects from
four types of institutions, and there is an a priori belief that the four classes might recruit a

3.2 Repeating Events

49

different type of subject. Adding the hospital category as a strata allows each group to have a
different shape of baseline hazard.

> cfitl <- coxph(Surv(tstart, tstop, status) ~ treat + inherit + steroids +
age + strata(hos.cat), data=cgd)
> print(cfitl, digits=2)
Call:
coxph(formula = Surv(tstart, tstop, status) ~ treat + inherit +
steroids + age + strata(hos.cat), data = cgd)

coef exp(coef) se(coef) z P
treatrIFN-g -1.113 0.328 0.267 -4.2 3e-05
inheritautosomal 0.430 1.5637 0.250 1.7 0.09
steroids 1.2568 3.517 0.573 2.2 0.03
age -0.036 0.964 0.015 -2.4 0.02

Likelihood ratio test=31 on 4 df, p=3.8e-06
n= 203, number of events= 76

Further examination shows that the fit is problematic in that only 3 of 128 children have
steroids ==1, so we refit without that variable.

> cfit2 <- coxph(Surv(tstart, tstop, status) ~ treat + inherit+
age + strata(hos.cat), data=cgd)
> print(cfit2, digits=2)
Call:
coxph(formula = Surv(tstart, tstop, status) ~ treat + inherit +
age + strata(hos.cat), data = cgd)

coef exp(coef) se(coef) z)
treatrIFN-g -1.089 0.337 0.265 -4.1 4e-05
inheritautosomal 0.406 1.500 0.249 1.6 0.10
age -0.033 0.967 0.015 -2.3 0.02

Likelihood ratio test=27 on 3 df, p=6.6e-06
n= 203, number of events= 76

Predicted survival and/or cumulative hazard curves can then be obtained from the fitted
model. Prediction requires the user to specifiy who to predict; in this case we will use 4 hypo-
thetical subjects on control/interferon treatment, at ages 7 and 20 (near the quantiles). This
creates a data frame with 4 rows.

> dummy <- expand.grid(age=c(6,12), inherit='X-linked',
treat=levels(cgd$treat))
> dummy
age inherit treat
1 6 X-linked placebo

50

12 X-linked placebo

6 X-linked rIFN-g

12 X-linked rIFN-g

> csurv <- survfit(cfit2, newdata=dummy)
> dim(csurv)

S wWw N

strata data
4 4
> plot(csurv[1,], fun="event", col=1:2, 1lty=c(1,1,2,2),
xlab="Days on study", ylab="Pr(any infection)")

0.6

Pr(any infection)
0.4

0.2

0.0

0 100 200 300 400

Days on study

The resulting object was subscripted in order to make a plot with fewer curves, i.e., predictions
for the first level of hosp.cat. We see that treatment is effective but the effect of age is small.

Perhaps more interesting in this situation is the expected number of infections, rather than
the probability of having at least 1. The former is estimated by the cumulative hazard, which is
also returned by the survfit routine.

> plot(csurv([1,], cumhaz=TRUE, col=1:2, lty=c(1,1,2,2), lwd=2,
xlab="Days on study", ylab="E(number of infections)")
> legend(20, 1.5, c("Age 6, control", "Age 12, control",
"Age 6, gamma interferon", "Age 12, gamma interferon"),
lty=c(2,2,1,1), col=c(1,2,1,2), lwd=2, bty='n')

o1

=

" - = Age 6, control
5 - - Age 12, control
B —— Age 6, gamma interferon
Qo — .
£ o | Age 12, gamma interferon
"‘6 —
9]
o)
e
: -—
- [}
N Lo ~
o2 .
o _|
o

0 100 200 300 400

Days on study

3.3 Competing risks

Our third category is models where there is more than one event type, but each subject can have
only one transition. This is the setup of competing risks.

3.3.1 MGUS

As an simple multi-state example consider the monoclonal gammopathy data set mgus2, which
contains the time to a plasma cell malignancy (PCM), usually multiple myleoma, and the time
to death for 1384 subjects found to have a condition known as monoclonal gammopathy of un-
determined significance (MGUS), based on a particular test. This data set has already appeared
in 2.3.2. The time values in the data set are from detection of the condition. Here are a subset
of the observations along with a simple state figure for the data.

> mgus2[56:59,]

id age sex dxyr hgb creat mspike ptime pstat futime death etime
56 56 78 M 1978 10.3 3.0 1.9 29 1 44 1 29

57 57 79 F 1981 13.6 1.3 1.3 84 0 84 1 84
58 68 72 F 1972 13.6 1.2 0.4 321 0 321 1 321
59 59 80 F 1984 10.6 0.9 1.2 147 0 147 1 147

event

92

56 pcm

57 death

58 death

59 death

> sname <- c("MGUS", "Malignancy", "Death")

> smat <- matrix(c(0,0,0, 1,0,0, 1,1,0), 3, 3,
dimnames = list(sname, sname))

> statefig(c(1,2), smat)

Malignancy

MGUS

Death

In this data set subject 56 was diagnosed with a PCM 29 months after detection of MGUS
and died at 44 months. This subject passes through all three states. The other three listed
individuals died without a plasma cell malignancy and traverse one of the arrows; 103 subjects
(not shown) are censored before experiencing either event and spend their entire tenure in the
leftmost state. The competing risks model will ignore the transition from malignacy to death:
the two ending states are “malignancy before death” and “death without malignancy”.

The statefig function is designed to create simple state diagrams, with an emphasis on ease
rather than elegance. See more information in section 2.8.

For competing risks each subject has at most one transition, so the data set only needs one
row per subject.

> crdata <- mgus2
> crdata$etime <- pmin(crdata$ptime, crdata$futime)
> crdata$event <- ifelse(crdata$pstat==1, 1, 2*crdata$death)

33

> crdata$event <- factor(crdata$event, 0:2, c("censor",

> quantile(crdata$age, na.rm=TRUE)
0% 25% 50% 75% 100%
24 63 72 79 96
> table(crdata$sex)
F M
631 753
> quantile(crdata$mspike, na.rm=TRUE)
0% 25% 50% 75% 100%
0.0 0.6 1.2 1.5 3.0

IIPCMII s

> cfit <- coxph(Surv(etime, event) ~ I(age/10) + sex + mspike,

id = id, crdata)
> print(cfit, digits=1)

narrow the printout a bit

Call:
coxph(formula = Surv(etime, event) ~ I(age/10) + sex + mspike,
data = crdata, id = id)

1:2 coef exp(coef) se(coef) robust se z P
I(age/10) 0.163 1.178 0.084 0.069 2 0.02
sexM -0.005 0.995 0.188 0.188 0 0.98
mspike 0.884 2.420 0.165 0.168 5 1e-07

1:3 coef exp(coef) se(coef) robust se z)
I(age/10) 0.65 1.91 0.04 0.04 18 <2e-16
sexM 0.39 1.47 0.07 0.07 6 5e-09
mspike -0.06 0.94 0.06 0.06 -1 0.3

States: 1= (s0), 2= PCM, 3= death

Likelihood ratio test=417

on 6 df, p=<2e-16

n= 1373, unique id= 1373, number of events= 969
(11 observations deleted due to missingness)

94

"death"))

The effect of age and sex on non-PCM mortality is profound, which is not a surprise given the
median starting age of 72. Death rates rise 659.8 fold per decade of age and the death rate
for males is 1.5 times as great as that for females. The size of the serum monoclonal spike has
almost no impact on non-PCM mortality. A 1 unit increase changes mortality by only 2%.
The mspike size has a major impact on progression, however; each 1 gram change increases
risk by 2.4 fold. The interquartile range of mspike is 0.9 grams so this risk increase is clinically
important. The effect of age on the progression rate is much less pronounced, with a coefficient
only 1/4 that for mortality, while the effect of sex on progression is completely negligible.
Estimates of the probability in state can be simply computed using survfit. As with any
model, estimates are always for a particular set of covariates. We will use 4 hypothetical subjects,
male and female with ages of 60 and 80.

> dummy <- expand.grid(sex=c("F", "M"), age=c(60, 80), mspike=1.2)

> csurv <- survfit(cfit, newdata=dummy)

> plot(csurv[,2], xmax=20%12, xscale=12,
xlab="Years after MGUS diagnosis", ylab="Pr(has entered PCM state)",
col=1:2, 1lty=c(1,1,2,2), lwd=2)

> legend(100, .04, outer(c("female,", "male, "),
c("diagnosis at age 60", "diagnosis at age 80"),
paste),

col=1:2, lty=c(1,1,2,2), bty='n', lwd=2)

N
F! —]
o
o
F! —
Py o
e
9 (e}
2] S
= o
©)
a
T ©
L °cq = h - ===-
Q) - -
Qe
c
()
(%] <
£ 2
S o . :
= female, diagnosis at age 60
« —— male, diagnosis at age 60
g - - = female, diagnosis at age 80
- = male, diagnosis at age 80
o
O_ —]
o

0 5 10 15 20

Years after MGUS diagnosis

Although sex has no effect on the rate of plasma cell malignancy, its effect on the lifetime
probability of PCM is not zero, however. As shown by the simple Poisson model below, the
rate of PCM is about 1% per year. Other work reveals that said rate is almost constant over
follow-up time (not shown). Because women in the study have an average lifetime that is 2 years
longer than men, their lifetime risk of PCM is higher as well. Very few subjects acquire PCM
more than 15 years after a MGUS diagnosis at age 80 for the obvious reason that very few of
them will still be alive.

> mpfit <- glm(pstat ~ sex -1 + offset(log(ptime)), data=mgus2, poisson)
> exp(coef(mpfit)) * 12 # rate per year

sexF sexM
0.01117354 0.01016626

%)

A single outcome fit using only time to progression is instructive: we obtain exactly the same
coefficients but different absolute risks. This is a basic property of multi-state models: hazards
can be explored separately for each transition, but absolute risk must be computed globally.
(The estimated cumulative hazards from the two models are also identical). The incorrect curve
is a vain attempt to estimate the progression rate which would occur if death could be abolished.
It not surprisingly ends up as about 1% per year.

> sfit <- coxph(Surv(etime, event=="PCM") ~ I(age/10) + sex + mspike, crdata)
> rbind(single = coef(sfit),
multi coef (cfit) [1:3])
I(age/10) sexM mspike
single 0.1635219 -0.005030024 0.8840781
multi 0.1634692 -0.004987700 0.8839569
> #par (mfrow=c(1,2))
> ssurv <- survfit(sfit, newdata=dummy)
> plot(ssurv[3:4], col=1:2, lty=2, xscale=12, xmax=12%20, lwd=2, fun="event",
xlab="Years from diagnosis", ylab= "Pr(has entered PCM state)")

> lines(csurv[3:4, 2], col=1:2, 1lty=1, lwd=2)
> legend(20, .22, outer(c("80 year old female,", "80 year old male,"),
c("incorrect", "correct"), paste),
col=1:2, 1lty=c(2,2,1,1), lwd=2, bty='n')
'
- o
Q | — = 80 year old female, incorrect - =
o = = 80 year old male, incorrect | -
— —— 80 year old female, correct P
% —— 80 year old male, correct - -
3 !
r! —
g o
a
°©
o
g 3 _
S o
e —_—
@
=
o 8. i
o
o
(D_ —]
e T T T T T
0 5 10 15 20

Years from diagnosis

96

3.4 Multiple event types and multiple events per subject

Non-alcoholic fatty liver disease (NAFLD) is defined by three criteria: presence of greater than
5% fat in the liver (steatosis), absence of other indications for the steatosis such as excessive
alcohol consumption or certain medications, and absence of other liver disease [?]. NAFLD is
currently respounsible for almost 1/3 of liver transplants and it’s impact is growing, it is expected
to be a major driver of hepatology practice in the coming decade [?], driven at least in part by
the growing obesity epidemic. The nafld data set includes all patients with a NAFLD diagnosis
in Olmsted County, Minnesota between 1997 to 2014 along with up to four age and sex matched
controls for each case [?].

