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Chapter 1

Introduction

Kernighan’s Law: “Everyone knows that debugging is twice as hard as writing a
program in the first place. So if you’re as clever as you can be when you write it,
how will you ever debug it?”

The most complex code in the survival package arises out of two aspects. First, some of
the mathematical formulas underlying the code are themselves complex, a second is the work
I have done to avoid O(n2) computations in the algorithms. A consequence of this is that a
few comment lines interspersed into the source code will never be enough information. Anyone
reading it, including myself, is likely to ask “what the heck is he trying to do here?” A higher
level overview is needed that can include equations and talk about higher level concepts.

For many years I have used the noweb package to intersperse technical documentation with
the source code for the survival package. However, despite its advantages, the uptake of noweb by
the R community in general has been nearly nil. It is increasingly clear that no future maintainer
will continue the work, e.g., on the github page I have yet to recieve a suggested update that
actually fixed the .Rnw source file instead of the .R file derived from it. This means that I can’t
merge a suggested change automatically, but have to replicate it myself.

This document is a start at addressing this. As routines undergo maintainance, I will remove
the relevant .Rnw file in the noweb directory and work directly on the C and R code, migrating the
extra material into this document. In this vignette are discussions of design issues, algorithms,
and detailed formulas. In the .R and .c code I will place comments of the form “See methods
document, abc:def”, adding an abc:def entry to the index of this document. I am essentially
splitting each noweb document into two parts. The three advantages are

• Ease the transition to community involvement and maintainance.

• The methods document will be a more ready source of documentation for those who want
to know technical details, but are not currently modifying the code.

• (minor) I expect it will be useful to have the methods document and the R or C code open
simultaneously in 2 windows, when editing.

However, this conversion will be a long process.
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Notation Throughout this document I will use formal counting process notation, so you may
as well get used to it. The primary advantage is that it is completely precise, and part of the goal
for this document is to give a fully accurate description of what is computed. In this notation
we have

• Yi(t) = 1 if observation i is at risk at time t, 0 otherwise.

• Ni(t) = total number of events, up to time t for subject i.

• dNi(t) = 1 if there was an event at exactly time t

• X = the matrix of covariates, with n rows, one per observation, and a column per covariate.

• X(s) = the time-dependent covariate matrix, if there are time-dependent covariates

For multistate models the extends to Yij(t), which is 1 if subject i is at risk and in state j
at time t, and Nijk(t) which is the number of j to k transitions that have occured, for subject i,
up to time t. The number at risk and number of events at time t can be written as

n(t) =

n∑
i=1

wiYi(t)

= Y (t)

d(t) =

n∑
i=1

widNi(t)

= dN(t)

where wi are optional weights for each observation. N(t) is the cumulative number of events up
to time t. I will often also use ri(t) = exp(Xi(t)β) as the per observation risk score in a Cox
model.
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Chapter 2

Survival Curves

The survfit function was set up as a method so that we could apply the function to both formulas
(to compute the Kaplan-Meier) and to coxph objects. The downside to this is that the manual
pages get a little odd: survfit is generic and survfit.formula and survfit.coxph are the ones
a user will want. But from a programming perspective it has mostly been a good idea. At one
time, long long ago, we allowed the function to be called with “Surv(time, status)” as the formula,
i.e., without a right hand side of ~1. That was a bad idea, now abandoned: survfit.Surv is
now a simple stub that prints an error message.

2.1 Roundoff and tied times
One of the things that drove me nuts was the problem of “tied but not quite tied” times. It is a
particular issue for both survival curves and the Cox model, as both treat a tied time differently
than two close but untied values. As an example consider two values of 24173 = 23805 + 368.
These are values from an actual study with times in days: enrollment at age 23805 days and then
368 days of follow-up. However, the user chose to use age in years, and saved those values out
in a CSV file, the left hand side of the above equation becomes 66.18206708000000 and the right
hand side addition yeilds 66.18206708000001. The R phrase unique(x) sees these two values
as distinct but table(x) and tapply see it as a single value since they first apply factor to
the values, and that in turn uses as.character. A transition through CSV is not necessary
to create the problem. Consider the small code chunk below. For someone born on 1960-03-
10, it caclulates the time interval between a study enrollment on each date from 2010-01-01 to
2010-07-29 (200 unique dates) and a follow up that is exactly 29 days later, but doing so on age
scale.

> tfun <- function(start, gap, birth= as.Date("1960-01-01")) {
as.numeric(start-birth)/365.25 - as.numeric((start + gap)-birth)/365.25

}
> test <- logical(200)
> for (i in 1:200) {

test[i] <- tfun(as.Date("2010/01/01"), 29) ==
tfun(as.Date("2010/01/01") + i, 29)
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}
> table(test)
test
FALSE TRUE

148 52
The number of FALSE entries in the table depends on machine, compiler, and possibly several
other issues. There is discussion of this general issue in the R FAQ: “why doesn’t R think these
numbers are equal”. The Kaplan-Meier and Cox model both pay careful attention to ties, and
so both now use the aeqSurv routine to first preprocess the time data. It uses the same rules as
all.equal to adjudicate ties and near ties. See the vignette on tied times for more detail.

The survfit routine has been rewritten more times than any other in the package, as we trade
off simplicty of the code with execution speed. The current version does all of the oranizational
work in S and calls a C routine for each separate curve. The first code did everything in C
but was too hard to maintain and the most recent prior function did nearly everything in S.
Introduction of robust variance prompted a movement of more of the code into C since that
calculation is computationally intensive.

The survfit.formula routine does a number of data checks, then hands the actual work
off to one of three computational routes: simple survival curves using the survfitKM.R and
survfitkm.c functions, interval censored data to survfitTurnbull.R, and multi-state curves
using the survfitAJ.R and survfitaj.c pair.

The addition of + cluster(id) to the formula was the suggested form at one time, we now
prefer id as a separate argument. Due to the long comet’s tail of usage we are unlikely to
formally depreciate the older form any time soon. The istate argument applies to multi-state
models (Aalen-Johansen), or any data set with multiple rows per subject; but the code refrains
from complaint if it is present when not needed.

2.2 Single outcome
We bein with classic survival, where there is a single outcome. Multistate models will follow in
a separate section.

At each event time we have

• n(t) = weighted number at risk

• d(t) = weighted number of events

• e(t) = unweighted number of events

leading to the Nelson-Aalen estimate of cumulative hazard and the Kaplan-Meir estimate of
survival, and the estimate of hazard at each time point.

KM(t) = KM(t−)(1− d(t)/n(t)

NA(t) = NA(t−) + d(t)/n(t)h(t) = d(t)/n(t)

An alternative estimate in the case of tied times is the Fleming-Harrington. When there are
no case weights the FH idea is quite simple. The assumption is that the real data is not tied,
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but we saw a coarsened version. If we see 3 events out of 10 subjects at risk the NA increment is
3/10, but the FH is 1/10 + 1/9 + 1/8, it is what we would have seen with the uncoarsened data.
If there are case weights we give each of the 3 terms a 1/3 chance of being the first, second, or
third event

KM(t) = KM(t−)(1− d(t)/n(t)

NA(t) = NA(t−) + d(t)/n(t)

FH(t) = FH(t−) +

3∑
i=1

(d(t)/3

n(t)− d(t)(i− 1)/3

If we think of the size of the denominator as a random variable Z, an exact solution would
use E(1/Z), the FH uses 1/E(Z) and the NA uses 1/max(Z) as the denominator for each of
the 3 deaths. Although Fleming and Harrington were able to show that the FH has a lower
MSE than the KM, it little used. The primary reasons for its inclusion in the package are first,
that I was collaborating with them at the time so knew of these results, but second and more
importantly, this is identical to the argument for the Efron approximation in a Cox model. (The
NA hazard corresponds to the Breslow approximation.) The Efron approx is the default for the
coxph function, so post coxph survival curves need to deal with it.

When one of these 3 subjects has an event but continues to be at risk, which can happen
with start/stop data, then the argument gets trickier. Say that the first of the 3 continues, the
others do not. We can argue that subject 1 remains at risk for all 3 denominators, or not. The
first is more a mathematical viewpoint, the second more medical, e.g., in a study with repeated
infections you will never have a second one recorded on the same day. For multi-state, we finally
“tossed in the towel” and now use the Breslow approx as default for multi-state hazard (coxph)
models. For single state, the FH estimate is rarely reqested but we still do our best to handle
all aspects of it (pride and history), but there would be few tears if it were dropped.

When there is (time1, time2) data the code uses a position vector, explained further below
which is 1 if this is obs is the leftmost for a subjet and 2 if it is the rightmost, 3 if it is both.
A primary purpose was to not count a subject as an extra entry and censor in the middle of a
string of times such as (0, 10), (20, 35), (35, 50), but we also use it to moderate the FH estimate:
only those with an event at the end of their intervals participate in the special computation for
ties.

The survfitKM call has arguments of

• y: a matrix y containing survival times, either 2 or 3 columns

• weight: vector of case weights

• ctype: compuation for the cumulative hazard: either the Nelson-Aalen (1) or Efron ap-
proximation for ties (2) approach. Number 2 is very rarely used.

