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anneal Simulated Annealing Search for an optimal k-variable subset

Description

Given a set of variables, a Simulated Annealing algorithm seeks a k-variable subset which is opti-
mal, as a surrogate for the whole set, with respect to a given criterion.

Usage

anneal( mat, kmin, kmax = kmin, nsol = 1, niter = 1000, exclude
= NULL, include = NULL, improvement = TRUE, setseed = FALSE,
cooling = 0.05, temp = 1, coolfreq = 1, criterion = "default",
pcindices = "first_k", initialsol=NULL, force=FALSE, H=NULL, r=0,
tolval=1000*.Machine$double.eps,tolsym=1000*.Machine$double.eps)

Arguments

mat a covariance/correlation, information or sums of squares and products matrix of
the variables from which the k-subset is to be selected. See the Details section
below.

kmin the cardinality of the smallest subset that is wanted.

kmax the cardinality of the largest subset that is wanted.

nsol the number of initial/final subsets (runs of the algorithm).

niter the number of iterations of the algorithm for each initial subset.

exclude a vector of variables (referenced by their row/column numbers in matrix mat)
that are to be forcibly excluded from the subsets.

include a vector of variables (referenced by their row/column numbers in matrix mat)
that are to be forcibly included in the subsets.
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improvement a logical variable indicating whether or not the best final subset (for each cardi-
nality) is to be passed as input to a local improvement algorithm (see function
improve).

setseed logical variable indicating whether to fix an initial seed for the random number
generator, which will be re-used in future calls to this function whenever setseed
is again set to TRUE.

cooling variable in the ]0,1[ interval indicating the rate of geometric cooling for the
Simulated Annealing algorithm.

temp positive variable indicating the initial temperature for the Simulated Annealing
algorithm.

coolfreq positive integer indicating the number of iterations of the algorithm between
coolings of the temperature. By default, the temperature is cooled at every iter-
ation.

criterion Character variable, which indicates which criterion is to be used in judging
the quality of the subsets. Currently, the "RM", "RV", "GCD", "Tau2", "Xi2",
"Zeta2", "ccr12" and "Wald" criteria are supported (see the Details section, the
References and the links rm.coef, rv.coef, gcd.coef, tau2.coef, xi2.coef,
zeta2.coef and ccr12.coef for further details). The default criterion is "Rm"
if parameter r is zero (exploratory and PCA problems), "Wald" if r is equal to
one and mat has a "FisherI" attribute set to TRUE (generalized linear models),
and "Tau2" otherwise (multivariate linear model framework).

pcindices either a vector of ranks of Principal Components that are to be used for compari-
son with the k-variable subsets (for the GCD criterion only, see gcd.coef) or the
default text first_k. The latter will associate PCs 1 to k with each cardinality
k that has been requested by the user.

initialsol vector, matrix or 3-d array of initial solutions for the simulated annealing search.
If a single cardinality is required, initialsol may be a vector of length k, in
which case it is used as the initial solution for all nsol final solutions that are
requested; a 1 x k matrix (as produced by the $bestsets output value of the
algorithm functions anneal, genetic, or improve), or a 1 x k x 1 array (as
produced by the $subsets output value), in which case it will be treated as the
above k-vector; or an nsol x k matrix, or nsol x k x 1 3-d array, in which case
each row (dimension 1) will be used as the initial solution for each of the nsol
final solutions requested. If more than one cardinality is requested, initialsol
can be a length(kmin:kmax) x kmax matrix (as produced by the $bestsets
option of the algorithm functions), in which case each row will be replicated to
produced the initial solution for all nsol final solutions requested in each cardi-
nality, or a nsol x kmax x length(kmin:kmax) 3-d array (as produced by the
$subsets output option), in which case each row (dimension 1) is interpreted
as a different initial solution.
If the exclude and/or include options are used, initialsol must also respect
those requirements.

force a logical variable indicating whether, for large data sets (currently p > 400) the
algorithm should proceed anyways, regardless of possible memory problems
which may crash the R session.
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H Effect description matrix. Not used with the RM, RV or GCD criteria, hence the
NULL default value. See the Details section below.

r Expected rank of the effects (H) matrix. Not used with the RM, RV or GCD
criteria. See the Details section below.

tolval the tolerance level for the reciprocal of the 2-norm condition number of the
correlation/covariance matrix, i.e., for the ratio of the smallest to the largest
eigenvalue of the input matrix. Matrices with a reciprocal of the condition num-
ber smaller than tolval will activate a restricted-search for well conditioned
subsets.

tolsym the tolerance level for symmetry of the covariance/correlation/total matrix and
for the effects (H) matrix. If corresponding matrix entries differ by more than
this value, the input matrices will be considered asymmetric and execution will
be aborted. If corresponding entries are different, but by less than this value, the
input matrix will be replaced by its symmetric part, i.e., input matrix A becomes
(A+t(A))/2.