We will model the onset of three important components of the metabolic syndrome: diabetes,
hypertension, and dyslipidemia, using the model shown below. Subjects have either 0, 1, 2, or
all 3 of these metabolic comorbidities.

stateb5 <- c("OMC", "iMC", "2MC", "3MC", "death")

tmat <- matrix(OL, 5, 5, dimnames=list(stateb, stateb))
tmat[1,2] <- tmat[2,3] <- tmat[3,4] <- 1

tmat[-5,5] <- 1

statefig(rbind(4,1), tmat)

vV V V VvV V

oMC ([——= | IMC | ———= | 2MC | ——> | 3MC

N

death

57

3.4.1 Data

The NAFLD data is represented as 3 data sets, naf1d1 has one observation per subject containing
basline information (age, sex, etc.), nafld2 has information on repeated laboratory tests, e.g.
blood pressure, and nafld3 has information on yes/no endpoints. After the case-control set
was assembled, we removed any subjects with less than 7 days of follow-up. These subjects
add little information, and it prevents a particular confusion that can occur with a multi-day
medical visit where two results from the same encounter have different dates. To protect patient
confidentiality all time intervals are in days since the index date; none of the dates from the
original data were retained. Subject age is their integer age at the index date, and the subject
identifier is an arbitrary integer. As a final protection, a 10% random sample of subjects was
excluded. As a consequence analyses results will not exactly match the original paper.

Start by building an analysis data set using nafld1 and naf1d3.

>
>

> summary (ndata)

ndata <- tmerge(nafldi[,1:8], nafldl, id=id, death= event(futime, status))
subset (nafld3, event=="nafld"), id,

ndata <- tmerge(ndata,
nafld=
ndata <- tmerge(ndata,

htn

id=id, comorbid= cumevent (days))

tdc(days))

subset (nafld3,
diabetes = tdc(days),
ndata <- tmerge(ndata, subset(nafld3,
tdc(days), e2 =
ndata <- tmerge(ndata, subset(nafld3,
lipid = tdc(days), e3= cumevent(days))
ndata <- tmerge(ndata, subset(nafld3, event %in’, c("diabetes", "htn",
"dyslipidemia")),

event=="diabetes"), id =
el= cumevent(days))
event=="htn"),
cumevent (days))
event=="dyslipidemia"), id=id,

id = id,

"htn", "dyslipidemia")), id = id, comorbid = cumevent(days))

id,

ndata, data2 = subset(nafld3, event %in% c("diabetes",

early late gap within boundary leading trailing tied missid

Call:

tmerge(datal =
death 0
nafld 0
diabetes 2393
el 2393
htn 5022
e2 5022
lipid 8663
e3 8663
comorbid 16078

0

O OO O OO oo

0

O OO O OO oo

0
318
1058
0
2045
0
1713
0

0

0

0

0
1058
24
2069
82
1795
4922

0
3533

I S R N e

17549
0

N NN OO O O

0

O OO O O O o

575

O O O OO OO oo

The summary function tells us a lot about the creation process. Each addition of a new
endpoint or covariate to the data generates one row in the table. Column labels are explained
by figure ?7.

e There are 17549 last fu/death additions, which by definition fall at the trailing end of a
subject’s observation interval: they define the interval.

98

e There are 0 nafld splits that fall after the end of follow-up (‘late’). These are subjects
whose first NAFLD fell within a year of the end of their time line, and the one year delay
for “confirmed” pushed them over the end. (The time value in the nafld3 data set is 1
year after the actual notice of NAFLD; no other endpoints have this offset added). The
time dependent covariate nafld never turns from 0 to 1 for these subjects. (Why were
these subjects not removed earlier by my “at least 7 days of follow-up” rule? They are all
controls for someone else and so appear in the data at a younger age than their NAFLD
date.)

e 318 subjects have a NAFLD diagnosis between time 0 and last follow-up. These are subjects
who were selected as matched controls for another NAFLD case at a particular age, and
later were diagnosed with NAFLD themselves.

e 2393 of the diabetes diagnoses are before entry, i.e., these are the prevalent cases. One
diagnosis occurred on the day of entry (“leading”), and will not be counted as a post-
enrollment endpoint, all the other fall somewhere between study entry and last follow-up.

e Conversely, 5 subjects were diagnosed with hypertension at their final visit (“trailing”).
These will be counted as an occurrence of a hypertension event (e2), but the time dependent
covariate htn will never become 1.

e 575 of the total comorbidity counts are tied. These are subjects for whom the first diagnosis
of 2 of the 3 conditions happened on the same office visit, the cumulative count will jump
by 2. (We will see below that 4 subjects had all 3 on the same day.) Many times ties
indicate a data error.

Such a detailed look at data set construction may seem over zealous. Our experience is that
issues with covariate and event timing occur in nearly all data sets, large or small. The 13
NAFLD cases “after last follow-up” were for instance both a surprise and a puzzle to us; but we
have learned through experience that it is best not to proceed until such puzzles are understood.
(This particular one was benign.) If, for instance, some condition is noted at autopsy, do we
want the related time dependent covariate to change before or after the death event? Some sort
of decision has to be made, and it is better to look and understand than to blindly accept an
arbitrary programming default.

3.4.2 Fits

Create the covariates for current state and the analysis endpoint. It is important that data
manipulations like this occur after the final tmerge call. Successive tmerge calls keep track of
the time scale, time-dependent and event covariates, passing the information forward from call
to call, but this information is lost when the resulting data frame is manipulated. (The loss is
intentional: we won’t know if one of the tracked variables has changed.)

The tmerge call above used the cumevent verb to count comorbidities, and the first line
below verifies that no subject had diabetes, for instance, coded more than once. For this analysis
we think of the three conditions as one-time outcomes, you can’t get diabetes twice. When the
outcome data set is the result of electronic capture one could easily have a diabetes code at every
visit, in which case the cumulative count of all events would not be the total number of distinct
comorbidities. In this particular data set the diabetes codes had already been preprocessed so

99

that the data set contains only the first diabetes diagnosis, and likewise with hypertension and
dyslipidemia. (In counterpoint, the nafld3 data set has multiple myocardial infarctions for some
subjects, since MI can happen more than once.)

\

with(ndata, if (any(el>1 | e2>1 | e3>1)) stop("multiple events"))

> ndata$cstate <- with(ndata, factor(diabetes + htn + lipid, 0:3,
c("Omc", "imc", "2mc", "3mc")))

> temp <- with(ndata, ifelse(death, 4, comorbid))

> ndata$event <- factor(temp, 0:4,

c("censored", "1mc", "2mc", "3mc", "death"))

> ndata$agel <- ndata$age + ndata$tstart/365.25 # analysis on age scale

> ndata$age2 <- ndata$age + ndata$tstop/365.25

> checkl <- survcheck(Surv(agel, age2, event) ~ nafld + male, data=ndata,

id=id, istate=cstate)

> checkl

Call:

survcheck(formula = Surv(agel, age2, event) ~ nafld + male, data = ndata,

id = id, istate = cstate)

Unique identifiers Observations Transitions
17549 22683 6186

Transitions table:

to
from imc 2mc 3mc death (censored)
Omc 1829 70 4 263 5705
imc 0 1843 28 243 4567
2mc 0 0 1048 417 3687
3mc 0 0 0 441 2220
death 0 0 0 0 0
Number of subjects with 0, 1, ... transitions to each state:
count
state 0 1

2mc 15636 1913
3mc 16469 1080
death 16185 1364 O
(any) 12733 3673 938 183 22

2
1imc 15720 1829 0
0
0

O O O O Ww
O O O O

This is a rich data set with a large number of transitions: over 1/4 of the participants have
at least one event, and there are 22 subjects who transition through all 5 possible states (4
transitions). Unlike prior examples, subjects do not all enter the study in the same state; about
14% have diabetes at the time of recruitment, for instance. Note one major difference between
current state and outcome, namely that the current state endures across intervals: it is based on
tdc variables while the outcome is based on event operators. If a subject has time-dependent

60

covariates, there may be intermediate intervals where a covariate changed but an outcome did not
occur; current state will endure across intervals but the intermediate outcome will be “censor”.

We see a number of subjects who “jump” states, e.g., directly from 0 to 2 comorbidities. This
serves to remind us that this is actually a model of time until detected comorbidity; which will
often have such jumps even if the underlying biology is continuous. The data look like the figure
below, where the dotted lines are transformations that we observe, but would not be present if
the subjects were monitored continuously. A call to the survcheck routine is almost mandatory
for a complex setup like this, to ensure that the data set which has been built is what you
intended to build.

Calling survcheck with ~1 on the right hand side or with the covariates for the model on
the right hand side will potentially give different event counts, due to the removal of rows with
a missing value. Both can be useful summaries. For a multi-state coxph model neither may
be exactly correct, however. If the model contains a covariate which applies only to certain
transitions, then events that do not depend on that covariate will be retained, while event
occurences that do depend on the covariate will be dropped, leading to counts that may be
intermediate between the two survcheck outputs.

> states <- c("No comorbidity", "1 comorbidity", "2 comorbidities",
"3 comorbitities", "Death")

cmat <- matrix(0, 5,5)

cmat[,5] <- 1

cmat[1,2] <- cmat[2,3] <- cmat[3,4] <- 1

cmat[1,3] <- cmat[2,4] <- 1.6

cmat[1,4] <- 1.6

dimnames(cmat) <- list(states, states)

statefig(cbind(4,1), cmat, alty=c(1,2,1,2,2,1,1,1,1,1,1))

V V V V V V V

61

No comorbidity

o 1 comorbidity
1

I’ \\\ . \

f 4 i/ Death
\ SN ””””””’_,——%?
' '

oo 2 comorbidities

3 comorbitities

Since age is the dominant driver of the transitions we have chosen to do the fits directly on
age scale rather than model the age effect. We force common coefficients for the transitions from
0 comorbidities to 1, 2 or 3, and for transitions from 1 comorbidity to 2 or 3. This is essentially
a model of “any progression” from a given state. We also force the effect of male sex to be the

same for any transition to death.

> nfitl <- coxph(list(Surv(agel, age2, event) ~ nafld + male,

"Omc":state("1mc", "2mc", "3mc") ~ nafld+ male / common,
2:3 + 2:4 ~ nafld + male / common,
0:"death" ~ male / common),

data=ndata, id=id, istate=cstate)
> nfiti$states
[1] "Omc n "{mc" anC" "3me" "death"

> nfitl$cmap

1:2 1:3 2:3 1:4 2:4 3:4 1:5 2:5 3:5 4:5
nafld 1 1 3 1 3 5 7 9 10 11
male 2 2 4 2 4 6 8 8 8 8

A list has been used as the formula for the coxph call. The first element is a standard formula,
and will be the default for all of the transitions found in the model. Elements 2—4 of the list are
pseudo formulas, which specify a set of states on the left and covariates on the right, along with
the optional modifier /common. As shown, there are multiple ways to specify a set of transitions

62

either by name or by number, the value 0 is shorthand for “any state”. The coefficient matrix
reveals that the 1:2, 1:3, and 1:4 transitions all share the same coefficients, as intended.

The actual coefficient vector (coef (£it)) and variance covariance matrix do not have repeats.
The fit also includes a cmap component that records the mapping between the coefficient vector
and the state transtitions. The result of coef(nfitl) is a vector of length 9, the first element
of which is the nafld effect for transitions 1:2, 1:3, and 1:4, the second coefficient is the effect of
male on those three transitions, etc. Because the coefficient vector, variance matrix, and etc. are
identical to those for a simple coxph call, downstream operations such as predict and summary
are unchanged.