• stype: computation for the survival curve: either product-limit (1), also known as the
Kaplan-Meier or exp(-cumulative hazard) (2). Use of ctype=2, stype=2 matches a Cox
model using the Efron approximation for ties, ctype=1, stype=2 is the Fleming-Harrington
estimate of survival or a Cox model with the Breslow approximation for ties.

• type: older form of the ctype/stype argument, retained for backwards compatability. Type
1= (ctype 1/ stype 1), 2= (2, 1), 3 = (1,2), 4= (2,2).
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• id: subject id, used for data checks when there are multiple rows per subject

• cluster: clustering used for the robust variance. Clustering is based on id if cluster is
missing (the usual case)

• influence: return the influence matrix for the survival

• start.time: optional starting time for the curve

• entry: return entry times for (time1, time2) data

• time0: include time 0 in the output

• se.fit: compute the standard errors

• conf.type, conf.int, conf.lower: options for confidence intervals

2.2.1 Confidence intervals
If p is the survival probability and s(p) its standard error, we can do confidence intervals on
the simple scale of p ± 1.96s(p), but that does not have very good properties. Instead use a
transformation y = f(p) for which the standard error is s(p)f ′(p), leading to the confidence
interval

f−1 (f(p) +−1.96s(p)f ′(p))

Here are the supported transformations.

f f ′ f−1

log log(p) 1/p exp(y)
log-log log(− log(p)) 1/ [p log(p)] exp(− exp(y))

logit log(p/1− p) 1/[p(1− p)] 1− 1/ [1 + exp(y)]

arcsin arcsin(
√
p) 1/(2

√
p(1− p)) sin2(y)

Plain intervals can give limits outside of (0,1), we truncate them when this happens. The log
intervals can give an upper limit greater than 1 (rare), again truncated to be ≤ 1; the lower limit
is always valid. The log-log and logit are always valid. The arcsin requires some fiddling at 0
and π/2 due to how the R function is defined, but that is only a nuisance and not a real flaw in
the math. In practice, all the intervals except plain appear to work well. In all cases we return
NA as the CI for survival=0: it makes the graphs look better.

Some of the underlying routines compute the standard error of p and some the standard error
of log(p). The selow argument is used for the modified lower limits of Dory and Korn. When
this is used for cumulative hazards the ulimit arg will be FALSE: we don’t want to impose an
upper limit of 1.

2.2.2 Robust variance
For an ordinary Kapan-Meier curve it can be shown that the infinitesimal jackknife (IJ) variance
is identical to the Greenwood estimate, so the extra compuational burden of a robust estimate
is unnecessary. The proof does not carry over to curves with (time1, time2) data. The use of
(time1, time2) data for a single outcomes arises in 3 cases, with illustrations shown below.
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• Delayed entry for a subset of subjects. The robust variance in this case is not identical to
the Greenwood formula, but is very close in all the situations I have seen.

• Multiple events of the same type, as arises in reliability data. In this case the cumulative
hazard rather than P(state) is the estimate of most interest; it is known as the mean
cumulative function (MCF) in the reliability literature. If there are multiple events per
subject (the usual) an id variable is required. A study with repeated glycemic events as
the endpoint (not shown) had a mean of 48 events per subject over 5.5 months. In this
case accounting for within-subject correlation was crucial; the ratio of robust/asymptotic
standard error was 4.4. For the valveSeat data shown below the difference is minor.

• Survival curves for a time-dependent covariate, the so called “extended Kaplan-Meier” [2].
I have strong statistical reservations about this method.

Here are examples of each. In the myeloma data set the desired time scale was time since
diagnosis, and some of the patients in the study had been diagnosed at another institution
before referral to the study institution.

> fit1a <- survfit(Surv(entry, futime, death) ~ 1, myeloma)
> fit1b <- survfit(Surv(entry, futime, death) ~ 1, myeloma, id=id, robust=TRUE)
> matplot(fit1a$time/365.25, cbind(fit1a$std.err, fit1b$std.err/fit1b$surv),

type='s',lwd=2, lty=1, col=2:3, #ylim=c(0, .6),
xlab="Years post diagnosis", ylab="Estimated sd of log(surv)")

> #
> # when two valve seats failed at the same inspection, we need to jitter one
> # of the times, to avoid a (time1, time2) interval of length 0
> ties <- which(with(valveSeat, diff(id)==0 & diff(time)==0)) #first of a tie
> temp <- valveSeat$time
> temp[ties] <- temp[ties] - .1
> vdata <- valveSeat
> vdata$time1 <- ifelse(!duplicated(vdata$id), 0, c(0, temp[-length(temp)]))
> vdata$time2 <- temp
> fit2a <- survfit(Surv(time1, time2, status) ~1, vdata)
> fit2b <- survfit(Surv(time1, time2, status) ~1, vdata, id=id)
> plot(fit2a, cumhaz=TRUE, xscale=365.25, xlab="Years in service",

ylab="Estimated number of repairs")
> lines(fit2b, cumhaz=TRUE, lty=c(1,3,3))
> legend(150, 1.5, c("Estimate", "asymptotic se", "robust se"), lty=1:3, bty='n')
> #
> # PBC data, categorized by most recent bilirubin
> # as an example of the EKM
> pdata <- tmerge(subset(pbcseq, !duplicated(id), c(id, trt, age, sex, stage)),

subset(pbcseq, !duplicated(id, fromLast=TRUE)), id,
death= event(futime, status==2))

> bcut <- cut(pbcseq$bili, c(0, 1.1, 5, 100), c('normal', 'moderate', 'high'))
> pdata <- tmerge(pdata, pbcseq, id, cbili = tdc(day, bcut))
> pdata$ibili <- pdata$cbili[match(pdata$id, pdata$id)] # initial bilirubin
> ekm <- survfit(Surv(tstart, tstop, death) ~ cbili, pdata, id=id)
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> km <- survfit(Surv(tstart, tstop, death) ~ ibili, pdata, id=id)
> plot(ekm, fun='event', xscale=365.25, lwd=2, col=1:3, conf.int=TRUE,

lty=2, conf.time=c(4,8,12)*365.25,
xlab="Years post enrollment", ylab="Death")

> lines(km, fun='event', lwd=1, col=1:3, lty=1)
> # conf.time= c(4.1, 8.1, 12.1)*365.25)
> text(c(4600, 4300, 2600), c(.23, .56, .78), c("Normal", "Moderate", "High"),

col=1:3, adj=0)
> legend("topleft", c("KM", "EKM"), lty=1:2, col=1, lwd=2, bty='n')
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The EKM plot is complex: dashed are the EKM along with confidence itervals, solid lines
are the KM stratified by enrollment bilirubin. The EKM bias for normal and moderate is large,
but confidence intervals differ little between the robust and asymptotic se (latter not shown).

As shown above, more often than not the robust IJ variance is not needed for the KM curves
themselves. However, they are the central computation for psuedovalues, which are steadily
increasing in popularity. Let Uk(t) be the IJ for observation k at time t. This is a vector, but
in section ?? for multi-state data it will be a matrix with 1 column per state. Likewise let C(t)
and A(t) be influence vectors for the cumulative hazard and the area under the curve at time t.
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Let h(t) be the hazard increment at time t. Then

h(t) =

∑
i widNi(t)∑
i wiYi(t)

(2.1)

∂h(t)

∂wk
=

dNi(t)− Yk(t)h(t)∑
i wiYi(t)

(2.2)

= Ck(t)− Ck(t−)

S(t) =
∏
s≤t

1− h(s) (2.3)

= S(t−)[1− h(t)]

Uk(t) =
∂S(t)

∂wk
(2.4)

= Uk(t−)[1− h(t)]− S(t−)
dNi(t)− Yk(t)h(t)∑

i wiYi(t)
(2.5)

Uk(t) =
∂
∏

s≤t 1− h(s)

∂wk

=
∑
s≤t

S(t)

1− h(s)

dNi(s)− Yk(s)h(s)∑
i wiYi(s)

= S(t)
∑
s≤t

dNi(s)− Yk(s)h(s)

[1− h(s)]
∑

i wiYi(s)
(2.6)

= S(t)

∫ t

0

∂ log[1− hk(s)]

wk
dN(s) (2.7)

The simplest case is Ck(τ) at a single user requested reporting time τ , i.e., a simple use of
the pseudo routine. The obvious code will update all n elements of C at each event time, an
O(nd) computation where d is the number of unique event times ≤ τ . For most data d and n
grow together, and O(n2) computations are something we want to avoid at all costs, a large data
set will essentially freeze the computer.

The code solution is to create a running total z of the right hand term of (2.2), which applies
to all subjects at risk. Then the leverage for an observation at risk over the interval (a, b) is

z(t) =
∑
s≤t

h(s)∑
i wiYi(s)

Ck(τ) = fracNk(τ)
∑
i

wiYi(b) + z(min(a, τ))− z(min(b, τ))

In R code this becomes an indexing problem. We can create 3 n by m = number of reporting
times matrices that point to the correct elements of the vectors c(0, 1/n.risk) and c(0,
n.event/n.risk2̂) obtained from the survfit object.

The computation for survival starts out exactly the same if using the exponential estimate
S(t) = exp(−Λ(t)), otherwise do the same computation but using the rightmost term of equation
(2.6). At the end multiply the column for reporting time τ by −S(τ), for each τ .
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Figure 2.1: Two ways of looking at the AUC

There are two ways to look at the influence on the sojuourn time, which is calculated as the
area under the curve. They are shown in the figure 2.1 for an AUC at time 55.

