
survSNP: Power and Sample Size Calculations for SNP

Association Studies with Censored Time to Event

Outcomes

Kouros Owzar Zhiguo Li Nancy Cox Sin-Ho Jung

Chanhee Yi

January 24, 2023

1 Introduction

This vignette serves as a tutorial for using the survSNP extension package for conducting
power and sample size calculations for SNP association studies with censored time to event
outcomes. We begin by loading the package.

library(survSNP)

Loading required package: survival

Loading required package: Rcpp

Loading required package: lattice

Loading required package: foreach

Loading required package: xtable

2 Example 1

In this example, we conduct power calculations for a SNP for which the relative allelic
frequency for the risk allele B is q = 0.1. The validation data set is assumed to consist
of n = 500 patients. The event rate (e.g., death rate) is assumed to be ρ = 0.75 (i.e., 375
events among 500 patients). We hypothesize an e�ect size (genotype hazard ratio) ∆ = 1.25.

1

Finally, we assume that the median in the population is 1 unit of time (i.e., P (T̃ > t) = 0.5).
To �nd the asymptotic power, at the two-sided α = 0.05 level, the sim.snp.expsurv.power
function is used.

res1<-sim.snp.expsurv.power(1.25, n=500, raf=0.1, erate=0.75,

pilm=0.5, lm=1, B=0,

model="additive",test="additive",alpha=0.05)

Below, we show some of the relevant columns from the output.

res1[,c("n","GHR","erate","raf","B","alpha","pow0","pow","powB")]

n GHR erate raf B alpha pow0 pow powB

power 500 1.25 0.75 0.1 0 0.05 0.4706994 NA NA

The asymptotic power, at the two-sided α = 0.05 level, is 0.47. Note that we are assuming
that the median for the survival function in the population is 1 unit of time (that is why we
have set pilm=0.5 and lm=1). If we had desired to set power the study based on a population
whose 0.7 quantile is say 2 units of time, we would have set pilm=0.7 and lm=2. The current
version of the package supports power calculations for additive models.

By default, the asymptotic power based on the approximate asymptotic variance formula
is computed. The corresponding column name is pow0 in the output shown above. The
asymptotic power based on the exact variance formula (column pow) or the empirical power
(column powB) can be computed by setting the arguments exactvar=TRUE or B=b where b

is a positive integer. Be sure to set a random number generation seed when calculating the
empirical or the asymptotic power based on the exact variance formula to get reproducible
results. We illustrate these features next. This example is based on B = 10000 simulation
replicates.

set.seed(123)

res1b<-sim.snp.expsurv.power(1.25, n=500, raf=0.25, erate=0.75,

pilm=0.5, lm=1,

exactvar=TRUE,B=10000,

model="additive",test="additive",alpha=0.05)

The results are shown below.

res1b[,c("n","GHR","erate","raf","B","alpha","pow0","pow","powB")]

n GHR erate raf B alpha pow0 pow powB

power 500 1.25 0.75 0.25 10000 0.05 0.749999 0.769836 0.7556

2

3 Example 2

For power calculations for SNP association studies with censored outcomes, it is generally
desired to vary the e�ect size, sample size, event rate and the relative minor allele frequency.
These are denoted by the variable names GHRs, ns, rafs and erates in this example.

GHRs<-seq(1.05,1.5,by=0.05)

ns<-c(100,500,700)

rafs<-c(0.1,0.3,0.5)

erates<-c(0.5,0.7,0.9)

The function survSNP.power.table can be used to generate power calculations for this
combination of parameters. This is a wrapper function for sim.snp.expsurv.power.

res2<-survSNP.power.table(GHRs,ns,rafs,erates,

pilm=0.5,lm=1,

model="additive",test="additive",

alpha=0.05)

We print selected columns from the �rst three rows of the previous object next.

res2[1:3,c("n","GHR","erate","raf","pow0","pow","powB")]

n GHR erate raf pow0 pow powB

power 100 1.05 0.5 0.1 0.05719290 NA NA

power1 100 1.05 0.7 0.1 0.05819468 NA NA

power2 100 1.05 0.9 0.1 0.05917498 NA NA

Next, we will consider illustrating the previous set of results using the lattice package. The
power is illustrated in Figure 1. A revised version of this illustration limiting the presentation
to n =100 and displaying the type I error rate α is shown in Figure 2.