Details

An initial k-variable subset (for k ranging from kmin to kmax) of a full set of p variables is randomly
selected and passed on to a Simulated Annealing algorithm. The algorithm then selects a random
subset in the neighbourhood of the current subset (neighbourhood of a subset S being defined as the
family of all k-variable subsets which differ from S by a single variable), and decides whether to
replace the current subset according to the Simulated Annealing rule, i.e., either (i) always, if the
alternative subset’s value of the criterion is higher; or (ii) with probability exp

ac−cc
t if the alternative

subset’s value of the criterion (ac) is lower than that of the current solution (cc), where the parameter
t (temperature) decreases throughout the iterations of the algorithm. For each cardinality k, the
stopping criterion for the algorithm is the number of iterations (niter) which is controlled by the
user. Also controlled by the user are the initial temperature (temp) the rate of geometric cooling of
the temperature (cooling) and the frequency with which the temperature is cooled, as measured by
coolfreq, the number of iterations after which the temperature is multiplied by 1-cooling.

Optionally, the best k-variable subset produced by Simulated Annealing may be passed as input to
a restricted local search algorithm, for possible further improvement.

The user may force variables to be included and/or excluded from the k-subsets, and may specify
initial solutions.

For each cardinality k, the total number of calls to the procedure which computes the criterion
values is nsol x (niter + 1). These calls are the dominant computational effort in each iteration of
the algorithm.

In order to improve computation times, the bulk of computations is carried out by a Fortran routine.
Further details about the Simulated Annealing algorithm can be found in Reference 1 and in the
comments to the Fortran code (in the src subdirectory for this package). For datasets with a very
large number of variables (currently p > 400), it is necessary to set the force argument to TRUE
for the function to run, but this may cause a session crash if there is not enough memory available.

The function checks for ill-conditioning of the input matrix (specifically, it checks whether the ratio
of the input matrix’s smallest and largest eigenvalues is less than tolval). For an ill-conditioned
input matrix, the search is restricted to its well-conditioned subsets. The function trim.matrix
may be used to obtain a well-conditioned input matrix.
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In a general descriptive (Principal Components Analysis) setting, the three criteria Rm, Rv and Gcd
can be used to select good k-variable subsets. Arguments H and r are not used in this context. See
references [1] and [2] and the Examples for a more detailed discussion.

In the setting of a multivariate linear model, X = AΨ+U , criteria Ccr12, Tau2, Xi2 and Zeta2 can
be used to select subsets according to their contribution to an effect characterized by the violation
of a reference hypothesis, CΨ = 0 (see reference [3] for further details). In this setting, arguments
mat and H should be set respectively to the usual Total (Hypothesis + Error) and Hypothesis, Sum
of Squares and Cross-Products (SSCP) matrices. Argument r should be set to the expected rank of
H. Currently, for reasons of computational efficiency, criterion Ccr12 is available only when r ≤
3. Particular cases in this setting include Linear Discriminant Analyis (LDA), Linear Regression
Analysis (LRA), Canonical Correlation Analysis (CCA) with one set of variables fixed and several
extensions of these and other classical multivariate methodologies.

In the setting of a generalized linear model, criterion Wald can be used to select subsets according to
the (lack of) significance of the discarded variables, as measured by the respective Wald’s statistic
(see reference [4] for further details). In this setting arguments mat and H should be set respectively
to FI and FI %*% b %*% t(b) %*% FI, where b is a column vector of variable coefficient estimates
and FI is an estimate of the corresponding Fisher information matrix.

The auxiliary functions lmHmat, ldaHmat glhHmat and glmHmat are provided to automatically cre-
ate the matrices mat and H in all the cases considered.

Value

A list with five items:

subsets An nsol x kmax x length(kmin:kmax) 3-dimensional array, giving for each car-
dinality (dimension 3) and each solution (dimension 1) the list of variables (ref-
erenced by their row/column numbers in matrix mat) in the subset (dimension
2). (For cardinalities smaller than kmax, the extra final positions are set to zero).

values An nsol x length(kmin:kmax) matrix, giving for each cardinality (columns), the
criterion values of the nsol (rows) subsets obtained.

bestvalues A length(kmin:kmax) vector giving the best values of the criterion obtained for
each cardinality. If improvement is TRUE, these values result from the final
restricted local search algorithm (and may therefore exceed the largest value for
that cardinality in values).

bestsets A length(kmin:kmax) x kmax matrix, giving, for each cardinality (rows), the
variables (referenced by their row/column numbers in matrix mat) in the best
k-subset that was found.

call The function call which generated the output.

References

[1] Cadima, J., Cerdeira, J. Orestes and Minhoto, M. (2004) Computational aspects of algorithms
for variable selection in the context of principal components. Computational Statistics and Data
Analysis, 47, 225-236.

[2] Cadima, J. and Jolliffe, I.T. (2001). Variable Selection and the Interpretation of Principal Sub-
spaces, Journal of Agricultural, Biological and Environmental Statistics, Vol. 6, 62-79.
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[3] Duarte Silva, A.P. (2001) Efficient Variable Screening for Multivariate Analysis, Journal of
Multivariate Analysis, Vol. 76, 35-62.

[4] Lawless, J. and Singhal, K. (1978). Efficient Screening of Nonnormal Regression Models,
Biometrics, Vol. 34, 318-327.