The standard printouts makes use of cmap to rearrange the output into a nicer format. It is
interesting, though not surprising, that the impact of NAFLD on death is largest for those with
Omc and smallest for those with 3mc.

> print(coef(nfitl), digits=3)
nafld_1:2 male_1:2 nafld_2:3 male_2:3 nafld_3:4 male_3:4 nafld_1:5

0.9147 0.1789 0.5207 0.2456 0.4849 0.1490 0.6299
male_1:5 nafld_2:5 nafld_3:5 nafld_4:5

0.3293 0.5344 0.5512 0.0722
> print(coef(nfitl, matrix=TRUE), digits=3) # alternate form

1:2 1:3 2:3 1:4 2:4 3:4 1:5 2:5 3:5 4:5

nafld 0.915 0.915 0.521 0.915 0.521 0.485 0.630 34 0.551 0.0722
.329

.5
male 0.179 0.179 0.246 0.179 0.246 0.149 0.32 .329 0.329 0.3293
attr(,"states")

o O

[1] llomc n n 1mc|| "2II1C" Il3mc n lldeathll
> print(nfitl)
Call:

coxph(formula = list(Surv(agel, age2, event) ~ nafld + male,
"Omc":state("1mc", "2mc", "3mc") ~ nafld + male/common, 2:3 +
2:4 ~ nafld + male/common, 0O:"death" ~ male/common),
data = ndata, id = id, istate = cstate)

1:2, 1:3, 1:4 coef exp(coef) se(coef) robust se z P
nafld 0.91467 2.49595 0.06267 0.06737 13.578 < 2e-16
male 0.17895 1.19596 0.04625 0.04822 3.711 0.000206

2:3, 2:4 coef exp(coef) se(coef) robust se z)
nafld 0.52075 1.68329 0.05227 0.05583 9.327 < 2e-16
male 0.24558 1.27836 0.04702 0.04990 4.921 8.61e-07

3:4 coef exp(coef) se(coef) robust se z P
nafld 0.48493 1.62406 0.06498 0.06787 7.145 9.02e-13
male 0.14900 1.16068 0.06250 0.06506 2.290 0.022

63

1:5 coef exp(coef) se(coef) robust se z P
nafld 0.62990 1.87743 0.22590 0.22793 2.764 0.00572
male 0.32931 1.39001 0.05488 0.05465 6.025 1.69e-09

2:5 coef exp(coef) se(coef) robust se z P
nafld 0.53438 1.70640 0.15484 0.14971 3.569 0.000358
male 0.32931 1.39001 0.05488 0.05465 6.025 1.69e-09

3:5 coef exp(coef) se(coef) robust se z p
nafld 0.55116 1.73526 0.10585 0.10695 5.153 2.56e-07
male 0.32931 1.39001 0.05488 0.05465 6.025 1.69e-09

4:5 coef exp(coef) se(coef) robust se z P
nafld 0.07224 1.07492 0.09929 0.09908 0.729 0.466
male 0.32931 1.39001 0.05488 0.05465 6.025 1.69e-09

States: 1= Omc, 2= 1mc, 3= 2mc, 4= 3mc, 5= death

Likelihood ratio test=448.4 on 11 df, p=< 2.2e-16
n= 22683, unique id= 17549, number of events= 6186

The summary command does not rearrange.

> options(show.signif.stars = FALSE) # display statistical maturity
> summary(nfitl, digits=3)

Call:
coxph(formula = list(Surv(agel, age2, event) ~ nafld + male,
"Omc":state("1mc", "2mc", "3mc") ~ nafld + male/common, 2:3 +
2:4 ~ nafld + male/common, 0O:"death" ~ male/common),

data = ndata, id = id, istate = cstate)
n= 22683, number of events= 6186

coef exp(coef) se(coef) robust se z Pr(>|zl)
nafld_1:2 0.91467 2.49595 0.06267 0.06737 13.578 < 2e-16

male_1:2 0.17895 1.19596 0.04625 0.04822 3.711 0.000206
nafld_2:3 0.52075 1.68329 0.05227 0.05583 9.327 < 2e-16
male_2:3 0.24558 1.27836 0.04702 0.04990 4.921 8.61e-07
nafld_3:4 0.48493 1.62406 0.06498 0.06787 7.145 9.02e-13
male_3:4 0.14900 1.16068 0.06250 0.06506 2.290 0.022009
nafld_1:5 0.62990 1.87743 0.22590 0.22793 2.764 0.005717

64

male_1:5 0.32931
nafld_2:5 0.53438
nafld_3:5 0.55116
nafld_4:5 0.07224

exp(coef)
nafld_1:2 2.496
male_1:2 1.196
nafld_2:3 1.683
male_2:3 1.278
nafld_3:4 1.624
male_3:4 1.161
nafld_1:5 1.877
male_1:5 1.390
nafld_2:5 1.706
nafld_3:5 1.735
nafld_4:5 1.075

Concordance= 0.569

Likelihood ratio test=

Wald test

Score (logrank) test

1.39001
1.70640
1.73526
1.07492

0.05488
0.15484
0.10585
0.09929

0.05465
0.14971
0.10695
0.09908

exp(-coef) lower .95 upper

0.4006
.8361
.5941
. 7823
.6157
.8616
.5326
L7194
.5860
.5763
.9303

O OO OO OO OoOoOOo

(se = 0.004)
448 .4
436.2
520.2

on 11
on 11
on 11

2.1872
.0881
.5088
.15692
.4218
.0217
.2010
.2488
.2725
.4071
.8852

(@R N N o o o o o
F NN, NR,RPR R PR RPN

df,
df,
df,

p=<2e
p=<2e

6
3.
5
0

.95

.848
.315
.878
.410
.855
.319
.935
.547
.288
.140
.305

-16
-16

p=<2e-16,

.15
.72

1.69e-09
0.000358
2.56e-07
0.465914

Robust = 326.7 p=<2e-16

(Note: the likelihood ratio and score tests assume independence of
observations within a cluster, the Wald and robust score tests do not).

The names attached to the coefficients in a multi-state model are a compromise, designed

to give some information to the reader, albeit imperfect. If a variable such as ’sex’ only applies
to a single coefficient, the simple name is used, even if the coefficient corresponds to multiple
transitions. Otherwise a suffix “ a:b” is appended where a:b corresponds to the first transition
that maps onto this coefficient. (First in the sense of standard R matrices, i.e., reading the
elements of cmap in column order.)

A second available keyword is shared, which indicates that the baseline hazards for transi-
tions share a common shape. Here is an example:

> nfit2 <- coxph(list(Surv(agel, age2, event) ~ nafld + male,

> nfit2$cmap

nafld
male
ph(1:5)

1:2 1:3
1 1
2 2
0 0

2:3
3
4
0

"Omc":state("1mc",
2:3 + 2:4

"2mc", "3mc") ~ nafld+ male / common,
~ nafld + male / common,

1:5 + 2:5 +3:5 ~ male / common + shared),
data=ndata, id=id, istate=cstate)

1:4 2:4 3:4 1:5 2:5 3:5 4:5
1 3 5 7 9 10 11
2 4 6 8 8 8 12
0 0O O 0 13 14 o0

65

3.4.3 Timeline data

The survfit and coxph routines also accept data in what we refer to as a “timeline” form. (The
option is still under development so detail may change.) Timeline data contains a case identifier
and a timeline variable, where this value pair that is unique for each row. The other covariates
are any number of variables whose value is “what was observed at that time”, or missing if there
was no observation of that variable at that time. In contrast to counting process data, there are
no time intervals and no distinction between covariates and endpoints. In this sense the data is
much more straightforward; a simple description of what was seen.

Here is a simple example using the mgus2 data set for a competing risks analysis. The Surv2
operation on the left-hand side indicates to the routine that timeline data is being used.

> ctime <- with(mgus2, ifelse(pstat==1, ptime, futime))

> cstat <- with(mgus2, ifelse(pstat==1, 1, 2xdeath))

> cstat <- factor(cstat, 0:2, c("censor", "PCM", "death"))

> tdata <- data.frame(id=mgus2$id, days=ctime, cstat=cstat)

> # counting process

> mdatal <- tmerge(mgus2[,1:7], tdata, id, state=event(days, cstat))
> mfitl <- coxph(Surv(tstart, tstop, state) ~ age + sex, id=id, mdatal)
> # timeline

> mdata2 <- data.frame(mgus2[,1:7], days=0)

> mdata2 <- merge(mdata2, tdata, all=TRUE)

> mfit2 <- coxph(Surv2(days, cstat) ~ age + sex, id=id, mdata2)

> all.equal(coef(mfitl), coef(mfit2))

[1] TRUE

The counting process data set from tmerge as fewer rows but a more complex structure.

> mdatal[1:3,]
id age sex dxyr hgb creat mspike tstart tstop state

1 1 88 F 1981 13.1 1.3 0.5 0 30 death
2 2 78 F 1968 11.5 1.2 2.0 0 25 death
3 3 94 M 1980 10.5 1.5 2.6 0 46 death
> print(mdata2[1:6,], na.print='."')

id days age sex dxyr hgb creat mspike cstat

1 1 0 88 F 1981 13.1 1.3 0.5
2 1 30 NA . NA NA NA NA death
3 2 0 78 F 1968 11.5 1.2 2.0
4 2 25 NA . NA NA NA NA death
5 3 0 94 M 1980 10.5 1.5 2.6 .
6 3 46 NA . NA NA NA NA death

Here is a reprise of the NAFLD data set using the timeline form.

> tldata <- data.frame(nafldi[,1:7],
days= 0, death=0, iage=nafldi$age, nafld=0)
> tldata <- merge(tldata, with(nafldl, data.frame(id=id, days=futime, death=status)),

66

all=TRUE)
Add in the comorbidities of interest. None of these 4 happen to have
duplicates (MI does, for instance).
Treat diabetes before day O as diabetes on day O.
tldata <- merge(tldata, with(subset(nafld3, event=="diabetes"),
data.frame(id=id, days=pmax(0,days), diabetes=1)),
all=TRUE, by=c("id", "days"))
> tldata <- merge(tldata, with(subset(nafld3, event=="htn"),
data.frame(id=id, days=pmax(0,days), htn=1)),
all=TRUE, by=c("id", "days"))
tldata <- merge(tldata, with(subset(nafld3, event=="dyslipidemia"),
data.frame(id=id, days= pmax(0, days), dyslipid=1)),
all=TRUE, by=c("id", "days"))
> tldata <- merge(tldata, with(subset(nafld3, event=="nafld"),
data.frame(id=id, days= pmax(0,days), nafld=1)),
by=c("id", "days"), all=TRUE)
> tldata$nafld <- with(tldata, ifelse(is.na(nafld.y), nafld.x, nafld.y))

vV V V V

Vv

We want to assume that a subject is non-NAFLD until detection, which means setting nafld
to 0 at time 0; this was done in the first tldata line above. Ideally, we would have a version
of merge that overwrites that value for a subject with NAFLD on day 0, but that is not how
merge works; given any tied days between tldata and nafld3 there will be two variables nafld.x
and nafld.y. The last line above makes one from the two. Initial values for the number of
comorbidities are handled by the cumevent function.