4 Example 3

We can also use the xtable package to summarize the results in a table. For this illustration,
we consider a subset of the rows from Example 2.

cols<-c("n","GHR","erate","raf","pow0")

res3<-subset(res2,GHR==1.25&raf==0.3&n==500,select=cols)

res3

3

n GHR erate raf pow0

power314 500 1.25 0.5 0.3 0.6407236

power1114 500 1.25 0.7 0.3 0.7694030

power2114 500 1.25 0.9 0.3 0.8515087

The corresponding table generated by xtable is shown in Table 1.

print(xtable(res3,digits=c(0,0,1,1,1,3)),

include.rownames=FALSE,floating=FALSE)

n GHR erate raf pow0
500 1.2 0.5 0.3 0.641
500 1.2 0.7 0.3 0.769
500 1.2 0.9 0.3 0.852

Table 1: Tabular summary of the results from Example 2

5 Miscellaneous

The function survSNP.power.table is a straightforward implementation of nested foreach

loops. In oder to maintain reproducibility of the randomly generated simulations, the loops
are executed sequentially. A vignette in the doRNG package provides simple examples of
how the code could be modi�ed to run in parallel, while maintaining reproducible ran-
dom number generation https://cran.r-project.org/web/packages/doRNG/vignettes/

doRNG.pdf. [The doRNG package itself is not required to implement this functionality]. Note
that some consideration should be given as to which parameter(s) to parallelize across, in
order to maximize use of available processing cores and minimize I/O overhead.

The tikzDevice and latticeExtra packages can be used to considerably re�ne the illus-
trations. The software development repository provides some examples bitbucket.org/

kowzar/survsnp/.

The session information for this vignette is provided in Table 2

4

KEY=paste("q=",levels(factor(res2$raf)),sep="")

KEY<-list(lines=list(col=1:length(KEY),lty=1:length(KEY)),

text=list(labels=paste("q=",levels(factor(res2$raf)),sep="")),

column=3)

print(xyplot(pow0~GHR|factor(erate)*factor(n),group=factor(raf),

data=res2,type="l",lty=KEY$lines$lty,col=KEY$lines$col,

key=KEY,

xlab="Genotype Hazard Ratio",ylab="Power"))

Genotype Hazard Ratio

P
ow

er

0.2

0.4

0.6

0.8

1.0

1.1 1.2 1.3 1.4 1.5

0.5
100

0.7
100

1.1 1.2 1.3 1.4 1.5

0.9
100

0.5
500

0.7
500

0.2

0.4

0.6

0.8

1.0
0.9
500

0.2

0.4

0.6

0.8

1.0
0.5
700

1.1 1.2 1.3 1.4 1.5

0.7
700

0.9
700

q=0.1 q=0.3 q=0.5

Figure 1: Power Illustration for Example 1.

5

print(xyplot(pow0~GHR|factor(erate),group=factor(raf),

data=subset(res2,n==ns[1]),

type="l",lty=KEY$lines$lty,col=KEY$lines$col,

key=KEY,

xlab="Genotype Hazard Ratio",ylab="Power",

sub=paste("n=",ns[1],", alpha=",round(unique(res2$alpha),2))))

n= 100 , alpha= 0.05

Genotype Hazard Ratio

P
ow

er

0.2

0.4

0.6

1.1 1.2 1.3 1.4 1.5

0.5 0.7

0.2

0.4

0.6

0.9

q=0.1 q=0.3 q=0.5

Figure 2: Power Illustration for Example 1 (restricted to n =100).

6

� R version 4.2.2 Patched (2022-11-10 r83330), x86_64-pc-linux-gnu

� Locale: LC_CTYPE=en_US.UTF-8, LC_NUMERIC=C, LC_TIME=en_US.UTF-8,
LC_COLLATE=C, LC_MONETARY=en_US.UTF-8, LC_MESSAGES=en_US.UTF-8,
LC_PAPER=en_US.UTF-8, LC_NAME=C, LC_ADDRESS=C, LC_TELEPHONE=C,
LC_MEASUREMENT=en_US.UTF-8, LC_IDENTIFICATION=C

� Running under: Ubuntu 20.04.5 LTS

� Matrix products: default

� BLAS: /usr/lib/x86_64-linux-gnu/blas/libblas.so.3.9.0

� LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.9.0

� Base packages: base, datasets, grDevices, graphics, methods, stats, utils

� Other packages: Rcpp 1.0.9, foreach 1.5.2, lattice 0.20-45, survSNP 0.26,
survival 3.4-0, xtable 1.8-4

� Loaded via a namespace (and not attached): Matrix 1.5-1, codetools 0.2-18,
compiler 4.2.2, evaluate 0.18, grid 4.2.2, highr 0.9, iterators 1.0.14, knitr 1.40,
magrittr 2.0.3, splines 4.2.2, stringi 1.7.8, stringr 1.4.1, tools 4.2.2, xfun 0.34

Table 2: Session Information

7