See Also

rm.coef, rv.coef, gcd.coef, tau2.coef, xi2.coef, zeta2.coef, ccr12.coef, genetic, anneal,
eleaps, trim.matrix, lmHmat, ldaHmat, glhHmat, glmHmat.

Examples

## --------------------------------------------------------------------

##
## (1) For illustration of use, a small data set with very few iterations
## of the algorithm, using the RM criterion.
##

data(swiss)
anneal(cor(swiss),2,3,nsol=4,niter=10,criterion="RM")

##$subsets
##, , Card.2
##
## Var.1 Var.2 Var.3
##Solution 1 3 6 0
##Solution 2 4 5 0
##Solution 3 1 2 0
##Solution 4 3 6 0
##
##, , Card.3
##
## Var.1 Var.2 Var.3
##Solution 1 4 5 6
##Solution 2 3 5 6
##Solution 3 3 4 6
##Solution 4 4 5 6
##
##
##$values
## card.2 card.3
##Solution 1 0.8016409 0.9043760
##Solution 2 0.7982296 0.8769672
##Solution 3 0.7945390 0.8777509
##Solution 4 0.8016409 0.9043760
##
##$bestvalues
## Card.2 Card.3
##0.8016409 0.9043760
##
##$bestsets
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## Var.1 Var.2 Var.3
##Card.2 3 6 0
##Card.3 4 5 6
##
##$call
##anneal(cor(swiss), 2, 3, nsol = 4, niter = 10, criterion = "RM")

## --------------------------------------------------------------------

##
## (2) An example excluding variable number 6 from the subsets.
##

data(swiss)
anneal(cor(swiss),2,3,nsol=4,niter=10,criterion="RM",exclude=c(6))

##$subsets
##, , Card.2
##
## Var.1 Var.2 Var.3
##Solution 1 4 5 0
##Solution 2 4 5 0
##Solution 3 4 5 0
##Solution 4 4 5 0
##
##, , Card.3
##
## Var.1 Var.2 Var.3
##Solution 1 1 2 5
##Solution 2 1 2 5
##Solution 3 1 2 5
##Solution 4 1 4 5
##
##
##$values
## card.2 card.3
##Solution 1 0.7982296 0.8791856
##Solution 2 0.7982296 0.8791856
##Solution 3 0.7982296 0.8791856
##Solution 4 0.7982296 0.8686515
##
##$bestvalues
## Card.2 Card.3
##0.7982296 0.8791856
##
##$bestsets
## Var.1 Var.2 Var.3
##Card.2 4 5 0
##Card.3 1 2 5
##
##$call
##anneal(cor(swiss), 2, 3, nsol = 4, niter = 10, criterion = "RM",
## exclude=c(6))
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## --------------------------------------------------------------------

## (3) An example specifying initial solutions: using the subsets produced
## by simulated annealing for one criterion (RM, by default) as initial
## solutions for the simulated annealing search with a different criterion.

data(swiss)
rmresults<-anneal(cor(swiss),2,3,nsol=4,niter=10, setseed=TRUE)
anneal(cor(swiss),2,3,nsol=4,niter=10,criterion="gcd",
initialsol=rmresults$subsets)

##$subsets
##, , Card.2
##
## Var.1 Var.2 Var.3
##Solution 1 3 6 0
##Solution 2 3 6 0
##Solution 3 3 6 0
##Solution 4 3 6 0
##
##, , Card.3
##
## Var.1 Var.2 Var.3
##Solution 1 4 5 6
##Solution 2 4 5 6
##Solution 3 3 4 6
##Solution 4 4 5 6
##
##
##$values
## card.2 card.3
##Solution 1 0.8487026 0.925372
##Solution 2 0.8487026 0.925372
##Solution 3 0.8487026 0.798864
##Solution 4 0.8487026 0.925372
##
##$bestvalues
## Card.2 Card.3
##0.8487026 0.9253720
##
##$bestsets
## Var.1 Var.2 Var.3
##Card.2 3 6 0
##Card.3 4 5 6
##
##$call
##anneal(cor(swiss), 2, 3, nsol = 4, niter = 10, criterion = "gcd",
## initialsol = rmresults$subsets)

## --------------------------------------------------------------------

## (4) An example of subset selection in the context of Multiple Linear
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## Regression. Variable 5 (average car price) in the Cars93 MASS library
## data set is regressed on 13 other variables. A best subset of linear
## predictors is sought, using the "TAU_2" criterion which, in the case
## of a Linear Regression, is merely the standard Coefficient of Determination,
## R^2 (like the other three criteria for the multivariate linear hypothesis,
## "XI_2", "CCR1_2" and "ZETA_2").

library(MASS)
data(Cars93)
CarsHmat <- lmHmat(Cars93[,c(7:8,12:15,17:22,25)],Cars93[,5])

names(Cars93[,5,drop=FALSE])
## [1] "Price"

colnames(CarsHmat$mat)

## [1] "MPG.city" "MPG.highway" "EngineSize"
## [4] "Horsepower" "RPM" "Rev.per.mile"
## [7] "Fuel.tank.capacity" "Passengers" "Length"
## [10] "Wheelbase" "Width" "Turn.circle"
## [13] "Weight"

anneal(CarsHmat$mat, kmin=4, kmax=6, H=CarsHmat$H, r=1, crit="tau2")