> #
> # For cumulative events within subject we use a helper function
> cumevent <- function(id, time, status, istate) {
do all the work on ordered data
ord <- order(id, time)
id2 <- id[ord]
time2 <- timel[ord]
stat2 <- ifelse(is.na(statusl[ord]), 0, statusl[ord])
firstid <- !duplicated(id)
csum <- cumsum(stat2)
indx <- match(id2, id2)
cstat<- csum + stat2[indx] - csum[indx]
cstat[stat2==0] <- 0

if (!missing(istate)) cstat[firstid] <- istate

keep <- (firstid | (!is.na(stat2)& stat2 !=0))
newdata <- data.frame(id=id2[keep], time=time2[keep], status=cstat[keep])
newdata

}
> templ <- rowSums(tldatal[,c('diabetes', 'htn', 'dyslipid')], na.rm=TRUE)
> temp2 <- with(tldata, cumevent(id, days, pmax(templ, 4*death, na.rm=TRUE)))

67

> state <- factor(pmin(temp2$status, 4), -1:4,
c("censor", paste0(0:3, "mc"), "death"))
> tldata <- merge(tldata, data.frame(id=temp2$id, days=temp2$time, state=state),
all=TRUE)
> tldata$age <- with(tldata, days/365.25 + agel[match(id, id)])
> check2 <- survcheck(Surv2(days, state) ~ 1, id=id, tldata)
> check2$transitions

to
from imc 2mc 3mc death (censored)
Omc 1829 70 4 263 5705
1mc 0 1843 28 243 4567
2mc 0 0 1048 417 3687
3mc 0 0 0 441 2220
death 0 0 0 0 0
> nfit2 <- coxph(list(Surv2(age, state) ~ nafld + male,
"Omc":state("1mc", "2mc", "3mc") ~ nafld+ male / common,
2:3 + 2:4 ~ nafld + male / common,
0:"death" ~ male / common),

data=tldata, id=id)
> round(coef (nfit2), 3)
nafld_1:2 male_1:2 nafld_2:3 male_2:3 nafld_3:4 male_3:4 nafld_1:5

0.915 0.179 0.521 0.246 0.485 0.149 0.630
male_1:5 nafld_2:5 nafld_3:5 nafld_4:5
0.329 0.534 0.551 0.072

The resulting fit it identical to the one that used the counting process data set.
There are advantages and disadvantages to the timeline data as compared to counting process
style.

e Counting process style has been available for a long while — it was first incorporated into
the survival package in 1986 — and it has been adopted by several other packages. The
format is hence familiar to many users.

e Nevertheless, it contains many traps for the unwary. The distinction between outcome and
predictor variables is critical: the former applies at the end of each (timel, time2) interval
and the former at the start of the interval. If one is fitting multiple models, one where the
number of comorbid conditions was a predictor and one where it is the outcome, different
variables and/or data sets are required. In multi-state data sets separate variables are
needed for the current state and for an event, and they behave differently.

e The tmerge routine simplifies some tasks, but it can be subtle. The author/maintainers of
the routine are often puzzled ourselves. When there are multiple possible endpoints and/or
multiple time scales it can get particularly challenging.

e Timeline data is simpler. There is no distinction between covariates and events, or between
current and next state. Any necessary temporal orderings are created by the underlying
survival models when processing the formula. This makes it easier to get the data set
correct.

68

e Timeline data sets are created using standard tools. The example above used only tools
in base R (a restriction for vignettes in the list of ‘recommended’ packages), but there is a
wide range of available data manipulation tools. The result need only obey the requirement
of having no duplicate (id, timescale) keys. This is a common constraint in relational
databases.

3.5 Testing proportional hazards

The usual Cox model with p covariates has the form
)\(t) =)\O(t)eﬂlwl+52$2+u.+,@pmp

= PoO)+brzi+B2aza+.. . +Ppay

A key simplifying assumption of the model is that all of the coeflicients except [y (the baseline
hazard) are constant over time, which is referred to as the proportional hazards assumption.
Numerous approaches to verifying or testing this assumption have been proposed, of which
the three most enduring have been the addition of an additional constructed covariate, score
tests, and tests based on cumulative martingale sums. Fach of these is normally applied to one
covariate at a time.

3.5.1 Constructed variables

For the constructed variable approach, assume that the true form of the model for variable x
is B1(t)x1, with the coefficient having the simple linear form £;(t) = a + bt. Then

Bi(t)z1 = azy + b(a11)
= axy + bz (3.4)

that is, we can create a special time-dependent covariate z = x1t, add add it to the data set,
and then use an ordinary coxph fit.

Consider the veterans lung cancer data set, which has often been used to illustrate non-
proportional hazards. Adding this special covariate is not quite as simple as writing

> fit2 <- coxph(Surv(time, status) ~ trt + trt*time + celltype + karno,
data = veteran)

The problem is that time is trying to play two roles in the above equation, the final follow-up
time for each subject (the left hand side of the formula) and the continuous time scale ¢ of
equation (3.4). The veteran data set contains the first of these as an explicit variable, and the
coxph function will use that variable on both the right and left hand sides, which is not the
desired time-dependent effect. The solution to to create the special variable, explicitly, before
calling the regression function. Since the Cox model adds a term to the likelihood at each unique
death time, it is sufficient to create a data set with the same granularity.

> dtime <- unique(veteran$time[veteran$status==1]) # unique times

> newdata <- survSplit(Surv(time, status) ~ trt + celltype + karno,
data=veteran, cut=dtime)

> nrow(veteran)

69

[1] 137

> nrow(newdata)

[1] 5959

> fit0 <- coxph(Surv(time, status) ~ trt + celltype + karno, veteran)

> fitl <- coxph(Surv(tstart, time, status) ~ trt + celltype + karno,
data=newdata)

> fit2 <- coxph(Surv(tstart, time, status) ~ trt + celltype + karno +
time:karno, newdata)

> fit2

Call:

coxph(formula = Surv(tstart, time, status) ~ trt + celltype +

karno + time:karno, data = newdata)

coef exp(coef) se(coef) z P
trt 1.686e-01 1.184e+00 2.048e-01 0.823 0.41034
celltypesmallcell 8.990e-01 2.457e+00 2.746e-01 3.274 0.00106
celltypeadeno 1.192e+00 3.293e+00 2.991e-01 3.985 6.74e-05
celltypelarge 4.034e-01 1.497e+00 2.833e-01 1.424 0.15454
karno -4.015e-02 9.606e-01 6.383e-03 -6.291 3.16e-10
karno:time 1.110e-04 1.000e+00 4.688e-05 2.369 0.01784

Likelihood ratio test=66.92 on 6 df, p=1.75e-12
n= 5959, number of events= 128

> fit2b <- coxph(Surv(tstart, time, status) ~ trt + celltype + karno +
rank(time) :karno, newdata)

The fits give a warning message about the use of the time variable on both sides of the
equation, since two common cases where time appears on both sides are the naive model shown
further above and frank typing mistakes. In this particular case we can ignore the warning since
the data set was carefully constructed for this special purpose, but it should never be treated
casually.

Alternatively, coxph has built-in functionality that will build the expanded data set for us,
behind the scenes, and then use that expanded data for the fit. Here is eqivalent code to test
the Karnofsky variable:

> fit2 <- coxph(Surv(tstart, time, status) ~ trt + celltype + karno +
tt (karno), data =newdata,
tt = function(x, t,...) x*t)

There are 4 issues with the constructed variable approach.

1. The choice (t) = a + bt was arbitrary. Perhaps the true form is a + blog(¢) (fit2b above),
or some other function.

2. The intermediate data set can become huge. It will be of order O(nd) where d is the
number of unique event times, and d grows along with n.

70

3.

3.5.

The
addr

The coefficients for a factor variable such as celltype can be confusing, since the results
depend on how the 0/1 indicators for the variable are chosen.

. Outliers in time are an issue. The veteran cancer data set, for instance, contains a time of

999 days (a particularly suspicious value in any data set). The Cox model itself depends
only on the rank order of the event times, so such outliers are not an issue for the base
model, but as a covariate these values can have undue influence. The time-dependent
coeffient for Karnofsky has p < .01 in fit2b above, which uses rank(time), a change that is
largely due to dampening the leverage of outliers.

2 Score tests

cox.zph function checks proportional hazards for a fitted Cox model directly, and tries to
ess the four issues discussed above.

It is easy to specify alternate time transforms such as x*log(t). More importantly, the code
produces both a diagnostic plot that suggests the shape of any non-proportionality, along
with a test of the chosen time-transform.

The test statistic is based on a score test, which does not require creating the expanded
data set.

Multi-covariate terms such as a factor or splines are by default treated as a single effect.

The default time transform is designed to minimize outliers in time.

Shown below are results for the veterans data using £it0 from above. The score statistic for
the simple term x*time (zp1) closely matches the Wald test for the full time dependent fit found
in £it2 above, which is what we would expect; score, Wald and likelihood ratio tests usually
agree quite closely for Cox models.

> zp0 <- cox.zph(fitO, transform='identity')

> zp0

chisq df P
trt 0.00493 1 0.94402
celltype 18.41391 3 0.00036
karno 6.05160 1 0.01389

GLOBAL 20.87086 5 0.00086
> zpl <- cox.zph(fitO, transform='log')
> zpl
chisq df P
trt 0.215 1 0.64298
celltype 13.586 3 0.00353
karno 10.079 1 0.00150
GLOBAL 21.451 5 0.00067
> oldpar <- par(mfrow=c(2,2))
> for (i in 1:3) {plot(zp1l[i]); abline(0,0, 1lty=3)}
> plot(zp0[3])
> par(oldpar)

71

1 ©
~ g
£ 2 v
Pl 2
Lo ©
2 o - o
g s °
o < _| =
m I 8
&
| i
o _|
I
0 ITo)
o - o
o o
o o
c o
= _ =
g g
< [Te) < [Te)
8§ o g °©
— o — o
= [= I
5] 5]
i} S
[— [
m m
[Te] n
— _| —
o o
I [}
0 200 400 600 800 1000
Time Time

A test for zero slope, from a least squares regression using data in the matching plot approx-
imates the score test. (In versions of the package prior to survival3.0, the approximate test was
used for the formal test and printout as well.) If proporitional hazard holds we would expect
the fitted line to be horizontal, i.e., 8(t) is constant. Rather than show a fitted line the plot
adds a general smooth curve, which can help reveal the form of non-proportional hazards, if
it exists. The first three panels of the plot show curves for the three covariates on a log(time)
scale. Since celltype is a factor, the plot shows the time dependent effect of the portion of the
linear predictor associated with cell type; if proportional hazards is true wrt that term a fitted
line should be horizontal with a coefficient of 1. The effect of Karnofsky score appears to be-
come essentially 0 after approximately 6 months; for this cohort of subjects with advanced lung
cancer, a 6 month old assessment of Karnofsky is no longer relevant. The corresponding plot in
the lower right panel, however, shows that the outlier time of 999 days has an undue influence
on any such regression. A test of proportional hazards on that scale must also be treated with
caution. The plot using log scale lacks these outliers and is more interpretable.

The default time transform is based on a Kaplan-Meier transform, i.e., that monotone trans-
form of the time axis that will cause the KM plot to be a straight line. This is a good default for
the score tests, since it essentially guarrantees that there wil be no outliers in the constructed
xg(time) variable, while dealing with censoring in a defensible way. That is, the code has opted
for a safe default. It is not as easily interpreted as other scales for the plots, however.

The cox.zph function does not attempt a score test for random effects (frailty) terms, in
fact is not clear what the computation for such a test should be. The function will check other
covariates in a model that contains a random effect, however; in that test the estimated random

72

effect per subject is essentially treated as a fixed offset.

3.5.3 Computational details

The score test is simple in theory, but “the devil is in the details” as they say. Consider adding the
constructed variables for celltype to the fit. That is g(t)*x2, g(t)*x3, g(t)*x4, where x2-x4 are
the three dummy variables that represent celltype. The new model has 5 + 3 covariates, and is
evaluated at (B, 0,0,0). The score statistic at this coefficient value will be (0,0, 0,0, 0, ug, vz, us),
the first 5 elements are zero since that is the definition of model convergence for B .