The first uses the obvious rectangle rule. The leverage of observation i on AUC(55) is the
sum of the leverage of observation i on the height of each of the circles times the width of the
associated rectangle. The leverage on the height of each circle are the elements of U . The second
figure depends on the fact that the influence on the AUC must be the same as the influence on
55-AUC. It will be the influence of each observation on the length of each circled segment, times
the distance to 55. This is closely related to the asymptotic method used for the ordinary KM,
which assumes that the increments are uncorrelated.

Using the first approach, let Let w0, w1, . . . , wm be the widths of the m+ 1 rectangles under
the survival curve S(t) from 0 to τ , and d1, . . . , dm the set of event times that are ≤ τ . Further,
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let uij be the additive elements that make up U as found in the prior formulas, i.e.,

Uik = S(dk)

k∑
j=1

uij

uij =
∂ log(1− h(dj))

∂wi
KM

= −dNi(dj)− Yi(dj)h(dj)

[1− h(dj)]Y (dj)

u∗
ij =

∂ − h(dj)

∂wi
exp(chaz)

= −dNi(dj)− Yi(dj)h(dj)

Y (dj)

The second varianct holsd when using the exponential form of S.
Finally, let A(a, b) be the integral under S from a to b.

A(0, τ) = w01 +

m∑
j=1

wjS(dj) (2.8)

nonumber (2.9)
∂A(0, τ

∂wk
=

∂A(d1, τ

∂wk

∂A(d1, τ

∂wk
=

m∑
j=1

wjUkj

=

m∑
j=1

wjS(dj)

j∑
i=1

uki

=

m∑
i=1

uki

 m∑
j=i

wjS(dj)


=

m∑
i=1

A(di, τ)uki (2.10)

This is a similar sum to before, with a new set of weights. Any given (time1, time2) ob-
servation involves u terms over that (time1,time2) range, we can form a single cumulative sum
and use the value at time2 minus the value at time1. A single running total will not work for
multiple τ values, however, since the weights depend on τ . Write A(di, τ) = A(d1, τ)−A(d1, di)
and separate the two sums. For the first A(d1, τ) can be moved outside the sum, and so will
play the same role as S(d) in U , the second becomes a weighted cumulative sum with weights
that are independent of tau.

Before declaring victory with this last modification take a moment assess the computational
impact of replacing A(di, τ) with two terms. Assume m time points, d deaths, and n observations.
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Method 1 will need to O(d) to compute the weights, O(d) for the weighted sum, and O(2n) to
create each column of the output for (time1, time2) data, for a total of O(2m(n + d)). The
second needs to create two running sums, each O(d) and O(4n) for each column of output for
O(2d+4mn). The more ’clever’ appoach is always slightly slower! (The naive method of adding
up rectangles is much slower than either, however, because it needs to compute U at every death
time.)

Variance Efficient computation of a the variance of the cumulative hazard within survfit is
more complex, since this is computed at every event time. We consider three cases below.

Case 1: The simplest case is unclustered data without delayed entry; not (time1,time2) data.

• Let W =
∑

i w
2
i be the sum of case weights for all those at risk. At the start everyone is

in the risk set. Let v(t) = 0 and and z(t) = 0 be running sums.

• At each event time t

1. Update z(t) = z(t−)−h(t)/Y (t), the running sum of the right hand term in equation
(2.2).

2. For all i= (event or censored at t), fill in their element in Ci, add (wiCi)
2 to v(t), and

subtract w2
i from W .

3. The variance at this time point is v(t) +Wz2(t); all those still at risk have the same
value of Ck at this time point.

Case 2: Unclustered with delayed entry. Let the time interval for each observation i be
(si, ti). In this case the contribution at each event time, in step 3 above, for those currently at
risk is ∑

j

w2
j [z(t)− z(sj)]

2 = z2(t)
∑
j

w2
j +

∑
j

w2
j z

2(sj)− 2z(t)
∑

(wjz(sj)

This requires two more running sums. When an observation leaves the risk set all three of them
are updated. In both case 1 and 2 our algorithm is O(d+ n).

Case 3: Clustered variance. The variance at each time point is now

varNA(t) =
∑
g

∑
i∈g

wi
∂NA(t)

∂wi

2

(2.11)

The observations within a cluster do not necessarily have the same case weight, so this does not
collapse to one of the prior cases. It is also more difficult to identify when a group is no longer
at risk and could be moved over to the v(t) sum. In the common case of (time1, time2) data
the cluster is usually a single subject and the weight will stay constant, but we can not count on
that. In a marginal structural model (Robbins) for instance the inverse probability of censoring
weights (IPCW) will change over time.

The above, plus the fact that the number of groups may be far less than the number of
observations, suggests a different approach. Keep the elements of the weighted grouped C
vector, one row per group rather than one row per observation. This corresponds to the inner
term of equation (2.11). Now update each element at each event time. This leads to an O(gd)
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algorithm. A slight improvement comes from realizing that the increment for group g at a given
time involves the sum of Yi(t)wi, and only updating those groups with a non-zero weight.

For the Fleming-Harrington update, the key realization is that if there are d death at a given
timepoint, the increment in the cumulative hazard NA(t) is a sum of d ’normal’ updates, but
with perturbed weights for the tied deaths. Everyone else at risk gets a common update to the
hazard. The basic computation and equations for C involve an small loop over d to create the
increments, sort of like an aside in a stage play, but then adding them into C is the same as
before. The basic steps for case 1–3 do not change.

The C code for survfit has adapted case 3 above, for all three of the hazard, survival, and
AUC. A rationale is that if the data set is very large the user can choose std.err =FALSE as an
option, then later use the residuals function to get values at selected times. When the number
of deaths gets over 1000 is where we begin to really notice the O(nd) slowdown, but a plot only
needs 100 points to look smooth Most use cases will only need variance at a 1–3 points. Another
reason is that for ordinary survival, robust variance is almost never requested unless there is
clustering.

2.3 Aalen-Johansen
In a multistate model let the hazard for the jk transition be

λ̂jk(t) =

∑
i dNijk(t)∑
i Yij(t)

=
N jk(t)

Y (t)

and gather terms together into the nstate by nstate matrix A(t) with Ajk(t) = λ̂jk(t), with
Ajj(t) = −

∑
k ̸=j Ajk(t). That is, the row sums of A are constrainted to be 0.

The cumulative hazard estimate for the j : k transition is the cumulative sum of λ̂jk(t). Each
is treated separately, there is no change in methods or formula from the single state model.

The estimated probability in state p(t) is a vector with one element per state and the natural
constraint that the elements sum to 1; it is a probability distribution over the states. Two
estimates are

p(t) = p(0)
∏
s≤t

eA(s) (2.12)

p(t) = p(0)
∏
s≤t

(I +A(s))

= p(0)
∏
s≤t

H(s) (2.13)

Here p(0) is the estimate at the starting time point. Both exp(A(s)) and I +A(s) are transition
matrices, i.e., all elements are positive and rows sum to 1. They encode the state transition
probabilities at time s, the diagonal is the probability of no transition for observations in the
given state. At any time point with no observed transitions A(s) = 0 and H(s) = I; wlog the
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product is only over the discrete times s at which an event (transition) actually occured. For
matrices exp(C) exp(D) ̸= exp(C +D) unless DC = CD, i.e., equation (2.12) does not simplify.

Equation (2.13) is known as the Aalen-Johansen estimate. In the case of a single state
it reduces to the Kaplan-Meier, for competing risks it reduces to the cumulative incidence (CI)
estimator. Interestingly, the exponential form (2.12) is almost never used for survfit.formula, but
is always used for the curves after a Cox model. Both of the forms obey the basic probability
rules that 0 ≤ pk(t) ≤ 1 and

∑
k pk(t) = 1; all probabilities are between 0 and 1 and the sum

is 1. The analog of (2.13) has been proposed by some authors for Cox model curves, but it can
lead to negative elements of p(t) in certain cases, so the survival package does not support it.

The compuations are straightforward. The code makes two passes through the data, the first
to create all the counts: number at risk, number of events of each type, number censored, etc.
Since for most data sets the total number at risk decreses over time this pass is done in reverse
time order since it leads to more additions than subtractions in the running number at risk and
so less prone to round off error. (Unless there are extreme weights this is gilding the lily - there
will not be round off error for either case.) The rule for tied times is that events happen first,
censors second, and entries third; imagine the censors at t+ ϵ and entries at t+ 2ϵ.

When a particular subject has multiple observations, say times of (0,10), (10,15) and (15,24),
we don’t want the output to count this as a “censoring” and/or entry at time 10 or 15. The
position vector is 1= first obs for a subject, 2= last obs, 3= both (someone with only one
row of data), 0=neither. This subject would be 1,0,0,2. The position vector is created by the
survflag routine. If the same subject id were used in two curves the counts are separate for
each curve; for example curves by enrolling institution in a multi-center trial, where two centers
happened to have an overlapping id value.

A variant of this is if a given subject changed curves at time 15, which occurs when users
are estimating the “extended Kaplan-Meier” curves proposed by Snapinn [2], in which case the
subject will be counted as censored at time 15 wrt the first curve, and an entry at time 15 for
the second. (I myself consider Snapinn’s estimate to be statistically unsound.)