## $subsets
## , , Card.4
##
## Var.1 Var.2 Var.3 Var.4 Var.5 Var.6
## Solution 1 4 5 10 11 0 0
##
## , , Card.5
##
## Var.1 Var.2 Var.3 Var.4 Var.5 Var.6
## Solution 1 4 5 10 11 12 0
##
## , , Card.6
##
## Var.1 Var.2 Var.3 Var.4 Var.5 Var.6
## Solution 1 4 5 9 10 11 12
##
##
## $values
## card.4 card.5 card.6
## Solution 1 0.7143794 0.7241457 0.731015
##
## $bestvalues
## Card.4 Card.5 Card.6
## 0.7143794 0.7241457 0.7310150
##
## $bestsets
## Var.1 Var.2 Var.3 Var.4 Var.5 Var.6
## Card.4 4 5 10 11 0 0
## Card.5 4 5 10 11 12 0
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## Card.6 4 5 9 10 11 12
##
## $call
## anneal(mat = CarsHmat$mat, kmin = 4, kmax = 6, criterion = "xi2",
## H = CarsHmat$H, r = 1)
##

## --------------------------------------------------------------------

## (5) A Linear Discriminant Analysis example with a very small data set.
## We consider the Iris data and three groups, defined by species (setosa,
## versicolor and virginica). The goal is to select the 2- and 3-variable
## subsets that are optimal for the linear discrimination (as measured
## by the "CCR1_2" criterion).

data(iris)
irisHmat <- ldaHmat(iris[1:4],iris$Species)
anneal(irisHmat$mat,kmin=2,kmax=3,H=irisHmat$H,r=2,crit="ccr12")

## $subsets
## , , Card.2
##
## Var.1 Var.2 Var.3
## Solution 1 1 3 0
##
## , , Card.3
##
## Var.1 Var.2 Var.3
## Solution 1 2 3 4
##
##
## $values
## card.2 card.3
## Solution 1 0.9589055 0.967897
##
## $bestvalues
## Card.2 Card.3
## 0.9589055 0.9678971
##
## $bestsets
## Var.1 Var.2 Var.3
## Card.2 1 3 0
## Card.3 2 3 4
##
## $call
## anneal(irisHmat$mat,kmin=2,kmax=3,H=irisHmat$H,r=2,crit="ccr12")
##

## --------------------------------------------------------------------

## (6) An example of subset selection in the context of a Canonical
## Correlation Analysis. Two groups of variables within the Cars93
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## MASS library data set are compared. The goal is to select 4- to
## 6-variable subsets of the 13-variable 'X' group that are optimal in
## terms of preserving the canonical correlations, according to the
## "XI_2" criterion (Warning: the 3-variable 'Y' group is kept
## intact; subset selection is carried out in the 'X'
## group only). The 'tolsym' parameter is used to relax the symmetry
## requirements on the effect matrix H which, for numerical reasons,
## is slightly asymmetric. Since corresponding off-diagonal entries of
## matrix H are different, but by less than tolsym, H is replaced
## by its symmetric part: (H+t(H))/2.

library(MASS)
data(Cars93)
CarsHmat <- lmHmat(Cars93[,c(7:8,12:15,17:22,25)],Cars93[,4:6])

names(Cars93[,4:6])
## [1] "Min.Price" "Price" "Max.Price"

colnames(CarsHmat$mat)

## [1] "MPG.city" "MPG.highway" "EngineSize"
## [4] "Horsepower" "RPM" "Rev.per.mile"
## [7] "Fuel.tank.capacity" "Passengers" "Length"
## [10] "Wheelbase" "Width" "Turn.circle"
## [13] "Weight"

anneal(CarsHmat$mat, kmin=4, kmax=6, H=CarsHmat$H, r=CarsHmat$r,
crit="tau2" , tolsym=1e-9)

## $subsets
## , , Card.4
##
## Var.1 Var.2 Var.3 Var.4 Var.5 Var.6
## Solution 1 4 9 10 11 0 0
##
## , , Card.5
##
## Var.1 Var.2 Var.3 Var.4 Var.5 Var.6
## Solution 1 3 4 9 10 11 0
##
## , , Card.6
##
## Var.1 Var.2 Var.3 Var.4 Var.5 Var.6
## Solution 1 3 4 5 9 10 11
##
##
## $values
## card.4 card.5 card.6
## Solution 1 0.2818772 0.2943742 0.3057831
##
## $bestvalues
## Card.4 Card.5 Card.6
## 0.2818772 0.2943742 0.3057831
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##
## $bestsets
## Var.1 Var.2 Var.3 Var.4 Var.5 Var.6
## Card.4 4 9 10 11 0 0
## Card.5 3 4 9 10 11 0
## Card.6 3 4 5 9 10 11
##
## $call
## anneal(mat = CarsHmat$mat, kmin = 4, kmax = 6, criterion = "xi2",
## H = CarsHmat$H, r = CarsHmat$r, tolsym = 1e-09)
##
## Warning message:
##
## The effect description matrix (H) supplied was slightly asymmetric:
## symmetric entries differed by up to 3.63797880709171e-12.
## (less than the 'tolsym' parameter).
## The H matrix has been replaced by its symmetric part.
## in: validnovcrit(mat, criterion, H, r, p, tolval, tolsym)