The information or Hessian matrix for a Cox model is

S V() = ZVj

j€E€deaths

where Vj is the variance matrix of the weighted covariate values, over all subjects at risk at time
t;. Then the expanded information matrix for the score test is

o= i)
Hy =) V(t)

Hy =Y V(t;)g(t))
Hy =Y V(t;)g*(t;)

The inverse of the matrix will be more numerically stable if g(t) is centered at zero, and this does
not change the test statistic. In the usual case V(t) is close to constant in time — the variance
of X does not change rapidly — and then Hs is approximately zero. The original cox.zph used
an approximation, which is to assume that V(¢) is exactly constant. In that case Hy = 0 and
Hs =Y"V(t;) Y g*(t;) and the test is particularly easy to compute. This assumption of identical
components can fail badly for models with a covariate by strata interaction, and for some models
with covariate dependent censoring.

If there are p covariates, the new score vector will be of length 2p and the information matrix
will be 2p by 2p. These can be computed using a simple variant of the C code for coxph;
no iteration is done. In fact, the use of time-weighted risk sets has been proposed by several
authors, for multiple rationales. This has not been implemented in the coxph routine (but we
have thought about it).

The score tests are done for single covariates or terms. Using the veteran example, a test
for celltype as a term would first select rows 1-5 and 7-9 of the score vector U and information
matrix H; i.e., if j <- c¢(1:5, 7:9) the test is U[j] %*% inverse(H[j,jl1) %+*% UL[j]l. (This
is done using the the solve function of course, rather than taking an explicit inverse). The result
is a 3 degree of freedom chisquare statistic. For a single variable test, the fact that only a single
element of U[j] is non-zero allows for a faster shortcut calculation.

A few further things need to be considered.

1. There may be NA coefficients in the fit, e.g., for a model that has redundant variables in
its X matrix. It is fairly simple to keep track of these, and remove any such from our set
of variables j.

73

2. There is not a good defintion of how to test PH for a random effects term, e.g., from a
coxme model or a copxh fit with a frailty term. For these, we treat the resultant random
coeflicients as though they were fixed, and test the other variable under this constraint.

3. For a penalized model, the penalty is assumed to apply to both the original and to then
extended coefficients. However,

e Penalties depend only the coefficient hatf3, not on the data or the time weights.

e All the penalties that we support are 0 at 5 = 0, and have a first derivative of 0 there,
so there is no impact on the score vector U. U is 0 for the current covariates, by
definition, and the new ones are being evaluated at 0.

e There will be an impact on the second derivative, however. But this will by definition
be idential to the penalty for the original variables.

4. The most difficult issue is use of a robust variance in the original model. This requires
not just the score vector U, but the nbyp matrix of of dfbeta residuals D. This requires a
special version of the relevant C routine; there are no simple computaional shortcuts.

3.6 Profile likelihood

Ordinary confidence intervals of 5£1.96se(3) work very well for the Cox model, but occasionally a
user would like to base the confidence interval directly on the partial log-likelihood. The example
used here is taken from section 3.5 of [§8]. Below is a fit to the ovarian cancer data; age is the
only significant coefficient.

> fitl <- coxph(Surv(futime, fustat) ~ rx + age + resid.ds, ovarian)
> fitl

Call:
coxph(formula = Surv(futime, fustat) ~ rx + age + resid.ds, data = ovarian)

coef exp(coef) se(coef) z P
rx -0.8489 0.4279 0.6392 -1.328 0.18416
age 0.1285 1.1372 0.0473 2.718 0.00657

resid.ds 0.6964 2.0065 0.7585 0.918 0.35858

Likelihood ratio test=16.77 on 3 df, p=0.0007889
n= 26, number of events= 12
> # create the profile plot
imat <- solve(vcov(fitl)) #information matrix
acoef <- seq(0, .25, length=100)
profile <- matrix(0, 100, 2)
for (i in 1:100) {
icoef <- c(fitl$coef[1], acoef[i], fiti$coef[3])
tfit <- coxph(Surv(futime, fustat) ~ rx + offset(acoef[i]*age) + resid.ds,
ovarian)

>
>
>
>

74

profilel[i,1] <- tfit$loglik[2]
delta <- c(0, acoef[i]- fit1$coef[2], 0)
profile[i,2] <- fit1$loglik[2] - deltal*’, imat %*), delta/2
}
> matplot(acoef, profile*2, type='l', lwd=2, 1lty=1, xlab="Coefficient for age",
ylab="2%loglik")
> abline(h = 2%fit1$loglik[2] - qchisq(.95, 1), lty=3)
> legend(.11, -58, c("Cox likelihood", "Wald approximation"), lty=1, lwd=2,
col=1:2, bty='n')

—— Cox likelihood
—— Wald approximation

2*loglik

I I I I I I
0.00 0.05 0.10 0.15 0.20 0.25

Coefficient for age

The plot shows the profile likelihood for the Cox model, along with the quadratic approxima-
tion to the likihood that is the basis for the usual tests of significance and confidence intervals,
along with a line 3.84 units down from the maximum. The profile likelihood confidence limits
for the age coefficient are the intersection of this line with the black curve, approximately (.048,
.238). The standard confidence interval is the intersection with the red curve, or (.043, .215).

This is a fit of 3 covariates to a data set with only 12 events, which is far under the rule of
10-20 events per covariate recommended for a stable fit. If we do the same exercise with a larger
data set the two curves will normally be indistiguishable. There are cases, an infinite coefficient
for example, where the profile likelihood interval is much more reliable.

If you don’t want to read values off the plot using locator(), the uniroot function can be
employed as in the example below.

75

> myfun <- function(beta) {
icoef <- coef(fitl)
icoef[2] <- beta
tfit <- coxph(Surv(futime, fustat) ~ rx + offset(agexbeta) + resid.ds,
ovarian)

(fit1$loglik - tfit$loglik)[2] - qchisq(.95, 1)/2
}

> uniroot (myfun, c (0, .2))$root # lower
[1] 0.04815649

> uniroot (myfun, c(.2, .5))$root # upper
[1] 0.2381187

76

Chapter 4

Accelerated Failure Time models

4.1 Usage

The survreg function implements the class of parametric accelerated failure time models. As-

sume that the survival time y satisfies log(y) = X’'8+ oW, for W from some given distribution.

Then if A, (?) is the cumulative hazard function for W, the cumulative hazard function for sub-

ject @ is Ay [exp(—n;/o)t], that is, the time scale for the subject is accelerated by a constant

factor. A good description of the models is found in chapter 3 of Kalbfleisch and Prentice [4].
The following fits a Weibull model to the lung cancer data set included in the package.

> fit <- survreg(Surv(time, status) {\twiddle} age + sex + ph.karno, data=lung,
dist='weibull')

> fit
Call:
survreg(formula = Surv(time, status) {\twiddle} age + sex + ph.karno, data = lung, dist
= "weibull")
Coefficients:
(Intercept) age sex ph.karno

5.326344 -0.008910282 0.3701786 0.009263843
Scale= 0.7551354

Loglik(model)= -1138.7 Loglik(intercept only)= -1147.5
Chisg= 17.59 on 3 degrees of freedom, p= 0.00053
n=227 (1 observations deleted due to missing)

The code for the routines has undergone substantial revision between releases 4 and 5 of
the code. Calls to the older version are not compatable with all of the changes, users can
use the survreg.old function if desired, which retains the old argument style (but uses the
newer maximization code). Major additions included penalzed models, strata, user specified
distributions, and more stable maximization code.

7

4.2 Strata

In a Cox model the strata statement is used to allow separate baseline hazards for subgroups
of the data, while retaining common coefficients for the other covariates across groups. For
parametric models, the statement allows for a separate scale parameter for each subgroup, but
again keeping the other coefficients common across groups. For instance, assume that separate
“baseline” hazards were desired for males and females in the lung cancer data set. If we think of
the intercept and scale as the baseline shape, then an appropriate model is

> sfit <- survreg(Surv(time, status) ~ sex + age + ph.karno + strata(sex),
data=lung)
> sfit
Coefficients:
(Intercept) sex age ph.karno
5.059089 0.3566277 -0.006808082 0.01094966

Scale:
sex=1 sex=2
0.8165161 0.6222807

Loglik(model)= -1136.7 Loglik(intercept only)= -1146.2
Chisg= 18.95 on 3 degrees of freedom, p= 0.00028

The intercept only model used for the likelihood ratio test has 3 degrees of freedom, corresponding
to the intercept and two scales, as compared to the 6 degrees of freedom for the full model.

This is quite different from the effect of the strata statement in censorReg; there it acts as
a ‘by’ statement and causes a totally separate model to be fit to each gender. The same fit (but
not as nice a printout) can be obtained from survreg by adding an explicit interaction to the
formula:

Surv(time,status) ~ sex + (age + ph.karno)*strata(sex)

4.3 Penalized models

Let the linear predictor for a survreg model be n = XS 4+ Zw, and consider maximizing the
penalized log-likelihood
PLL = LL(y; B,w) — p(w; 0),

where § and w are the unconstrained effects, respectively, X and Z are the covariates, p is a
function that penalizes certain choices for w, and 6 is a vector of tuning parameters.

For instance, ridge regression is based on the penalty p = 920.}?; it shrinks coefficients
towards zero.

The penalty functions in survreg currently use the same code as those for coxph. This works
well in the case of ridge and pspline, but frailty terms are more problematic in that the code
to automatically choose the tuning parameter for the random effect no longer solves an MLE
equation. The current code will not lead to the correct choice of penalty.

8

4.4

The

Specifying a distribution

fitting routine is quite general, and can accept any distribution that spans the real line

for W, and any monotone transformation of y. The standard set of distributions is contained

in a

list survreg.distributions. Elements of the list are of two types. Basic elements are a

description of a distribution. Here is the entry for the logistic family:

logistic = list(

The

name = "Logistic",
variance = function(parm) pi~2/3,
init = function(x, weights, ...) \{

mean <- sum(x*weights)/ sum(weights)
var <- sum(weights*(x-mean)~2)/ sum(weights)
c(mean, var/3.2)
\},
deviance= function(y, scale, parms) \{
status <- y[,ncol(y)]
width <- ifelse(status==3,(y[,2] - y[,1])/scale, 0)
center <- y[,1] - width/2
temp2 <- ifelse(status==3, exp(width/2), 2) #avoid a log(0) message
temp3 <- log((temp2-1)/(temp2+1))
best <- ifelse(status==1, -log(4x*scale),
ifelse(status==3, temp3, 0))
list(center=center, loglik=best)
\},
density = function(x, ...) \{
w <- exp(x)
cbind(w/(1+w), 1/(1+w), w/(1+w)~2, (1-w)/(1+w), (wx(w-4) +1)/(1+w)"2)
\},
quantile = function(p, ...) log(p/(1-p))
)

Name is used to label the printout.

Variance contains the variance of the distribution. For distributions with an optional
parameter such as the t-distribution, the parm argument will contain those parameters.

Deviance gives a function to compute the deviance residuals. More on this is explained
below in the mathematical details.

The density function gives the necessary quantities to fit the distribution. It should return
a matrix with columns F(z), 1 — F(x), f(x), f'(z)/f(z) and f”(z)/f(x), where f' and f”
are the first and second derivatives of the density function, respectively.

The quantiles function returns quantiles, and is used for residuals.

reason for returning both F and 1 — F' in the density function is to avoid round off error

when F(x) is very close to 1. This is quite simple for symmetric distributions, in the Gaussian

79

case for instance we use gqnorm(x) and gnorm(-x) respectively. (In the intermediate steps of
iteration very large deviates may be generated, and a probabilty value of zero will cause further
problems.)

Here is an example of the second type of entry:

exponential = list(
name = "Exponential",
dist "extreme",
scale =1 ,
trans = function(y) log(y),
dtrans= function(y) 1/y ,
itrans= function(x) exp(x)

)

This states that an exponential fit is computed by fitting an extreme value distribution to the log
transformation of y. (The distribution pointed to must not itself be a pointer to another). The
extreme value distribution is restricted to have a scale of 1. The first derivative of the transfor-
mation, dtrans, is used to adjust the final log-likelihood of the model back to the exponential’s
scale. The inverse transformation itrans is used to create predicted values on the original scale.