If a subject changed case weights between the (0,10) and (10,15) interval we do not count
them as separate entry and exits for the weighted n.enter and n.censor counts. This means that
the running total of weighted n.enter, n.event, and n.censor will not recreate the weighted n.risk
value; the latter does change when weights change in this way. The rationale for this is that
the entry and censoring counts are mostly used for display, they do not participate in further
computations.

2.3.1 Data
The survfit routine uses the survcheck routine, internally, to verify that the data set follows an
overall rule that each subject in the data set follows a path which is physically possible:

1. Cannot be in two places at once (no overlaps)

2. Over the interval from first entry to last follow-up, they have to be somewhere (no gaps).

3. Any given state, if entered, must be occupied for a finite amount of time (no zero length
intervals).

4. States must be consistent. For an interval (t1, t2, B) = entered state B at time t2, the
current state for the next interval must be B (no teleporting).
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I spent some time thinking about whether I should allow the survfit routine to bend the
rules, and allow some of these. First off, number 1 and 3 above are not negotiable; otherwise it
becomes impossible to clearly define the number at risk. But perhaps there are use cases for 2
and/or 4?

One data example I have used in the past for the Cox model is a subject on a research
protocol, over 30 years ago now, who was completely lost to follow-up for nearly 2 years and
then reappeared. Should they be counted as “at risk” in that interim? I argued no, on the grounds
that the were not at risk for an “event that would have been captured” in our data set — we
would never have learned of a disease progression. Someone should not be in the denominator
of the Cox model (or KM) at a given time point if they cannot be in the numerator. We decided
to put them into the data set with a gap in their follow-up time.

But in the end I’ve decided no to bending the rules. The largest reason is that in my
own experience a data set that breaks any of 1–4 above is almost universally the outcome of a
programming mistake. The above example is one of only 2 non-error cases I can think of, in
nearly 40 years of clinical research: I want the routine to complain. (Remember, I’d like the
package to be helpful to others, but I wrote the code for me.) Second is that a gap can easily
be accomodated by creating extra state which plays the role of a waiting room. The P(state)
estimate for that new state is not interesting, but the others will be identical to what we would
have obtained by allowing a gap. Instances of case 4 can often be solved by relabeling the states.
I cannot think of an actual use case.

2.3.2 Counting the number at risk
For a model with k states, counting the number at risk is fairly straightforward, and results in
a matrix with k columns and one row per time point. Each element contains the number who
are currently in that state and not censored. Consider the simple data set shown in figure 2.2.

The obvious algorithm is simple: at any given time point draw a vertical line and count the
number in each state who intersect it. At a given time t the rule is that events happen first,
then censor, then entry. At time 2 subject 4 has an event and subject 3 enters: the number at
risk for the four states at time point 2 is (4, 0, 0, 0). At time point 2 + ϵ it is (4, 1, 0, 1). At
time 9 subject 3 is still at risk.

The default is to report a line of output at each unique censoring and event time, adding rows
for the unique entry time is an optional argument. Subject 5 has 4 intervals of (1,3b), (3,6+),
(6,8b) and (8,11+): time 6 is not reported as a censoring time, nor as an entry time. Sometimes a
data set will have been preprocessed by the user with a tool like survSplit, resulting in hundreds
of rows for some subjects, most of which are ‘no event here’, and there is no reason to include
all these intermediate times in the output. We make use of an ancillary vector position which
is 1 if this interval is the leftmost of a subject sequence, 2 if rightmost, 3 if both. If someone
had a gap in followup we would treat their re-entry to the risk sets as an entry, however; the
survcheck routine will have already generated an error in that case.

The code does its summation starting at the largest time and moving left, adding and sub-
tracting from the number at risk (by state) as it goes. In most data sets the number at risk
decreases over time, going from right to left results in more additions than subtractions and thus
less potential roundoff error. Since it is possible for a subject’s intervals to have different case
weights, the number at risk does need to be updated at time 6 for subject 5, though that time
point is not in the output.
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Figure 2.2: A simple multi-state data set. Colors show the current state of entry (black), a (red),
b(green) or c (blue), letters show the occurrence of an event.
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In the example outcome b can be a repeated event, e.g., something like repeated infections.
At time 8 the cumulative hazard for event b will change, but the proability in state will not. It
would be quite unusual to have a data set with some repeated states and others not, but the
code allows it.

Consider the simple illness-death model in figure ??. There are 3 states and 4 transtions
in the model. The number at risk (n.risk), number censored (n.censor), probability in state
(pstate) and number of entries (n.enter) comonents of the survfit call will have 3 columns, one
per state. The number of events (n.event) and cumulative hazard (cumhaz) components will
have 4 columns, one per transition, labeled as 1.2, 1.3, 2.1, and 2.3. In a matrix of counts with
row= starting state and column = ending state, this is the order in which the non-zero elements
appear. The order of the transitions is yet another consequence of the fact that R stores matrices
in column major order.

There are two tasks for which the standard output is insufficient: drawing the curves and
computing the area under the curve. For both these we need to know t0, the starting point for
the curves. There are 4 cases:

1. This was specified by the user using start.time

2. All subjects start at the same time

3. All subjects start in the same state

4. Staggered entry in diverse states

For case 1 use what the user specified, of course. For (time, status) data, i.e. competing risks
use the same rule as for simple survival, which is min(time, 0). Curves are assumed to start at 0
unless there are negative time values. Otherwise for case 2 and 3 use min(time1), the first time
point found; in many cases this will be 0 as well.

The hardest case most often arises for data that is on age scale where there may be a
smattering of subjects at early ages. Imagine that we had subjects at ages 19, 23, 28, another
dozen from 30-40, and the first transition at age 41, 3 states A, B, C, and the user did not specify
a starting time. Suppose we start at age=19 and that subject is in state B. Then p(19)= c(0,1,0),
and AJ p(t) estimate will remain (0,1,0) until there is a B:A or B:C transition, no matter what
the overall prevalence of inital states as enrollment progresses. Such an outcome is not useful.
The default for case 4 is to use the smallest event time at time 0, with intial prevalence the
distribution of state for those observations which are at risk at that time. The prevalence at the
starting time is saved in the fit object as p0. The best choice for case 4 is a user specified time,
however.

Since we do not have an estimate of p= probability in state before time 0, the output will not
contain any rows before that time point. Note that if there is an event exactly at the starting
time: a death at time 0 for competing risks, a transition at start.time, or case 4 above, that the
first row of the pstate matrix will not be the same as p0. The output never has repeats of the
same time value (for any given curve). One side effect of this is that a plotted curve never begins
with a vertical drop.
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2.4 Influence
Let C(t) be the influence matrix for the cumulative hazard Λ(t) and U(t) that for the probability
in state p(t). In a multistate model with s states there are s2 potential transitions, but only a
few are observed in any given data set. The code returns the estimated cumulative hazard Λ̂ as
a matrix with one column for each j : k transition that is actually observed, the same will be
true for C. We will slightly abuse the usual subscript notation; read Cijk as the ith row and the
j : k transition (column). Remember that a transition from state j to the same state can occur
with multiple events of the same type. Let

Y j(t) =
∑
i

Yij(t)

be the number at risk in state j at time t. Then

Ci(t) =
∂Λ(t)

∂wi

= Ci(t−) +
∂λ(t)

∂wi

λjk(t) =

∑
widNijk

Y j(t)
(2.14)

∂λjk(t)

∂wi
=

dNijk(t)− Yij(t)λjk(t)

Y j(t)
(2.15)

Vc(t) =
∑
i

[wiCi(t)]
2 (2.16)

At any time t, formula (2.15) captures the fact that an observation has influence only on potential
transitions from its current state at time t, and only over the (time1, time2) interval it spans. At
any given event time, each non-zero hjk at that time will add an increment to only those rows
of C representing observations currently at risk and in state j. The IJ variance is the weighted
sum of squares. (For replication weights, where w=2 means two actual observations, the weight
is outside the brackets. We will only deal with sampling weights.)

The (weighted) grouped estimates are

Cgjk(t) =
∑
i∈g

wiCijk(t)

= Cgjk(t−) +
∑
i∈g

wi
dNijk(t)− Yij(t)lambdajk(t)

Y j(t)
(2.17)

= Cgjk(t−) +
∑
i∈g

wi
dNijk(t)

nj(t)
−

∑
i∈g

Yij(t)wi

 λjk(t)

Y j(t)
(2.18)

(2.19)

A j : k event at time t adds only to the jk column of C. The last line above (2.18) spits out
the dN portion, which will normally be 1 or at most a few events at this time point, from the
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second, which is identical for subjects at risk in group g. This allows us to split out the sum of
weights. Let wgj(t) be the sum of weights by group and state, which is kept in a matrix of the
same form as U and can be efficiently updated. Each row of the grouped C is computed with
the same effort as a row of the ungrouped matrix.

Let C be the per observation influence matrix, W a diagonal matrix of per-observation
weights, and B the n by g 01/ design matrix that collapses observations by groups. For instance, B
= model.matrix( factor(grp) -1). The the weighted and collapsed influence is V = B′WC,
and the infinitesimal jackknife variances are the column sums of the squared elements of V,
colSums(V*V). A feature of the IJ is that the column sums of WC and of B′WC are zero. In
the special case where each subject is a group and the weight for a subject is constant over time,
then one can collapse and then weight rather than weight and then collapse. The survfitci.c
routine (now replaced by survfitaj.c) made this assumption, but unfortunately the code had no
test cases with disparate weights within a group and so the error was not caught for several
years. There is now a test case.