## --------------------------------------------------------------------

## (7) An example of variable selection in the context of a logistic
## regression model. We consider the last 100 observations of
## the iris data set (versicolor and verginica species) and try
## to find the best variable subsets for the model that takes species
## as response variable.

data(iris)
iris2sp <- iris[iris$Species != "setosa",]
logrfit <- glm(Species ~ Sepal.Length + Sepal.Width + Petal.Length + Petal.Width,
iris2sp,family=binomial)
Hmat <- glmHmat(logrfit)
anneal(Hmat$mat,1,3,H=Hmat$H,r=1,criterion="Wald")

## $subsets
## , , Card.1
##
## Var.1 Var.2 Var.3
## Solution 1 4 0 0

## , , Card.2

## Var.1 Var.2 Var.3
## Solution 1 1 3 0

## , , Card.3

## Var.1 Var.2 Var.3
## Solution 1 2 3 4

## $values
## card.1 card.2 card.3
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## Solution 1 4.894554 3.522885 1.060121

## $bestvalues
## Card.1 Card.2 Card.3
## 4.894554 3.522885 1.060121

## $bestsets
## Var.1 Var.2 Var.3
## Card.1 4 0 0
## Card.2 1 3 0
## Card.3 2 3 4

## $call
## anneal(mat = Hmat$mat, kmin = 1, kmax = 3, criterion = "Wald",
## H = Hmat$H, r = 1)
## --------------------------------------------------------------------

## It should be stressed that, unlike other criteria in the
## subselect package, the Wald criterion is not bounded above by
## 1 and is a decreasing function of subset quality, so that the
## 3-variable subsets do, in fact, perform better than their smaller-sized
## counterparts.

ccr12.coef First Squared Canonical Correlation for a multivariate linear hypoth-
esis

Description

Computes the first squared canonical correlation. The maximization of this criterion is equivalent
to the maximization of the Roy first root.

Usage

ccr12.coef(mat, H, r, indices,
tolval=10*.Machine$double.eps, tolsym=1000*.Machine$double.eps)

Arguments

mat the Variance or Total sums of squares and products matrix for the full data set.

H the Effect description sums of squares and products matrix (defined in the same
way as the mat matrix).

r the Expected rank of the H matrix. See the Details section below.

indices a numerical vector, matrix or 3-d array of integers giving the indices of the
variables in the subset. If a matrix is specified, each row is taken to represent
a different k-variable subset. If a 3-d array is given, it is assumed that the third
dimension corresponds to different cardinalities.
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tolval the tolerance level to be used in checks for ill-conditioning and positive-definiteness
of the ’total’ and ’effects’ (H) matrices. Values smaller than tolval are consid-
ered equivalent to zero.

tolsym the tolerance level for symmetry of the covariance/correlation/total matrix and
for the effects (H) matrix. If corresponding matrix entries differ by more than
this value, the input matrices will be considered asymmetric and execution will
be aborted. If corresponding entries are different, but by less than this value, the
input matrix will be replaced by its symmetric part, i.e., input matrix A becomes
(A+t(A))/2.

Details

Different kinds of statistical methodologies are considered within the framework, of a multivariate
linear model:

X = AΨ+ U

where X is the (nxp) data matrix of original variables, A is a known (nxp) design matrix, Ψ an
(qxp) matrix of unknown parameters and U an (nxp) matrix of residual vectors. The ccr21 index
is related to the traditional test statistic (the Roy first root) and measures the contribution of each
subset to an Effect characterized by the violation of a linear hypothesis of the form CΨ = 0, where
C is a known cofficient matrix of rank r. The Roy first root is the first eigen value of HE−1, where
H is the Effect matrix and E is the Error matrix. The index ccr21 is related to the Roy first root (λ1)
by:

ccr21 =
λ1

1 + λ1

The fact that indices can be a matrix or 3-d array allows for the computation of the ccr21 values
of subsets produced by the search functions anneal, genetic, improve and anneal (whose output
option $subsets are matrices or 3-d arrays), using a different criterion (see the example below).

Value

The value of the ccr21 coefficient.

Examples

## 1) A Linear Discriminant Analysis example with a very small data set.
## We considered the Iris data and three groups,
## defined by species (setosa, versicolor and virginica).

data(iris)
irisHmat <- ldaHmat(iris[1:4],iris$Species)
ccr12.coef(irisHmat$mat,H=irisHmat$H,r=2,c(1,3))
## [1] 0.9589055

## ---------------------------------------------------------------

## 2) An example computing the value of the ccr1_2 criteria for two
## subsets produced when the anneal function attempted to optimize
## the zeta_2 criterion (using an absurdly small number of iterations).
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zetaresults<-anneal(irisHmat$mat,2,nsol=2,niter=2,criterion="zeta2",
H=irisHmat$H,r=2)
ccr12.coef(irisHmat$mat,H=irisHmat$H,r=2,zetaresults$subsets)

## Card.2
##Solution 1 0.9526304
##Solution 2 0.9558787

## ---------------------------------------------------------------

eleaps A Leaps and Bounds Algorithm for finding the best variable subsets

Description

An exact Algorithm for optimizing criteria that measure the quality of k-dimensional variable sub-
sets as approximations to a given set of variables, or to a set of its Principal Components.