The formal rules for an entry are that it must include a name, either the “dist" component
or the set “variance" “init", “deviance", “density" and “quantile", an optional scale, and either
all or none of “trans", “dtrans" and “itrans".

The dist="weibull" argument to the survreg function chooses the appropriate list from
the survreg.distributions object. User defined distributions of either type can be specified by
supplying the appropriate list object rather than a character string. Distributions should, in
general, be defined on the entire real line. If not the minimizer used is likely to fail, since it has
no provision for range restrictions.

Currently supported distributions are

e basic

(least) Extreme value
— Gaussian

— Logistic

— t-distribution

e transformations

Exponential
Weibull

Log-normal ("lognormal’ or ’loggaussian’)

— Log-logistic ("loglogistic’)

80

4.5 Residuals

4.5.1 Response

The target return value is y — ¢, but what should we use for y when the observation is not exact?
We will let g be the MLE for the location parameter p over a data set with only the observation
of interest, with o fixed at the solution to the problem as a whole, subject to the constraint that
1t be consistent with the data. That is, for an observation right censored at ¢t = 20, we constain
1 > 20, similarly for left censoring, and constrain p to lie within the two endpoints of an interval
censored observation. To be consistent as the width of an interval censored observation goes to
zero, this definition does require that the mode of the density lies at zero.

For exact, left, and right censored observations gy = y, so that this appears to be an ordinary
response residual. For interval censored observations from a symmetric distribution, gy = the
center of the censoring interval. The only unusual case, then, is for a non-symmetric distribution
such as the extreme value. As shown later in the detailed information on distributions, for the
extreme value distribution this occurs for gy = 3 — log(b/[exp(b) — 1]), where b = y* — y! is the
length of the interval.

4.5.2 Deviance

Deviance residuals are response residuals, but transformed to the log-likelihood scale.

d; = sign(r;)\/LL(y:, 90; o) — LL(y;,n:;0)

The definition for gy used for response residuals, however, could lead to the square root of a
negative number for left or right censored observations, e.g., if the predicted value for a right
censored observation is less than the censoring time for that observation. For these observations
we let gy be the unconstrained maximum, which leads to yhaty = —oo and +oo for right and
left censored observations, respectively, and a log-likelihood term of 0.

The advantages of these residuals for plotting and outlier detection are nicely detailed in
McCullagh and Nelder [7]. However, unlike GLM models, deviance residuals for interval censored
data are not free of the scale parameter. This means that if there are interval censored data
values and one fits two models A and B, say, that the sum of the squared deviance residuals for
model A minus the sum for model B is not equal to the difference in log-likelihoods. This is one
reason that the current survreg function does not inherit from class glm: glm models use the
deviance as the main summary statistic in the printout.

4.5.3 Dfbeta

The dfbeta residuals are a matrix with one row per subject and one column per parameter.
The ith row gives the approximate change in the parameter vector due to observation i, i.e.,
the change in B when observation ¢ is added to a fit based on all observations but the ith.
The dfbetas residuals scale each column of this matrix by the standard error of the respective
parameter.

81

4.5.4 Working

As shown in section 4.7 below, the Newton-Raphson iteration used to solve the model can be
viewed as an iteratively reweighted least squares problem with a dependent variable of “current
prediction - correction”. The working residual is the correction term.

4.5.5 Likelihood displacement residuals

Escobar and Meeker [1]| define a matrix of likelihood displacement residuals for the accelerated
failure time model. The full residual information is a square matrix A, with dimension the
number of pertubations considered. Three examples are developed in detail, all with dimension
n, the number of observations.

Case weight pertubations measure the overall effect on the parameter vector of dropping a
case. Let V' be the variance matrix of the model, and L the n by p matrix with elements 0L;/00;,
where L; is the likelihood contribution of the ith observation. Then A = LVL'. The residuals
function returns the diagonal values of the matrix. Note that LV equals the dfbeta residuals.

Response pertubations correspond to a change of 1 ¢ unit in one of the response values. For
a Gaussian linear model, the equivalent computation yields the diagonal elements of the hat
matrix.

Shape pertubations measure the effect of a change in the log of the scale parameter by 1 unit.

The matrix residual type returns the raw values that can be used to compute these and other
LD influence measures. The result is an n by 6 matrix, containing columns for

oL; 0L, oL; oL; 0?L;

L. 27
Y on on? Olog(o) dlog(o)? Ondlog(o)

4.6 Predicted values

4.6.1 Linear predictor and response

The linear predictor is n; = x;B, where z; is the covariate vecor for subject ¢ and B is the final
parameter estimate. The standard error of the linear predictor is z}Vxz;, where V is the variance
matrix for B

The predicted response is identical to the linear predictor for fits to the untransformed dis-
tributions, i.e., the extreme-value, logistic and Gaussian. For transformed distributions such as
the Weibull, for which log(y) is from an extreme value distribution, the linear predictor is on the
transformed scale and the response is the inverse transform, e.g. exp(n;) for the Weibull. The
standard error of the transformed response is the standard error of n;, times the first derivative
of the inverse transformation.

4.6.2 Terms

Predictions of type terms are useful for examination of terms in the model that expand into
multiple dummy variables, such as factors and p-splines. The result is a matrix with one column
for each of the terms in the model, along with an optional matrix of standard errors. Here is an
example using psplines on the 1980 Stanford data

82

> fit <- survreg(Surv(time, status) ~ pspline(age, df=3) + t5, stanford2,
dist='lognormal')
tt <- predict(fit, type='terms', se.fit=T)
yy <- cbind(tt$fit[,1], tt$fit[,1] -1.96*tt$se.fit[,1],
tt$fit[,1] +1.96xtt$se.fit[,1])
matplot(stanford2$age, yy, type='l', lty=c(1,2,2))

vV Vv

\2

\4

plot(stanford2$age, stanford2$time, log='y',
xlab='Age', ylab='Days', ylim=c(.1, 10000))
> matlines(stanford2$age, exp(yy+ attr(tt$fit, 'comstant')), lty=c(1,2,2))

The second plot puts the fit onto the scale of the data, and thus is similar in scope to figure 1 in
Escobar and Meeker [1]. Their plot is for a quadratic fit to age, and without T5 mismatch score
in the model.

4.6.3 Quantiles

If predicted quantiles are desired, then the set of probability values p must also be given to the
predict function. A matrix of n rows and p columns is returned, whose ij element is the p;th
quantile of the predicted survival distribution, based on the covariates of subject i. This can be
written as X 3 4 z40 where 2, is the gth quantile of the parent distribution. The variance of the
quantile estimate is then cV'¢’ where V is the variance matrix of (8, 0) and ¢ = (X, z,).

In computing confidence bands for the quantiles, it may be preferable to add standard errors
on the untransformed scale. For instance, consider the motor reliability data of Kalbfleisch and
Prentice [5].

> fit <- survreg(Surv(time, status) ~ temp, data=motors)
> ql <- predict(fit, data.frame(temp=130), type='quantile',
p=c(.1, .5, .9), se.fit=T)

> cil <- cbind(qlfit, qlfit - 1.96xql$se.fit, ql1$fit + 1.96%ql$se.fit)
> dimnames(cil) <- list(c(.1, .5, .9), c("Estimate", "Lower ci", "Upper ci"))
> round(cil)

Estimate Lower ci Upper ci
0.1 15935 9057 22812
0.5 29914 17395 42433
0.9 44687 22731 66643

> g2 <- predict(fit, data.frame(temp=130), type='uquantile',
p=c(.1, .5, .9), se.fit=T)

> ci2 <- cbind(q2$fit, q2%fit - 1.96%q2$se.fit, q2%fit + 1.96*q2$se.fit)
> ci2 <- exp(ci2) #convert from log scale to original y
> dimnames(ci2) <- list(c(.1, .5, .9), c("Estimate", "Lower ci", "Upper ci"))
> round(ci2)
Estimate Lower ci Upper ci
0.1 15935 10349 24535

o

.5 29914 19684 45459
.9 44687 27340 73041

o

83

Using the (default) Weibull model, the data is fit on the log(y) scale. The confidence bands
obtained by the second method are asymmetric and may be more reasonable. They are also
guarranteed to be > 0.

This example reproduces figure 1 of Escobar and Meeker [1].

> plot(stanford2$age, stanford2$time, log='y',
xlab='Age', ylab='Days', ylim=c(.01, 1076), xlim=c(1,65))

> fit <- survreg(Surv(time, status) ~ age + age~2, stanford?2,
dist='lognormal')

> qq <- predict(fit, newdata=list(age=1:65), type='quantile',
p=c(.1, .5, .9))

> matlines(1:65, qq, lty=c(1,2,2))

Note that the percentile bands on this figure are really quite a different object than the
confidence bands on the spline fit. The latter reflect the uncertainty of the fitted estimate and
are related to the standard error. The quantile bands reflect the predicted distribution of a
subject at each given age (assuming no error in the quadratic estimate of the mean), and are
related to the standard deviation of the population.

4.7 Fitting the model

With some care, parametric survival can be written so as to fit into the iteratively reweighted
least squares formulation used in Generalized Linear Models of McCullagh and Nelder [7]. A
detailed description of this setup for general maximum likelihood computation is found in Green
[3].
Let y be the data vector (possibly transformed), and x; be the vector of covariates for the
1th observation. Assume that ,
yi — x;f N
o

f

Z; =

for some distribution f, where y may be censored.
Then the likelihood for y is

z(H f(zn/a) I [s | (T[] s (

exact right ¥ % left” —

I/ f<u>du> ,

interval

where “exact”, “right”, “left”, and “interval” refer to uncensored, right censored, left censored,
and interval censored observations, respectively, and z!, z* are the lower and upper endpoints,
respectively, for an interval censored observation. Then the log likelihood is defined as

LL=" gi(z) —log(o) + > ga(z)+ Y ga(z:) + Y galzi,2), (4.1)

exact right left interval

where g1 = log(f), g2 = log(1 — F), etc.

84

Derivatives of the LL with respect to the regression parameters are:

OLL i dg On;

0p; — On; 0p;
= ; Zij g (42)
O*’LL 0%g
e T e -

where 7 = X’ is the vector of linear predictors.
Ignore for a moment the derivatives with respect to o (or treat it as fixed). The Newton-
Raphson step defines an update §

(XTDX)s = XTU,

where D is the diagonal matrix formed from —g”, and U is the vector ¢’. The current estimate
B satisfies X3 = n, so that the new estimate 8 + § will have

(XTDX)(B+06) = X'Dn+X'U
= (X"D)(n+D'U)

Thus if we treat o as fixed, iteration is equivalent to IRLS with weights of —¢”" and adjusted
dependent variable of n — ¢’/¢”. At the solution to the iteration we might expect that 7 = y;
and a weighted regression with y replacing 7 gives, in general, good starting estimates for the
iteration. (For an interval censored observation we use the center of the interval as ‘y’). Note
that if all of the observations are uncensored, then this reduces to using the linear regression
of y on X as a starting estimate: y = n so z = 0, thus ¢’ = 0 and ¢” = a constant (all of the
supported densities have a mode at zero).

This clever starting estimate is introduced in Generalized Linear Models (McCullagh and
Nelder [7]), and works extremely well in that context: convergence often occurs in 3-4 iterations.
It does not work quite so well here, since a “good" fit to a right censored observation might have
n >> y. Secondly, the other coefficients are not independent of ¢, and ¢ often appears to be the
most touchy variable in the iteration.

Most often, the routines will be used with log(y), which corresponds to the set of accelerated
failure time models. The transform can be applied implicitly or explicitly; the following two fits
give identical coefficients:

> fitl <- survreg(Surv(futime, fustat)™ age + rx, fleming, dist='weibull')
> fit2 <- survreg(Surv(log(futime), fustat) ~ age + rx, data=fleming,
dist='extreme')

The log-likelihoods for the two fits differ by a constant, i.e., the sum of dlog(y)/dy for the
uncensored observations, and certain predicted values and residuals will be on the y versus
log(y) scale.