For C above, where each row is a simple sum over event times, formula (2.18) essentially
does the scale + sum step at each event time and so only needs to keep one row per group. The
parent routine will warn if any subject id is in two different groups. Doing otherwise makes no
statistical sense, IMHO, so any instance if this is almost certainly an error in the data setup.
However, someone may one day find a counterexample, hence a warning rather than an error.

For the probability in state p(t), if the starting estimate p(0) is provided by the user, then
U(0) = 0. If not, p(0) is defined as the distribution of states among those at risk at the first
event time τ .

pj =

∑
wiYij(τ)∑
wiYi(τ)

∂pj
∂wk

=
Yij(τ)− Yi(τ)pj∑

wiYi(τ)

Assume 4 observations at risk at the starting point, with weights of (1, 4, 6, 9) in states (a,
b, a, c), respectively. Then p(0) = (7/20, 4/20, 9/20) and the unweighted U matrix for those
observations is

U(0) =


(1− 7/20)/20 (0− 4/20)/20 (0− 9/20)/20
(0− 7/20)/20 (1− 4/20)/20 (0− 9/20)/20
(1− 7/20)/20 (0− 4/20)/20 (0− 9/20)/20
(0− 7/20)/20 (0− 4/20)/20 (1− 9/20)/20


with rows of 0 for all observations not at risk at the starting time. Weighted column sums are
wU = 0.

The AJ estimate of the probablity in state vector p(t) is defined by the recursive formula
p(t) = p(t−)H(t). Remember that the derivative of a matrix product AB is d(A)B + Ad(B)
where d(A) is the elementwise derivative of A and similarly for B. (Write out each element of

19



the matrix product.) Then ith row of U satisfies

Ui(t) =
∂p(t)

∂wi

=
∂p(t−)

∂wi
H(t) + p(t−)

∂H(t)

∂wi

= Ui(t−)H(t) + p(t−)
∂H(t)

∂wi
(2.20)

The first term of 2.20 collapses to ordinary matrix multiplication, the second to a sparse mul-
tiplication. Consider the second term for any chosen observation i, which is in state j. This
observation appears only in row j of H(t), and thus dH is zero for all other rows of H(t) by
definition. If observation i is not at risk at time t then dH is zero. The derviative vector thus
collapses an elementwise multiplication of p(t−) and the appropriate row of dH, or 0 for those
not at risk.

Let Q(t) be the matrix containing p(t−)Yi(t)dHj(i).(t)/dwi as its ith row, j(i) the state for
row j. Then

U(t2) = U(t1)H(t2) +Q(t2)

U(t3) = (U(t1)H(t2) +Q(t2))H(t3) +Q(t3)

... =
...

Can we collapse this in the same way as C, retaining only one row of U per group containing the
weighted sum? The equations above are more complex due to matrix multiplication. The answer
is yes, because the weight+collapse operation can be viewed as multiplication by a design matrix
B on the left, and matrix multiplication is associative and additive. That is B(U+Q) = BU+BQ
and B(UH) = (BU)H. However, we cannot do the rearrangment that was used in the single
endpoint case to turn this into a sum, equation (2.6), as matrix multiplication is not commutative.

For the grouped IJ, we have

Ug(t) =
∑
i∈g

wiUi(t)

= Ug(t−)H(t) +
∑
i∈g

wiYij(t)
∂H(t)

∂wi

The above has the potential to be a very slow computation. If U has g rows and p columns,
at each event time there is a matrix multiplication UH, creation of the H and H ′ matrices,
addition of the correct row of H ′ to each row of U , and finally adding up the sqared elements
of U to get a variance. This gives O(d(gp2 + 2p2 + gp+ gp)). Due to the matrix multiplication,
every element of U is modified at every event time, so there is no escaping the final O(gp) sum
of squares for each column. The primary gain is to make g small.

At each event time t the leverage for the AUC must be updated by δU(t−), where δ is the
amount of time between this event and the last. At each reporting which does not coincide with
an event time, there is a further update with δ the time between the last event and the reporting
time, before the sum of squares is computed. The AUC at the left endpoint of the curve is 0
and likewise the leverage. If a reporting time and event time coincide, do the AUC first.

At each event time
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1. Update wgj(τ) =
∑

i∈g Yij(τ)wi, the number currently at risk in each group.

2. Loop across the events (dNijk(τ) = 1). Update C using equation (2.21) and create the
transformation matrix H.

3. Compute U(τ) = U(τ−)H using sparse methods.

4. Loop a second time over the dNijk(τ) terms, and for all those with j ̸= k apply (2.22)
and(2.23).

5. For each type of transition jk at this time, apply equation (2.24), and if j ̸= k, (2.25) and
(2.26).

6. Update the variance estimates, which are column sums of squared elements of C, U, and
AUC leverage.

λjk(τ) =

∑
i dNijk(τ)∑
i wiYij(τ)

Cg(i)jk(τ) = Cgjk(τ−) + wg(i)
dNijk(τ)∑
i wiYij(τ)

(2.21)

Ug(i)j(τ) = Ugj(τ−)− wg(i)
dNijk(τ)pj(τ−)∑

i wiYij(τ)
(2.22)

Ug(i)k(τ) = Ugk(τ−) + wg(i)
dNijk(τ)pj(τ−)∑

i wiYij(τ)
(2.23)

Cghk(τ) = Cgjk(τ−)− wgj(τ)
λjk(τ)∑
i wiYij(τ)

(2.24)

Ugj(τ) = Ugj(τ−) + wgj(τ)
λjk(τ)pj(τ−)∑

i wiYij(τ)
(2.25)

Ugk(τ) = Ugk(τ−)− wgj(τ)
λjk(τ)pj(τ−)∑

i wiYij(τ)
(2.26)

In equations (2.21)–(2.23) above g(i) is the group to which observed event dNi(τ) belongs.
At any reporting time there is often 1 or at most a handful of events. In equations (2.24)–(2.26)
there is an update for each row of C and U , each row a group. Most often, the routine will be
called with the default where each unique subject is their own group: if only 10% of the subjects
are in group j at time τ then 90% of the wgj weights will be 0. It may be slightly faster to test
for w positive before multiplying by 0?

For the ‘sparse multiplication’ above we employ simple approach: if the H − I matrix has
only 1 non-zero diagonal, then U can be updated in place. For the NAFLD example in the
survival vignette, for instance, this is true for all but 161 out of the 6108 unique event times
(5%). For the remainder of the event times it suffices to create a temporary copy of U(t−).
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Chapter 3

Cox model

3.1 Fitting
To be filled in.

3.2 Absolute risk

3.2.1 Cumulative hazard and survival curves
The survival curves from a fitted coxph model default to the Breslow estimate = exp(cumulative
hazard). We also support the simple product-limit estimate (for which I have concerns, see more
in the multi-state section), and the Kalfleisch-Prentice modification of the product-limit form.

Predicted survival curves are always for a particular set of covariates. We do not have much
sympathy for the notion of the baseline hazard, which textbooks define as the predicites survival
for all x equal to zero, since it can easily lead to overflow or underflow errors in the exponential
function. The coxph object includes a means component, which contains a workable vector of
centering constants, i.e., a set for which the exponential will not be a problem. The labels
of “means” is historical, as individual elements of the vector are not necessarily a mean, 0/1
covariates for instance are given a centering constant of zero. Let c be that centering vector,
and define r(z; c) = exp[(z − c)β] be the recentered risk score for a hypothetical subject with
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covariate vector z. The predicted cumulative hazard for a new subject with covariate vector z is

λ̂(t; z) =

∑
i widNi(t)∑

i Yi(t)wir(xi; z)

= e(z−c)βλ̂(t; c)

Λ(t; z) =

∫ t

0

λ̂(s; z)ds

= e(z−c)βΛ(t; c) (3.1)

Ŝ(t; z) = e−Λ(t;z)

= Ŝ(t; c)e
(z−c)β

(3.2)

Per above we can compute the survival curve for any covariate z from the “baseline” curve
for x = c. Any vector c that will ensure that the above can be calculated without roundoff
error will suffice for safety, the survival code uses the mean component from the fit. To be clear,
for most data sets use of c = 0 as a centering constant will be just fine; it is sufficient to keep
the r(xi, c) values far enough away from the double.min.exp and double.max.exp components
of .Machine (around 1000 on many machines) such that weighted means and variances, using
r(xi, c) as the weights, do not lose precision. One case we have seen is where someone is looking
at a seasonal effect and uses a Date variable for the covariate. Say that the study were centered
in 2022, then the mean x value is approximately 19000. (Even then we would be okay if β is
small enough).

If a user requested the product-limit form, then the predicted survival is

Ŝ(t; z) =
∏
s≤t

[1− lhat(t; z)]

̸=

∏
s≤t

[1− lhat(t; c)]

e(z−c)β

A key issue is that if r(xi; z) is very small, e.g., when computing the predicted curve for a
very high risk subject, then 1− λ̂(t; z) may be negative, leading to an invalid survival estimate.
For this reason the survival package does not support using a product-limit form.