Usage

eleaps(mat,kmin=length(include)+1,kmax=ncol(mat)-length(exclude)-1,nsol=1,
exclude=NULL,include=NULL,criterion="default",pcindices="first_k",timelimit=15,
H=NULL,r=0, tolval=1000*.Machine$double.eps,
tolsym=1000*.Machine$double.eps,maxaperr=1E-4)

Arguments

mat a covariance/correlation, information or sums of squares and products matrix of
the variables from which the k-subset is to be selected. See the Details section
below.

kmin the cardinality of the smallest subset that is wanted.

kmax the cardinality of the largest subset that is wanted.

nsol the number of different subsets of each cardinality that are requested .

exclude a vector of variables (referenced by their row/column numbers in matrix mat)
that are to be forcibly excluded from the subsets.

include a vector of variables (referenced by their row/column numbers in matrix mat)
that are to be forcibly included in the subsets.

criterion Character variable, which indicates which criterion is to be used in judging
the quality of the subsets. Currently, the "Rm", "Rv", "Gcd", "Tau2", "Xi2",
"Zeta2", "Ccr12" and "Wald" criteria are supported (see the Details section, the
References and the links rm.coef, rv.coef, gcd.coef, tau2.coef, xi2.coef,
zeta2.coef, ccr12.coef and wald.coef for further details). The default cri-
terion is "Rm" if parameter r is zero (exploratory and PCA problems), "Wald"
if r is equal to one and mat has a "FisherI" attribute set to TRUE (generalized
linear models), and "Tau2" otherwise (multivariate linear model framework).
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pcindices either a vector of ranks of Principal Components that are to be used for compari-
son with the k-variable subsets (for the Gcd criterion only, see gcd.coef) or the
default text first_k. The latter will associate PCs 1 to k with each cardinality
k that has been requested by the user.

timelimit a user specified limit (in seconds) for the maximum time allowed to conduct the
search. After this limit is exceeded, eleaps exits with a waring message stating
that it was not possible to find the otpimal subsets within the allocated time.

H Effect description matrix. Not used with the Rm, Rv or Gcd criteria, hence the
NULL default value. See the Details section below.

r Expected rank of the effects (H) matrix. Not used with the Rm, Rv or Gcd
criteria. See the Details section below.

tolval the tolerance level for the reciprocal of the 2-norm condition number of the cor-
relation/covariance or sums of squares matrix, i.e., for the ratio of the smallest
to the largest eigenvalue of the input matrix. Matrices with a reciprocal of the
condition number smaller than tolval will activate a restricted-search (for well
conditioned sets as defined by the value of the maxaperr argument) algorithm.

tolsym the tolerance level for symmetry of the covariance/correlation/total matrix and
for the effects (H) matrix. If corresponding matrix entries differ by more than
this value, the input matrices will be considered asymmetric and execution will
be aborted. If corresponding entries are different, but by less than this value, the
input matrix will be replaced by its symmetric part, i.e., input matrix A becomes
(A+t(A))/2.

maxaperr the tolerance level for the relative rounding error of the criterion. When a re-
stricted search in employed subsets where a first order estimate of this error is
higher than maxaperr will be excluded from the analysis.

Details

For each cardinality k (with k ranging from kmin to kmax), eleaps performs a branch and bound
search for the best nsol variable subsets according to a specified criterion. Leaps implements
Duarte Silva’s adaptation (references [2] and [3]) of Furnival and Wilson’s Leaps and Bounds Al-
gorithm (reference [4]) for variable selection in Regression Analysis. If the search is not completed
within a user defined time limit, eleaps exits with a warning message.

The user may force variables to be included and/or excluded from the k-subsets.

In order to improve computation times, the bulk of computations are carried out by C++ routines.
Further details about the Algorithm can be found in references [2] and [3] and in the comments to
the C++ code. A discussion of the criteria considered can be found in References [1] and [3].

The function checks for ill-conditioning of the input matrix (specifically, it checks whether the ratio
of the input matrix’s smallest and largest eigenvalues is less than tolval). For an ill-conditioned
input matrix, the search is restricted to its well-conditioned subsets. The function trim.matrix
may be used to obtain a well-conditioned input matrix.

In a general descriptive (Principal Components Analysis) setting, the three criteria Rm, Rv and Gcd
can be used to select good k-variable subsets. Arguments H and r are not used in this context. See
reference [1] and the Examples for a more detailed discussion.

In the setting of a multivariate linear model, X = AΨ+U , criteria Ccr12, Tau2, Xi2 and Zeta2 can
be used to select subsets according to their contribution to an effect characterized by the violation
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of a reference hypothesis, CΨ = 0 (see reference [3] for further details). In this setting, arguments
mat and H should be set respectively to the usual Total (Hypothesis + Error) and Hypothesis, Sum
of Squares and Cross-Products (SSCP) matrices. Argument r should be set to the expected rank of
H. Currently, for reasons of computational efficiency, criterion Ccr12 is available only when r ≤
3. Particular cases in this setting include Linear Discriminant Analyis (LDA), Linear Regression
Analysis (LRA), Canonical Correlation Analysis (CCA) with one set of variables fixed, and several
extensions of these and other classical multivariate methodologies.