85

4.8 Derivatives

This section is very similar to the appendix of Escobar and Meeker [1], differing only in our use of
log(o) rather than o as the natural parameter. Let f and F denote the density and distribution
functions, respectively, of the distributions. Using (4.1) as the definition of ¢1, ..., g4 we have

g1
on
994
on
9’9
on?
8294
on?
og1
Ologo
094
dlog o
9’91
d(logo)?
8294
d(logo)?
8291

o? | f(2)

L [f(z") = () 2
o2 | F(zv) — F(zl)} (994/0m)
. {zf’(z)

f(z)
B {Z“f(z“) -2 zl)}
F(zv) — F(2!

} — 0g1/0logo(1+4 9g1/01og o)
zf"(z)

ondlog o
994

F(zv) — F(2')
o7 (2) — 0g1/0n(1 + 0g1/0log o)
zuf/(zu) —Zlf/(zl)

ondlogao

o[F(z*) — F(z)] 094/0n(1 + 0g4/0log o)

To obtain the derivatives for go, set the upper endpoint z, to co in the equations for g4. To
obtain the equations for g3, left censored data, set the lower endpoint to —oc.

After much experimentation, a further decision was made to do the internal iteration in
terms of log(o). This avoids the boundary condition at zero, and also helped the iteration speed
considerably for some test cases. The changes to the code were not too great. By the chain rule

OLL OLL
dlogo ey
O2LL ,?LL OLL
d(log 0)? = 7 902 + 790
O’°LL 0?
ondlogo 7 ondo

At the solution 0LL/do = 0, so the variance matrix for o is a simple scale change of the returned

matrix for log(o).

86

4.9 Distributions

4.9.1 Gaussian

Everyone’s favorite distribution. The continual calls to ® may make it slow on censored data,
however. Because there is no closed form for ®, only the equations for g; simplify from the
general form given in section 2 above.

p=0 , o*=1
F(z) = @(2)
() = exp(—2%/2)/Var
fz) = —zf(2)
f'iz) = (Z*=Df(2)
For uncensored data, the standard glm results are clear by substituting ¢; = —z/0 into equations
1-5. The first derivative vector is equal to X'r where r = —z/0 is a scaled residual, the update

step 171U is independent of the estimate of ¢, and the maximum likelihood estimate of no? is
the sum of squared residuals. None of these hold so neatly for right censored data.
4.9.2 Extreme value

If y is Weibull then log(y) is distributed according to the (least) extreme value distribution.
As stated above, fits on the latter scale are numerically preferable because it removes the range
restriction on y. A Weibull distribution with the scale restricted to 1 gives an exponential model.

p=—y=.5722..., 0> =7%/6

F(z) = 1—-exp(—w)
flz) = we™
fliz) = (1-w)f(z)
') = (W =3w+1)f(z)

where w = exp(z).

The mode of the distribution is at f(0) = 1/e, so for an exact observation the deviance term
has § = y. For interval censored data where the interval is of length b = 2% — 2!, it turns out
that we cover the most mass if the interval has a lower endpoint of a = log(b/(exp(b) —1))), and

the resulting log-likelihood is

_a _ _a+b
log(e™® —e™ ¢

).
Proving this is left as an exercise for the reader.

The cumulative hazard for the Weibull is usually written as A(t) = (at)?. Comparing this
to the extreme value we see that p = 1/0 and a = exp(—n). (On the hazard scale the change
of variable from ¢ to log(t) adds another term). The Weibull can be thought of as both an
accelerated failure time model, with acceleration factor a or as a proportional hazards model
with constant of proportionality a?. If a Weibull model holds, the coefficients of a Cox model

87

will be approximately equal to —3/o, the latter coming from a survreg fit. The change in
sign reflects a change in perspective: in a proportional hazards model a positive coefficient
corresponds to an increase in the death rate (bad), whereas in an accelerated failure time model
a positive coefficient corresponds to an increase in lifetime (good).

4.9.3 Logistic

This distribution is very close to the Gaussian except in the extreme tails, but it is easier to
compute. However, some data sets may contain survival times close to zero, leading to differences
in fit between the lognormal and log-logistic choices. (In such cases the rationality of a Gaussian
fit may also be in question). Again let w = exp(z).

p=0, 0> =n%/3

F(z) = w/(1+w)

fz) = w/(1+w)?

flie) = fm)A-w)/1+w)
(2)

f(2) (w? = 4w +1)/(1 +w)?

The distribution is symmetric about 0, so for an exact observation the contribution to the
deviance term is —log(4). For an interval censored observation with span 2b the contribution is

el —
log (F'(b) — F(=b)) = log <eb+1> .

4.9.4 Other distributions

Some other population hazards can be fit into this location-scale framework, some can not.

Distribution Hazard
Weibull pA(At)P~1
Extreme value (1/0)et=m/7
Rayleigh a+ bt
Gompertz bct

Makeham a + bet

The Makeham hazard seems to fit human mortality experience beyond infancy quite well,
where a is a constant mortality which is independent of the health of the subject (accidents,
homicide, etc) and the second term models the Gompertz assumption that “the average exhaus-
tion of a man’s power to avoid death is such that at the end of equal infinitely small itervals of
time he has lost equal portions of his remaining power to oppose destruction which he had at
the commencement of these intervals". For older ages a is a neglible portion of the death rate
and the Gompertz model holds.

Clearly

e The Wiebull distribution with p = 2 (0 = .5) is the same as a Rayleigh distribution with
a = 0. It is not, however, the most general form of a Rayleigh.

88

e The extreme value and Gompertz distributions have the same hazard function, with o =
1/log(c), and exp(—n/o) = b.

It would appear that the Gompertz can be fit with an identity link function combined with the
extreme value distribution. However, this ignores a boundary restriction. If f(x;n,0) is the
extreme value distribution with paramters 1 and o, then the definition of the Gompertz densitiy
is

g(z;n,0) =0 <0

g(z;n,0) = cf(z;m,0) =>=0

where ¢ = exp(exp(—n/0)) is the necessary constant so that g integrates to 1. If n/c is far from
1, then the correction term will be minimal and the above fit will be a good approximation to
the Gompertz.

The Makeham distribution falls into the gamma family (equation 2.3 of Kalbfleisch and
Prentice, Survival Analysis), but with the same range restriction problem.

89

Chapter 5

Tied event times

5.1 Cox model estimates

The theory for the Cox model has always been worked out for the case of continuous time, which
implies that there will be no tied event or censoring times in the data set. With respect to
censoring times, all of the survival library commands treat censoring as occuring “just after” the
recorded time point. The rationale is that if a subject was last observed alive on day 231, say,
then their death time, whatever it is, must be strictly greater than 231. For formally, a subject
who was censored at time ¢ is considered to have been at risk for any events that occured at
time t.

The issue with tied event times is more complex, and the software supports three different
algorithms for dealing with this. The Cox partial likelihood is a sum of terms, one for each
event time, each of which compares the subject who had the event to the set of subjects who
“could have had the event": the risk set. The overall view is essentially a lottery model: at each
event time there was a drawing to select one subject for the event, the risk score for each subject
exp(X;p) tells how many “tickets” each subject had in the drawing. The software implements
three different algorithms for dealing with tie event times.

The Breslow approximation (ties=’breslow’) in essence ignores the ties. If two subjects A
and B died on day 100, say, the partial likelihood will have separate terms for the two deaths.
Subject A will be at risk for the death that happened to B, and B will be at risk for the death
that happened to A. In life this is not technically possible of course: whoever died first will not
be at risk for the second death.

The Efron approximation can be motivated by the idea of coarsening: time is on a continuous
scale but we only observe a less precise version of it. For example consider the acute myelogenous
leukemia data set that is part of the package, which was a clinical trial to test if extendend
chemotherapy (“Maintained”) was superior to standard. The time to failure was recorded in
months, and in the non-maintained arm there are two pairs of failures, at 5 and at 8 months. It
might be reasonable to assume that if the data had been recored in days these ties might not
have occured.

> with(subset(aml, x=="Nonmaintained"), Surv(time, status))
[1] 5 5 8 8 12 16+ 23 27 30 33 43 45

90

Let the risk scores exp(X) for the 12 subjects be r;—r12, and assume that the two failures
actually at month 5 are not tied on a finer time scale. For the first event, whichever it is, the risk
set with be all subjects 1-12 and the denominator of the partial likelihood term is ;. For the
second event, the denominator is either r1+rs+...7r13 or ro+7r3+...712; the Efron approximation
is to use the average of the two as the denominator term. In the software this is easily done
by using temporary case weights: if there were k tied events then one of the denomiators gives
each of those k subjects a weight of 1, then next gives each a weight of (k — 1)/k, then next a
weight of (k—2)/k, etc. The Efron approximation imposes a tiny bit more bookkeeping, but the
the computational burden is no different that for case weights; i.e., it effectively takes no more
computational time than the Breslow approximation.

The third possiblility is the exact partial likelihood due to Cox, which treats the underlying
time scale as discrete rather than continuous. When taking this view the denominator of the
partial likelihood term is again an average, but over a much larger subset. If there are k events
and n subjects at risk, the EPL sum is over all k& choose n possible choices. In the AML example
above, the event at time 5 will be a sum over 12(11)/2= 33 terms. If the number of ties is large
this quickly grows unreasonable: for 20 ties out of 1000 the sum has over 39 billion terms. A
clever algorithm by Gail makes this sum barely possible, but it does not extend to the case of
(tstart, tstop) style data.

An important aside is that the log-likelihood for matched logistic regression is identical to
the Cox partial likelihood for a particular data set, when the EPL is used. Namely, set time=1
(or any other constant), status = 0 for controls and 1 for cases, and fit a coxph model with each
matched set as a separate stratum. In most instances a matched set will consist of a single case
along with one or more controls, however, which is the case where the Breslow, Efron, and EPL
are identical. (The EPL will still take slightly longer to run due to setting up the necessary
structure for all those sums.)

How important are the ties, actually? Below we show a small computation in which a larger
data set is successively coarsened and compare the results. The colon cancer data set has 929
subjects with stage B/C colon cancer who were randomized to three treatment arms and then
followed for 5 years; the time to death or progression is in days. In the example below we
successively coarsen the time scale to be monthly, bimonthly, ..., bi-annual; the last of which
generates an very large number of ties. What we see is that

e The Efron approximation is quite good at dealing with the coarsened data, producing
nearly the same coefficient as the original data even when the coarsening is extreme.

e The Breslow approximation is biased somewhat towards 0, the exact paritial likelihood
somewhat away from 0.

e The differences are very small. With monthly coarsening, which is itself fairly large, the 3
estimates differ by about .01 while the standard error of the original coefficient is 0.96; i.e.
a shift that is statistically immaterial.

> tdata <- subset(colon, etype==1) # progression or death
> cmat <- matrix(0, 7, 6)
> for(i in 1:7) {

if (i==1) scale <-1 else scale <- (i-1)*365/12

91

temp <- floor(tdata$time/scale)
tfit <- coxph(Surv(temp, status) ~ node4 + extent, tdata)
tfit2 <- coxph(Surv(temp, status) ~ noded4 + extent, tdata,
ties='breslow')
tfit3 <- coxph(Surv(temp, status) ~ node4 + extent, tdata,
ties='exact')
cmat[i,] <- c(coef(tfit2), coef(tfit), coef(tfit3))
}
> matplot(1:7, cmat[,c(1,3,5)], xaxt='n', pch='bec',
xlab="Time divisor", ylab="Coefficient for node4")
> axis(1l, 1:7, c(1, floor(1:6 *365/12)))

c
8 _ c
© c
c
&
® o© c
©
e c e
"E g sl € € € e
o b e
Q [N
= o'
g o b
®) b
&
S b b
o0}
~ -
S b
T T T T T T T
1 30 60 91 121 152 182
Time divisor

Early on in the package the decision was made to make the Efron approximation the default.
The reasoning was simply that is is more accurate, even if only a little, and the author’s early
background in numerical analysis argued strongly to always use the best approximation available.
The second reason is that the computational cost is low. Most of us would pick up a 1 Euro
coin on the sidewalk, even though it will not make any real change in our income. One downside
is that no other package did this, leading to a very common complaint/question that R “gives
different results”. A second is that it leads to further downstream programming as discussed in
following sections.