An alternative estimate of λ̂ proposed by Kalbfleisch and Prentice avoids this issue of an
invalid estimate. Also, it collapses to the Kaplan-Meier when β = 0, something that some
consider to be a major plus. In this author’s opinion it is a “meh”; a numerical difference that
is tiny until the number at risk falls below 20, and even then much smaller than the se of the
estimate. For ordinary survival, Fleming and Harrington showed the exp(-cumulative hazard)
actually had a smaller MSE than the KM, but again the difference is so small that no one really
cares. For completeness, our software allows the KP as an option. The variance of log(S),
however, is assumed to be exactly the same as that of the exponential estimate, i.e., the variance
of Λ. Creating a special variance estimate is just too much work

The KP approach computes a multiplicative increment z(t) as the solution to equation (3.3).
If there is a single event at time t, this reduces to the closed form of (3.4), where d is shorthand
for the index of the death at that time point. Otherwise the code uses simple bisection on the
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interval [0,1), which must contain the solution. A bit of algebra confirms that the final estimate
is mathematically independent of the centering vector c.

∑
wiYi(t)r(xi; c) =

∑
dNi(t)wi

r(xi; c)

1− z(t)r(xi;c)
(3.3)

z(t) = 1− wd
r(xd; c)

(
∑

wiYi(t)r(xi; c))
1/r(xd;c)

(3.4)

Ŝ(t; z) =

∏
s≤t

z(t)

e(z−c)β

(3.5)

3.2.2 Variance
The variance of Λ̂(t; z) has two terms, the first an analog to the variance increment for the
Nelson-Aalen estimate, the second accounts for the variance of β̂. Let µ̃(t; z) be the cumulative
weighted differnce between z and the running mean

µ̃(t; z) =

∫ t

0

(z − x(s))dΛ(s; z)e(z−c)β

∫ t

0

(z − x(s))dΛ(s; c) (3.6)

This is a weighted average distance between z and the center of the data. The variance is

varΛ̂(t; z) =

[
e2(z−c)β

∫ t

0

λ̂(s; c)∑
i wiYi(s)r(xi; c)

]
+ µ̃(t; z)′Vµ̃(t; z)

The agsurv routine returns individual terms of the integral as a vector varhaz, the first term
of the variance is then a weighted cumulative sum. A matrix with a row for each time point is
returned as xbar, containing the product of λ̂(t; c) with x(t). (Note the x itself does not depend
on centering.) The routine also returns the vector λ(t; c).

The second term of the variance cannot be treated as a cumulative sum of squares, we need
to first add and then multiply. In the pseudo code below, hazard and xbar are results from
agsurv and vmat the variance matrix from the coxph model.

> temp1 <- outer(hazard, z, '*') - xbar
> temp2 <- apply(temp1, 2, cumsum)
> v2 <- rowSums((temp2 %*% vmat)* temp2)

• temp1 is a matrix where each row is λ(t; c)(z − x(t))

• each row of temp2 is the integral up to that point

• element i of v2 contains the result of temp2[i,] %*% vmat %*% t(temp2[i,]). The use of
both matrix multiplication and elementwise multiplication, in the right order, is important.

We can offset the use of λ(t; c) instead of λ(t; z) at the end, but creation and summation of the
z − x matrix needs to be done separately for each z.
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3.2.3 Time-dependent coefficients
Look at an example from the time-dependent vignette.

> vet2 <- survSplit(Surv(time, status) ~ ., data= veteran, cut=c(90, 180),
episode= "tgroup", id="id", start="time1", end="time2")

> vfit2 <- coxph(Surv(time1, time2, status) ~ trt + prior +
I(karno/10):strata(tgroup), data=vet2)

> vfit2
Call:
coxph(formula = Surv(time1, time2, status) ~ trt + prior + I(karno/10):strata(tgroup),

data = vet2)

coef exp(coef)
trt -0.011025 0.989035
prior -0.006107 0.993912
I(karno/10):strata(tgroup)tgroup=1 -0.487550 0.614129
I(karno/10):strata(tgroup)tgroup=2 0.080504 1.083834
I(karno/10):strata(tgroup)tgroup=3 -0.083487 0.919903

se(coef) z
trt 0.189062 -0.058
prior 0.020355 -0.300
I(karno/10):strata(tgroup)tgroup=1 0.062217 -7.836
I(karno/10):strata(tgroup)tgroup=2 0.128228 0.628
I(karno/10):strata(tgroup)tgroup=3 0.146204 -0.571

p
trt 0.953
prior 0.764
I(karno/10):strata(tgroup)tgroup=1 4.64e-15
I(karno/10):strata(tgroup)tgroup=2 0.530
I(karno/10):strata(tgroup)tgroup=3 0.568

Likelihood ratio test=63.04 on 5 df, p=2.857e-12
n= 225, number of events= 128
> cdata <- data.frame(time1 = rep(c(0,90,180), 2),

time2 = rep(c(90,180, 365), 2),
status= rep(0,6), #necessary, but ignored
tgroup= rep(1:3, 2),
trt = rep(1,6),
prior= rep(0,6),
karno= rep(c(40, 75), each=3),
curve= rep(1:2, each=3))

> cdata
time1 time2 status tgroup trt prior karno curve

1 0 90 0 1 1 0 40 1
2 90 180 0 2 1 0 40 1
3 180 365 0 3 1 0 40 1
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4 0 90 0 1 1 0 75 2
5 90 180 0 2 1 0 75 2
6 180 365 0 3 1 0 75 2
> vsurv <- survfit(vfit2, newdata=cdata, id=curve)

In the code slist will have one curve per stratum, 3 in the above case. The id for this new
curve has nothing to do with any id variable in the original fit, here it is an id for the resulting
curve. The algorithm is executed once per new curve

• For each row of data corresponding to this id, pluck off the appropriate rows of slist[[stratum
of this row]], i.e. the time, n.censor, n.event, etc components.

• Glue these together into a new curve

The (time1, time2) values in the new data correspond to the time values in the chosen
stratum; in this case those are consistent, but one could have strata on different time scales. The
time values in the new curve will be

• time values for the stratum of row 1

• (time2[1] - time1[2]) + time values for the stratum of row 2

• (time2[2] - time2[3]) + time values for the stratum of row 3

• . . .

The idea is that if stratum 1 went from 30 to 100 and stratum 2 from 150 to 200, we want our
new time scale to be from 30 to 150. In the case above these splicing constants are all zero,
which is what I expect, but users do things I have never thought of.

The underlying routine agsurv returns results for the hazard function centered at c = the
means component of the coxph result. But from this point forward, we need to do separate
computations for each new id, a simple loop since there are unlikely to be many separate id
values. Let j be the rows of newdata that corresond to the first id. For each of these rows
pull off the hazard increments, increments of term 1 of the variance, and the µ̃ values of (3.6);
multiple the first and third by risk[j], the second by risk[j] squared, and save them. When that
is done,

• Compute the cumulate hazard, cumsum(unlist(hazard increments))

• Exponential survial is exp(-cum haz), KP survival is cumprod of the KP contributions

• The first term of the variance is again cumsum(unlist(var1))

• For the second term we need the tmu matrix, using cumsum(unlist) for each column,
separately. Then the quadratic form can be computed.

I am moderately confident of the statisical theory for this in the case of a time-dependent
covariate, where each new id covers the same range of time, without holes or overlaps. For the
more complex cases I am much less certain, and would myself use a jackknife or boostrap.
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Chapter 4

Multistate hazard model

4.1 Absolute risk
To begin, first remember that predicitons from a Cox model are always for someone, that is,
some particular covariate vector z. This includes survival curves and other estimates of absolute
risk. Put aside the notion of “the” baseline survival curve from the start. For a multistate model
the predicted curve is a matrix product

ri(z) = exp((xi − z)β)

λjk(t; z) =

∑
i widNijk(t)∑

i wiri(z)Yij(t)

p(t; z) = p(0)
∏
s≤t

eA(s;z)

A(s; z) =

 □ λ12(s; z) λ13(s; z) . . .
λ21(s; z) □ λ23(s; z) . . .

...
...

...
. . .


In the above j, k are states, i is an observation. The diagonal elements are such that row sums
are zero.

The mstate package uses the first order Taylor series exp(A) ≈ I + A, for p(t; z), which is
parallel to the formula in the Aalen-Johansen. We do not, for a couple of reasons.

• If the chosen x corresponds to a particularly high relative hazard, then the diagonal element
if I +A can be negative, and I +A is no longer a valid transition matrix.

• Consistency with the single state Cox model’s Breslow estimate, which uses the exponential.
The I+A approximation has never been seriously proposed for the simple Cox model,
probably because of the point just above.

For matrices, exp(A) exp(B) ̸= exp(A + B) unless AB = BA, which does not hold for this
application: we cannot avoid the matrix multiplication. For transition matrices such as these
exp(A(s)) will have row sums of 1 and all elements non-negative, numerically they are very well
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behaved arguments to the matrix exponential function. Per section ??, for non-tied death times
(only 1 event at this time) A and exp(A) have a simple closed form and computation will be
fast.