In the setting of a generalized linear model, criterion Wald can be used to select subsets according to
the (lack of) significance of the discarded variables, as measured by the respective Wald’s statistic
(see reference [5] for further details). In this setting arguments mat and H should be set respectively
to FI and FI %*% b %*% t(b) %*% FI, where b is a column vector of variable coefficient estimates
and FI is an estimate of the corresponding Fisher information matrix.

The auxiliary functions lmHmat, ldaHmat glhHmat and glmHmat are provided to automatically cre-
ate the matrices mat and H in all the cases considered.

Value

A list with five items:

subsets An nsol x kmax x length(kmin:kmax) 3-dimensional array, giving for each car-
dinality (dimension 3) and each solution (dimension 1) the list of variables (ref-
erenced by their row/column numbers in matrix mat) in the subset (dimension
2). (For cardinalities smaller than kmax, the extra final positions are set to zero).

values An nsol x length(kmin:kmax) matrix, giving for each cardinality (columns), the
criterion values of the best nsol (rows) subsets according to the chosen criterion.

bestvalues A length(kmin:kmax) vector giving the overall best values of the criterion for
each cardinality.

bestsets A length(kmin:kmax) x kmax matrix, giving, for each cardinality (rows), the
variables (referenced by their row/column numbers in matrix mat) in the best
k-subset.

call The function call which generated the output.

References

[1] Cadima, J. and Jolliffe, I.T. (2001). Variable Selection and the Interpretation of Principal Sub-
spaces, Journal of Agricultural, Biological and Environmental Statistics, Vol. 6, 62-79.

[2] Duarte Silva, A.P. (2001) Efficient Variable Screening for Multivariate Analysis, Journal of
Multivariate Analysis Vol. 76, 35-62.

[3] Duarte Silva, A.P. (2002) Discarding Variables in a Principal Component Analysis: Algorithms
for All-Subsets Comparisons, Computational Statistics, Vol. 17, 251-271.

[4] Furnival, G.M. and Wilson, R.W. (1974). Regressions by Leaps and Bounds, Technometrics,
Vol. 16, 499-511.

[5] Lawless, J. and Singhal, K. (1978). Efficient Screening of Nonnormal Regression Models,
Biometrics, Vol. 34, 318-327.
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See Also

rm.coef, rv.coef, gcd.coef, tau2.coef, wald.coef, xi2.coef, zeta2.coef, ccr12.coef, anneal,
genetic, anneal, trim.matrix, lmHmat, ldaHmat, glhHmat, glmHmat.

Examples

## --------------------------------------------------------------------

##
## 1) For illustration of use, a small data set.
## Subsets of variables of all cardinalities are sought using the
## RM criterion.
##

data(swiss)
eleaps(cor(swiss),nsol=3, criterion="RM")

##$subsets
##, , Card.1
##
## Var.1 Var.2 Var.3 Var.4 Var.5
##Solution 1 3 0 0 0 0
##Solution 2 1 0 0 0 0
##Solution 3 4 0 0 0 0
##
##, , Card.2
##
## Var.1 Var.2 Var.3 Var.4 Var.5
##Solution 1 3 6 0 0 0
##Solution 2 4 5 0 0 0
##Solution 3 1 2 0 0 0
##
##, , Card.3
##
## Var.1 Var.2 Var.3 Var.4 Var.5
##Solution 1 4 5 6 0 0
##Solution 2 1 2 5 0 0
##Solution 3 3 4 6 0 0
##
##, , Card.4
##
## Var.1 Var.2 Var.3 Var.4 Var.5
##Solution 1 2 4 5 6 0
##Solution 2 1 2 5 6 0
##Solution 3 1 4 5 6 0
##
##, , Card.5
##
## Var.1 Var.2 Var.3 Var.4 Var.5
##Solution 1 1 2 3 5 6
##Solution 2 1 2 4 5 6
##Solution 3 2 3 4 5 6
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##
##
##$values
## card.1 card.2 card.3 card.4 card.5
##Solution 1 0.6729689 0.8016409 0.9043760 0.9510757 0.9804629
##Solution 2 0.6286185 0.7982296 0.8791856 0.9506434 0.9776338
##Solution 3 0.6286130 0.7945390 0.8777509 0.9395708 0.9752551
##
##$bestvalues
## Card.1 Card.2 Card.3 Card.4 Card.5
##0.6729689 0.8016409 0.9043760 0.9510757 0.9804629
##
##$bestsets
## Var.1 Var.2 Var.3 Var.4 Var.5
##Card.1 3 0 0 0 0
##Card.2 3 6 0 0 0
##Card.3 4 5 6 0 0
##Card.4 2 4 5 6 0
##Card.5 1 2 3 5 6
##
##$call
##eleaps(cor(swiss), nsol = 3, criterion="RM")