92

5.2 Cumulative hazard and survival

The coarsening argument can also be applied to the cumulative hazard A(t). Say that there
were 3 deaths with 10 subjects at risk. The increment to the Nelson-Aalen cumulative hazard
estimate would then be 3/10. If the data had been observed in continuous time, however, there
would have been 3 increments of 1/10 4+ 1/9 + 1/8. This estimate was explored by Fleming and
Harrington [2]. In the survfit function the ctype option selects for 1=Nelson-Aalen and 2=
Fleming-Harrington.

The Kaplan-Meier estimate is not subject to the coarsening phenominon. In our example, the
observed data will lead to a multipilicative increment of 7/10 and the continuous data to one of
(9/10)(8/9)(7/8), which are the same. An alternate estimate of the survival is S(¢) = exp(—A(%)).
Basing this on the FH estimate of hazard will more closely track the KM when there are tied event
times. The direct (KM) vs. exponential estimates of survival are obtained with the ctype=1
and ctype=2 arguments; however, the exponential estimate is quite uncommon outside of the
Cox model.

5.3 Predicted cumulative hazard and survival from a Cox
model

Predictions from a coxph model must always be for someone, i.e., some particular set of covariate
values. Let r; = exp(XiB — ¢) be the recentered risk scores for each subject i, where the
recentering constant ¢ = X8, X, being the covariates of the “new” subject for which prediction
is desired. (We don’t want to create a prediction for a baseline subject with X=0, what textbooks
often call a “baseline hazard”, since if 0 is too far from the center of the data the exp function
can easily overflow.) The estimated cumulative hazard at any event time is then

ho = [B 51

Equation (5.1) is known as the Breslow estimate; if ﬁ = 0 then r; = 1 and it becomes equal to
the Nelson-Aalen estimator.

If the Efron estimate is used for ties, then the software uses an Efron estimate of the cumula-
tive hazard; which reduces to the Fleming-Harrington if B = 0. Using the hazard estimate that
matches the parial likelihood estimate causes an important property of the vector of martingale
residuals m to hold, namely that mX is equal to the first derivative of the partial likelihood.
residuals hold for both

The Cox model is a case where the default estimate of survival is based on the exponent of
the cumulative hazard, rather than a ’direct’ one such as the Kaplan-Meier. There are three
reasons for this.

1. The most obvious ’direct’ estimate is to use (>_ dN;(t) — > Y;(t)r;)/ (O Yi(t)r;) as a mul-
tiplicative update at each event time ¢. This expression in not guarranteed to be between
0 and 1, however, particular for new subjects who are near or past the boundaries of the
original data set. This leads to using some sort of ad hoc correction to avoid failure.

93

2. The direct estimate of Kalbfleisch and Prentice avoids this, but it does not extend to
delayed entry, multi-state models or other extensions of the basic model.

3. The KP estimate reqires iteration so the code is more complex.

94

Chapter 6

Multi-state models

Multi-state hazards models have a very interesting (and useful) property, which is that hazards
can be estimated singly (without reference to any other transition) but probability-in-state esti-
mators must be computed globally. Thus, one can estimate non-parametric cumulative hazard
estimates (Nelson-Aalen), the hazard ratios for any given transtion (Cox model) or the predicted
cumulative hazard function based on a per transition Cox model without incurring any issues
with respect to competing risks. (If there is informative censoring the overall and individual es-
timates still agree, but they will both be wrong. An example of informative censoring would be
subjects who are removed from the data because of an impending event, e.g., censoring subjects
who enter hospice care would underestimate death rates.)

Now say that we had a simple competing risks problem, 10 subjects are alive and in the
initial state on day 100, at which time two of them transition to two different endpoints. A
coarsening argument would say that on the underlying continuous time scale these two subjects
would not be tied, and then would use 9.5 as the denominator for each of the two cumulative
hazard increments. Such an estimate would however then be at variance with the two indiviually
computed hazards: global coarsening removes the separability. The survival package takes a
moderated view and will apply the coarsening argument separately to each hazard, i.e., it chose
to retain the separation policy.

95

Appendix A

Changes from version 2.44 to 3.1

A.1 Changes in version 3

Some common concepts had appeared piecemeal in more than one function, but not using the
same keywords. Two particular areas are survival curves and multiple observations per subject.

Survival and cumulative hazard curves are generated by the survfit function, either from
raw data (survfit.formula), or a fitted Cox or parametric survival model (survfit.coxph, surv-
fit.survreg). Two choices that appear are:

1. If there are tied event times, to estimate the hazard using a straightforward increment
of (number of events)/(number at risk), or make a correction for the ties. The simpler
method is known variously as the Nelson, Aalen, Breslow, and Tsiatis estimate, along with
hyphenated forms combining 2 or 3 of these labels. One of the simpler corrections for ties is
known as the Fleming-Harrington approximation when used with raw data, and the Efron
when used in a Cox model.

2. The survival curve S(t) can be estimated directly or as the exponential of the cumulative
hazard estimate. The first of these is known as the Kaplan-Meier, cumulative incidence
(CI), Aalen-Johansen, and Kalbfleisch-Prentice estimate, depending on context, the second
as a Fleming-Harrington, Breslow, or Efron estimate, again depending on context.

With respect to the two above, subtypes of the survfit routine have had either a type or
method argument over the years which tried to capture both of these at the same time, and
consequently have had a bewildering number of options, for example “fleming-harrington” in
survfit.formula stood for the simple cumulative hazard estimate plus the exponential survival
estimate, “th2” specified the tie-corrected cumulative hazard plus exponential survival, while
survfit.coxph used “breslow” and “efron” for the same two combinations. The updated routines
now have separate stype and ctype arguments. For the first, 1= direct and 2=exponent of the
cumulative hazard and for the second, 1=simple and 2= corrected for ties.

The Cox model is a special case in two ways: 1. the the way in which ties are treated in
the likelihood should match the way they are treated in creating the hazard and 2. the direct
estimate of survival can be very difficult to compute. The survival package’s default is to use the

96

ctype option which matches the ties option of the coxph call along with an exponential estimate
of survival. This ctype choice preserves some useful properties of the martingale residuals.

A second issue is multiple observations per subject, and how those impact the computations.
This leads to 3 common arguments:

e id: an identifier in each row of the data, which allows the routines to identify multiple rows
for a subject

e cluster: identify correlated rows, which should be combined when creating the robust
variance

e robust: TRUE or FALSE, to compute a robust variance.

These arguments have been inconsistent in the past, partly because of the sequential ap-
pearance of multiple use cases. The package started with only the simplest data form: one
observation per subject, one endpoint. To this has been added:

a. Multiple observations per subject
b. Multiple endpoints per subject
c. Multiple types of endpoints

Case (a) arises as a way to code time-dependent covariates, and in this case an id statement
is not needed, and in fact you will get the same estimates and standard errors with or without
it. (There will be a change in the counts of subjects who leave or enter an interval, since an
observation pair (0, 10), (10, 20) for the same subject will not count as an exit (censor) at 10
along with an entry at 10.) If (b) is true then the robust variance is called for and one will
want to have either a cluster argument or the robust=TRUE argument. In the coxph routine,
a cluster(group) term in the model statement can be used instead of the cluster argument,
but this is no longer the preferred form. When (b) and (c) are true then the id statement is
required in order to obtain a correct estimate of the result. This is also the case for (c) alone
when subjects do not all start in the same state. For competing risks data — multiple endpoints,
everyone starts in the same state, only one transition per subject — the id statement is not
necessary nor (I think) is a robust variance.

When there is an id statement but no cluster or robust directive, then the programs will
use (b) as a litmus test to decide between model based or robust variance, if possible. (There
are edge cases where only one of the two variance estimates has been implemented, however). If
there is a cluster argument then robust=TRUE is assumed. If only a robust=TRUE argument is
given then the code treats each line of data as independent.

A.2 Survfit

There has been a serious effort to harmonize the various survfit methods. Not all paths had the
same options or produced the same outputs.

e Common arguments of id, cluster, influence, stype and ctype.

97

— If stype=1 then the survival curve S(t) is produced directly, if stype=2 it is created
as the exp(-H) where H is the cumulative hazard.

— If ctype=1 the Nelson-Aalen formula is used, and for ctype=2 there is a correction
for ties.

— The usual curve for a Cox model using the Efron approximate is (2,2), for instance,
while the ordinary non-parametric KM is (1, 1).

e The routines now produce both the estimated survival and the estimated cumulative haz-
ard, along with their errors

e Some code paths produce std(S) and some std(log(S)), the object now contains a log.se
flag telling which. (Before, downstream routines just “had to know”).

e using a single subscript on a survfit object now behaves like the use of a single subscript
on an array or matrix, in that the result has only one dimension.

A utility function survfitO is used by the print and plot methods to add a starting “time 0”
value, normally x=0, y=1, to the survival curve(s). It also aligns all the matrices so that they
correspond to the time vector, inserts the correct standard errors, etc. This may be useful to
other programs.

A.3 Coxph

The multi-state objects include a states vector, which is a simple list of the state names. The
cmap component is an integer matrix with one row for each term in the model and one column for
each transition. Each element indexes a position in the coefficient vector and variance matrix.

e Column labels are of the form 1:2, which denotes a transition from state[1] to state[2].

e If a particular term in the data, “age” say, was not part of the model for a particular
transition then a 0 will appear in that position of cmap.

o If two transitions share a common coefficient, both those element of cmap will point to the
same location.

e Following the coefficient information will be a row labeled (Baseline), which contains
integers identifing which transitions do or do not share their baseline hazard.

e Following this are rows for each strata term (if any) in the model, each a 0/1 vector which
marks transitions to which this strata applies.

98

Bibliography

[1] L.A. Escobar and Jr. Meeker W.Q. Assessing influence in regression analysis with censored
data. Biometrics, 48:507-28, 1992.

[2] T. R. Fleming and D. P. Harrington. Nonparametric estimation of the survival distribution
in censored data. Comm. Stat. Theory Methods, 13:2469—-2486, 1984.

[3] P.J. Green. Iteratively reweighted least squares for maximum likelihood estimation, and some
robust and resistant alternatives (with discussion). J. Royal Stat. Soc. B, 46:149-192, 1984.

[4] J. D. Kalbfleisch and R. L. Prentice. The Statistical Analysis of Failure Time Data. Wiley,
New York, 1980.

[5] J. D. Kalbfleisch and R. L. Prentice. The Statistical Analysis of Failure Time Data, second
edition. Wiley, 2002.

[6] C.L. Loprinzi, J. A. Laurie, H. S. Wieand, J. E. Krook, P. J. Novotny, J. W. Kugler, J. Bartel,
M. Law, M. Bateman, N. E. Klatt, A. M. Dose, P. S. Etzell, R. A. Nelimark, J. A. Mailliard,
and C. G. Moertel. Prospective evaluation of prognostic variables from patient-completed
questionnaires. J. Clinical Oncol., 12:601-607, 1994.

[7] P. McCullagh and J.A. Nelder. Generalized Linear Models. Chapman and Hall, 1983.

[8] T. M. Therneau and P. M. Grambsch. Modeling Survival Data: Extending the Cox Model.
Springer-Verlag, New York, 2000.

99