For simple survival the above reduces to exp(−Λ(t; z), and in that case the variance of the
cumulative hazard estimate has been derived by (ref), not using the IJ as

v(t; z) = d′I−1d+

∫ t

0

∑
i dNi(t)∑

i Yi(t)ri(z)

d(t; z) =

∫ t

0

(x(s)− z)dΛ(s; z)
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Chapter 5

Residuals

5.1 Survival
The residuals.survfit function will return the IJ values at selected times, and is the more useful
interface for a user. One reason is that since the user specifies the times, the result can be
returned as an array with (obervation, state, time) as the dimensions, even for a fit that has
multiple curves. Full influence from the survfit routine, on the other hand, are returned as a
list with one per curve. The reason is that each curve might have a different set of event times.

Because only a few times are reported, an important question is whether a more efficient
algorithm can be created. For the cumulative hazard, each transition is a separte computation,
so we can adapt the prior fast computation. We now have separate hazards for each observed
transition jk, with numerator in the n.transitions matrix and denominator in the n.risk matrix.
An observation in state j is at risk for all j : k transitions for the entire (time1, time2) interval;
the code can use a single set of yindex, tindex, sindex and dindex intervals. The largest change
is to iterate over the transtions, and the 0/1 for each j:k transition replaces simple status.

The code for this section is a bit opaque, here is some further explanation. Any given
observation is in a single state over the (time1, time2) interval for that transition and accumulates
the −λjk(t)/nj(t) portion of the IJ for all j : k transitions that it overlaps, but only those that
occur before the chosen reporting time τ . Create a matrix hsum, one column for each observed
jk transition, each column contains the cumulative sum of −λjk(t)/nj(t) for that transition, and
one row for each event time in the survfit object.

To index the hsum matrix create a matrix ymin which has a row per observation and a
column per reporting time (so is the same size as the desired output), whose i,j element contains
the index of the largest event time which is ≤ min(time2[i], τj), that is, the last row of hsum that
would apply to this (observation time, reporting time) pair. Likewise let smin be a matrix which
points to the largest event time which does not apply. The ymin and smin matrices apply to
all the transitions; they are created using the outer and pmin functions. The desired dλ portion
of the residual for the jk transition will be hsum[smin, jk] - hsum[ymin, jk], where jk is a
shorthand for the column of hmat that encodes the j : k transition. A similar sort of trickery
is used for the dNjk part of the residual. Matrix subscripts could be used to make it slightly
faster, at the price of further impenetrability.
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Efficient computation of residuals for the probability in state are more difficult. The key
issue is that at every event time there is a matrix multiplication U(t−)H(t) which visits all n
by p elements of U . For illustration assume 3 event times at 1,2,3, and the user only wants to
report the leverate at time 3. Let B be the additions at each time point. Then

U(1) = U(0)H(1) +B(1)

U(2) = U(1)H(2) +B(2)

U(3) = U(2)H(3) +B(3)

U(4) = U(3)H(4) +B(4)

= ([U(0)H(1) +B(1)]H(2) +B(2))H(3) +B(3)

= U(0)[H(1)H(2)H(3)] +B(1)[H(2)H(3)] +B(2)H(3) +B(3)

The first four rows are the standard iteration. The U matrix will quickly become dense, since
any j : k transition adds to any at-risk row in state j. Reporting back only at only a few time
point does not change the computational burden of the matrix multiplications. We cannot reuse
the logarithm trick from the KM residuals, as log(AB) ̸= log(A) + log(B) when A and B are
matrices.

The expansion in the last row above shows another way to arrange the computation. For
any time t with only a j : k event, B(t) is non-zero only in columns j and k, and only for
rows with Yj(t) = 1, those at risk and in state j at time t. For example, assume that d50 were
the largest death time less than or equal to the first reporting time. Accumulate the product
in reverse order as B(50) + B(49)H(50) + B(48)[H(49)H(50)], . . ., updating the product of H
terms at each step. Most updates to H involve a sparse matrix (only one event) so are O(s2)
where s is the number of states. Each B multiplication is also sparse. We can then step ahead
to the next reporting time using the same algorithm, along with a final matrix update to carry
forward U(50). At the end there will have been d=number of event times matrix multipications
of a sparse update H(t) times the dense product of later H matrices, and each row i of U will
have been ’touched’ once for every death time k such that Yi(dk) = 1 (i.e., each B term that it
is part of), and once more for each prior reporting time.

I have not explored whether this idea will work in practice, nor do I see how to extend it to
the AUC computation.

As a first example, consider the mgus2 data set, set, a case with 2 competing risks of death
and plasma cell malignancy (PCM), and use a reporting times of 10, 20, and 30 years. There
are n =‘r nrow(m2)‘ observations, ‘r etot‘ events and ‘r sum(etime)‘ unique event times before
30 years, with an average of r = ‘r round(nisk,1)‘ subjects at risk at each of these event times.
As part of data blinding follow up times in the MGUS data set were rounded to months, and as
a consequence there are very few singleton event times.

Both the H matrix and products of H remain sparse for any row corresponding to an absorb-
ing state (a single 1 on the diagonal), so for a competing risk problem the UH multiplication
is O(3n) multiplications, those for the nested algorithm will be O(3r) where r is the average
number at risk. In this case the improvement for the nested algorithm is modest, and at an
additional price of 9d multiplications to accumulate H.

> ndata <- tmerge(nafld1[,1:8], nafld1, id=id, death= event(futime, status))
> ndata <- tmerge(ndata, subset(nafld3, event=="nafld"), id,

nafld= tdc(days))
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> ndata <- tmerge(ndata, subset(nafld3, event=="diabetes"), id = id,
diabetes = tdc(days), e1= cumevent(days))

> ndata <- tmerge(ndata, subset(nafld3, event=="htn"), id = id,
htn = tdc(days), e2 = cumevent(days))

> ndata <- tmerge(ndata, subset(nafld3, event=="dyslipidemia"), id=id,
lipid = tdc(days), e3= cumevent(days))

> ndata <- tmerge(ndata, subset(nafld3, event %in% c("diabetes", "htn",
"dyslipidemia")),

id=id, comorbid= cumevent(days))
> ndata$cstate <- with(ndata, factor(diabetes + htn + lipid, 0:3,

c("0mc", "1mc", "2mc", "3mc")))
> temp <- with(ndata, ifelse(death, 4, comorbid))
> ndata$event <- factor(temp, 0:4,

c("censored", "1mc", "2mc", "3mc", "death"))
> ndata$age1 <- ndata$age + ndata$tstart/365.25 # analysis on age scale
> ndata$age2 <- ndata$age + ndata$tstop/365.25
> ndata2 <- subset(ndata, age2 > 50 & age1 < 90)
> nfit <- survfit(Surv(age1, age2, event) ~1, ndata, id=id, start.time=50,

p0=c(1,0,0,0,0), istate=cstate, se.fit = FALSE)
> netime <- (nfit$time <=90 & rowSums(nfit$n.event) > 0)
> # the number at risk at any time is all those in the intial state of a transition
> # at that time
> from <- as.numeric(sub(":[0-9]*", "", colnames(nfit$n.transition)))
> fmat <- model.matrix(~ factor(from, 1:5) -1)
> temp <- (nfit$n.transition %*% fmat) >0 # TRUE for any transition 'from' state
> frisk <- (nfit$n.risk * ifelse(temp,1, 0))
> nrisk <- rowSums(frisk[netime,])
> maxrisk <- apply(frisk[netime,],2,max)

As a second case consider the NAFLD data used as an example in the survival vignette, a 5
state model with death and 0, 1, 2, or 3 metabolic comorbidities as the states. For a survival
curve on age scale, using age 50 as a starting point and computing the influence at age 90, the
data set has 16584 rows that overlap the age 50-90 interval, while the average risk set size is r =
703, < 12% of the data rows. There are 4392 unique event times between 50 and 90 of which
4194 have only a single event type and the remainder 2.

In this case the first algorithm can take advantage of sparse H matrices and the second of
sparse B matrices. The big gain is rows of B that are 0. To take maximal advantage of this we
can keep an updated vector of the indices of the rows that are at risk, see the section on skiplists.
Note: this has not yet been implemented.

For the AUC we can use a rearrangment. Below we write out the leverage on the AUC at
time d4, the fourth event, with wi = di+1 − di the width of the adjactent rectagles that make up
the area under the curve.
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A(d4) = U(0) [w0 +H(d1)w1 +H(d1)H(d2)w2 +H(d1)H(d2)H(d3)w3] +

B(d1) [w1 +H(d2)w2 +H(d2)H(d3)w3] +

B(d2) [w2 +H(d3)w3] +B(d3)w3

For U the matrix sequence was I, H3I, H2H3I, . . . , it is now starts with w3I, at the next
step we multiply the prior matrix by H3 and add w2I, at the third multiply the prior matrix by
H2 and add w1, etc.

5.2 Mulistate hazard models
For multistate models, or for simple models with multiple events per subject, we will use the IJ
estimate of variance. As a preliminar write down the martingale process for subject i

Mmjk(t) =

∫ t

0

dNmjk(s)− Ymj(s)e
rm(z)dΛjk(t; z)

=

∫ t

0

dNmjk(s)− Ymj(s)e
rm(z)

∑
i widNijk(s)∑
i Yij(s)eri(z)

Because of cancellation of exp(z) in the numerator and denominator the second expression is
independent of the target value z. Computationally, we will always use a centering constant c
= the mean component of the fit object to forestall any round off issues in the exp function.

∂
∑

i wiYij(t)ri(t; z)

∂wm
= Ymj(t)rm(t; z) +

∑
i

wiYij(t)ri(t; z)

[∑
p

(xip − zp)
∂βp

∂wm

]
(5.1)

= Ym(t)rm(t; z) +
∑
i

wiYi(t)ri(t; z)(xi − z)D′
m (5.2)

∂λjk(t; z)

∂wm
=

dNmjk(t)− dMm(t)∑
i wiri(z)Yij(t)

−
[
∑

i widNijk(t)] [
∑

i wiYi(t)ri(t; z)(xi − z)D′
m]

[
∑

i wiri(z)Yij(t)]
2

= a− b (5.3)

a = exp(z − c)
dNmjk(t)− dMm(t)∑

i wiri(c)Yij(t)

b = exp(z − c)λjk(t; c)(x(t)− z)D′
m (5.4)

Dm is row m of the dfbeta matrix for the Cox model’s coefficent vector β; D is an n by
p matrix where n is the number of observations and p the number of coefficients; treat xi − z
as a row vector, the ith row of the X matrix, recentered. The first term of equation (5.3) is
essentially the leverage of the ordinary cumulative hazard, with wiri replacing wi. The second
term is the the impact of wm as mediated through its effect on the model coefficients. Much like
confidence intervals for the fitted line in a linear regression, the impact is greater when z is far
from the mean of the covariates.
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Any row of the data will be at risk in exactly one state for the (time1, time2) interval of
that data row, so Yij(t) is non-zero for only one j. The second term is the the impact of wm

as mediated through its effect on the model coefficients. In the AJ estimate this meant that
any row of the data only has an effect on hazards that originate from that state. For the MSH
model, a coefficient that is common to two transitions means that all observations at risk for
either transition will also have an IJ term for both.

When the same covariate affects two transitions but with disjoint coefficients, the stacker
routine will have created an expanded X matrix which has separate columns for the two co-
efficients. Likewise, the D matrix will have a separate column for each coefficient and will be
semi-sparse, in that it has zeros for data rows that do not contribute to a give coefficient. Over
all rows, the right hand portion of equation (5.4) is rowSums((X- rep(z, each=nrow(X)))*
D).

5.3 Skiplists
An efficient structure for a continually updated index to the rows currently at risk appears to be
a skiplist, see table II of Pugh [1]. Each observation is added (at time2) and deleted (at time 1)
just once from the risk set so we have n additions and n deletions, which are faster for skip lists
than binary trees. Reading out the entire list, which is done at each event time, has the same
cost for each structure. Searching is faster for trees, but we don’t need that operation. If there
are k states we keep a separate skiplist containing those at risk for each state.

When used in the residuals function, we can modify the usual skiplist algorithm to take
advantage of two things: we know the maximum size of the list from the n.risk component, and
that the additions are nearly in random order. The last follows from the fact that most data
sets are in subject id order, so that ordering by observation’s ending time skips wildly across
data rows. For the nafld data example above, the next figure shows the row number of the first
200 additions to the risk set, when going from largest time to smallest. For the example given
above, the maximum number at risk in each of the 5 states is (1421, 1280, 845, 514, 0).

> sort2 <- order(ndata$age2)
> plot(1:200, rev(sort2)[1:200], xlab="Addition to the list",

ylab="Row index of the addition")
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Using p = 4 as recommended by Pugh [1] leads to log4(1420) = 5 linked lists; 1420 is the
maximum number of the n =22683 rows at risk in any one state at any one time. The first is
a forward linked list containing all those currently at risk, the second has 1/4 the elements, the
third 1/16, 1/64, 1/256. More precisely, 3/4 of the nodes have a single forward pointer, 3/16
have 2 forward pointers corresponding to levels 1 and 2, 3/64 have 3 forward pointer, etc. All
told there are 4/3 as many pointer as a singly linked list, a modest memory cost over a linked
list. To add a new element to the list first find the point of insertion in list 4, list 3, list 2, and
list 1 sequentially; each of which requires on average 2 forward steps. Randomly choose whether
the new entry should participate in 1, 2, 3 or 4 of the levels, and insert it.

Figure 5.1 shows a simplified list with 40 elements and 3 levels, along with the search path
for adding a new entry with value 100. The search starts at the head (shown here at x= 0),
takes one step at level 3 to find the largest element < 100 at level 3, then 3 steps at level 2, then
one more at level 1 to find the insertion point. This is compared to 20 steps using only level 1.
Since the height of a inserted node is chosen randomly there is always the possiblity of a long
final search on level 1, but even a string of 10 is unlikely: (3/4)10 < .06.
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Figure 5.1: A simplified skiplist with 40 elements and 3 levels, showing the path used to insert
a new element with value 100.
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Chapter 6

Misc numerics

6.1 Matrix exponentials and transition matrices
For multi-state models, we need to compute the exponential of the transition matrix, sometimes
many times. The matrix exponential is formally defined as

exp(A) = I +

∞∑
j=1

Ai/i!

The computation is nicely solved by the expm package if we didn’t need derivatives and/or high
speed. We want both.

We take advantage of three special cases to speed things up. Each depends on the structure
of A, which has the transition rates from state j to state k in off diagonal element Ajk (non
negative), and diagonal elements such that each row sums to zero. P = exp(A) is the transition
probabilty matrix for this time point, each row of P sums to 1 and all elements are non-negative.

1. If all the non-zero rates fall into a single row, or they all fall into a single column, then
there are simple closed form formulas shown below.

2. If the rate matrix R is upper triangular and the (non-zero) diagonal elements are distinct,
there is a fast matrix decomposition algorithm. If the transition matrix is acylic then it
can be rearranged to be in upper triangular form. The decomposition also gives a simple
expression for the derivative.

3. In the general case we use a Pade-Laplace algorithm: the same found in the matexp
package, but also supply derivatives if requested.

When derivatives are needed, the routine is also passed an array dR whose (j, k, i) element
is the derivative of Ajk with respect to parameter θi. In the case of infinitesimal jackknife
compuations, which is what is most used in the survival package, θ will be the per-subject
leverage on each of the underlying hazards at that time. (Or a group of subjects, for a grouped
jackknife). Since the rows of P must sum to one, note that the rows of any derivative of P will
sum to zero, i.e., dRjji = −

∑
k!=j dRjki. Since zero rates only occur for transitions that are
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not possible (exp(Xβ)λ(t) is 0 only if λ(t) is 0) the derivative will be non-zero only if the rate
is non-zero.

Let P (t) = exp(A(t)). If there is only one non-zero diagonal element, Ajj say, then

Pjj = e−Ajj

Pjk =
(
1− e−Ajj

) Ajk

/

∑
l ̸=j

Ajl

Pkk = 1; k ̸= j

and all other elements of P are zero. If there is only a single event at this time, which turns out
to be the most common case with continuous time data, then P and its derivative have only two
non-zero elements, corresponding to k= current state of the observation with an event. It is not
true that the derivative is zero for other subjects than the i who had an event, as everyone has
an impact on β̂ and thus on the estimated rate at that time.

∂Pjj

∂θjki
= −Pjj∂Ajk∂θjki

∂Pjk

∂θjki
= Pjj∂Ajk∂θjki

If there are multiple events at this time point but all have the same starting state, the The
derivative of P with respect to θjki will be 0 for all rows except row j.

∂Pjk

∂θjki
= etajkAjj single event type

∂Ajk

∂ηjm
= Ajjetajm

Ajm∑
l ̸=j Ajl

+ (Ajj − 1)
ηjm(1−

∑
l ̸=j Ajl)

(
∑

l ̸=j Ajl)2

If all non-zero rates lie in a single column k, then

Pjj = exp(−Ajk) j ̸= k

Pjk = 1− Pjj j ̸= k

Pkk = 1

If time is continuous then most events will be at a unique event time, and the first formula
will thus be the most common case. This formula also holds for competing risks. If there is a
shared hazard for a set of transitions to a single state k (often death), then for a unique event
time (or tied events of the same type) the second formula will hold.

The matrix decomposition is use when the state space is acylic, the case for many survival
problems. The states can be reordered so that A is always upper triangular. In that case, the
diagonal elements of A are the eigenvalues. If these are unique (ignoring the zeros), then an
algorithm of Kalbfleisch and Lawless gives both A and the derivatives of A in terms of a matrix
decomposition. For the remaining cases use the Pade’ approximation as found in the matexp
package.

The overall stategy is the following:
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1. Call survexpmsetup once, which will decide if the matrix is acyclic, and return a reorder
vector if so or a flag if it is not. This determination is based on the possible transitions,
e.g., on the transitions matrix from survcheck.

2. Call survexpm for each individual transition matrix. In that routine

• First check for the simple cases, otherwise

• Do not need derivatives: call survexpm

• Do need derivatives

– If upper triangular and no tied values, use the deriv routine
– Otherwise use the Pade routine
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residuals, 29

Andersen-Gill
influence, 18

cox:survival, 27
coxph:survival, 22

Kaplan-Meir, 4

multi-state
influence, 18

skiplist, 33
surfit

number at risk, 15
survfit, 3

AUC, 10
survfitkm

robust variance, 6
survival:Kalbfleisch-Prentice estimate, 23
survival:time-dependent coefficients, 25

tied times, 3
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