## --------------------------------------------------------------------

##
## 2) Asking only for 2- and 3- dimensional subsets and excluding
## variable number 6.
##

data(swiss)
eleaps(cor(swiss),2,3,exclude=6,nsol=3,criterion="rm")

##$subsets
##, , Card.2
##
## Var.1 Var.2 Var.3
##Solution 1 4 5 0
##Solution 2 1 2 0
##Solution 3 1 3 0
##
##, , Card.3
##
## Var.1 Var.2 Var.3
##Solution 1 1 2 5
##Solution 2 1 4 5
##Solution 3 2 4 5
##
##
##$values
## card.2 card.3
##Solution 1 0.7982296 0.8791856
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##Solution 2 0.7945390 0.8686515
##Solution 3 0.7755232 0.8628693
##
##$bestvalues
## Card.2 Card.3
##0.7982296 0.8791856
##
##$bestsets
## Var.1 Var.2 Var.3
##Card.2 4 5 0
##Card.3 1 2 5
##
##$call
##eleaps(cor(swiss), 2, 3, exclude = 6, nsol = 3, criterion = "gcd")

## --------------------------------------------------------------------

##
## 3) Searching for 2- and 3- dimensional subsets that best approximate
## the spaces generated by the first three Principal Components
##

data(swiss)
eleaps(cor(swiss),2,3,criterion="gcd",pcindices=1:3,nsol=3)

##$subsets
##, , Card.2
##
## Var.1 Var.2 Var.3
##Solution 1 4 5 0
##Solution 2 5 6 0
##Solution 3 4 6 0
##
##, , Card.3
##
## Var.1 Var.2 Var.3
##Solution 1 4 5 6
##Solution 2 3 5 6
##Solution 3 2 5 6
##
##
##$values
## card.2 card.3
##Solution 1 0.7831827 0.9253684
##Solution 2 0.7475630 0.8459302
##Solution 3 0.7383665 0.8243032
##
##$bestvalues
## Card.2 Card.3
##0.7831827 0.9253684
##
##$bestsets
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## Var.1 Var.2 Var.3
##Card.2 4 5 0
##Card.3 4 5 6
##
##$call
##eleaps(cor(swiss), 2, 3, criterion = "gcd", pcindices = 1:3, nsol = 3)

## --------------------------------------------------------------------

##
## 4) An example of subset selection in the context of Multiple Linear
## Regression. Variable 5 (average car price) in the Cars93 MASS library
## data set is regressed on 13 other variables. A best subset of linear
## predictors is sought, using the default criterion ("TAU_2") which,
## in the case of a Linear Regression, is merely the standard Coefficient
## of Determination, R^2 (as are the other three criteria for the
## multivariate linear hypothesis, "XI_2", "CCR1_2" and "ZETA_2").
##

library(MASS)
data(Cars93)
CarsHmat <- lmHmat(Cars93[,c(7:8,12:15,17:22,25)],Cars93[,5])

names(Cars93[,5,drop=FALSE])
## [1] "Price"

colnames(CarsHmat$mat)

## [1] "MPG.city" "MPG.highway" "EngineSize"
## [4] "Horsepower" "RPM" "Rev.per.mile"
## [7] "Fuel.tank.capacity" "Passengers" "Length"
## [10] "Wheelbase" "Width" "Turn.circle"
## [13] "Weight"

eleaps(CarsHmat$mat, kmin=4, kmax=6, H=CarsHmat$H, r=1)

## $subsets
## , , Card.4
##
## Var.1 Var.2 Var.3 Var.4 Var.5 Var.6
## Solution 1 4 5 10 11 0 0
##
## , , Card.5
##
## Var.1 Var.2 Var.3 Var.4 Var.5 Var.6
## Solution 1 4 5 10 11 12 0
##
## , , Card.6
##
## Var.1 Var.2 Var.3 Var.4 Var.5 Var.6
## Solution 1 4 5 9 10 11 12
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##
##
## $values
## card.4 card.5 card.6
## Solution 1 0.7143794 0.7241457 0.731015
##
## $bestvalues
## Card.4 Card.5 Card.6
## 0.7143794 0.7241457 0.7310150
##
## $bestsets
## Var.1 Var.2 Var.3 Var.4 Var.5 Var.6
## Card.4 4 5 10 11 0 0
## Card.5 4 5 10 11 12 0
## Card.6 4 5 9 10 11 12
##

## --------------------------------------------------------------------

## 5) A Linear Discriminant Analysis example with a very small data set.
## We consider the Iris data and three groups, defined by species (setosa,
## versicolor and virginica). The goal is to select the 2- and 3-variable
## subsets that are optimal for the linear discrimination (as measured
## by the "CCR1_2" criterion).

data(iris)
irisHmat <- ldaHmat(iris[1:4],iris$Species)
eleaps(irisHmat$mat,kmin=2,kmax=3,H=irisHmat$H,r=2,crit="ccr12")

## $subsets
## , , Card.2
##
## Var.1 Var.2 Var.3
## Solution 1 1 3 0
##
## , , Card.3
##
## Var.1 Var.2 Var.3
## Solution 1 2 3 4
##
##
## $values
## card.2 card.3
## Solution 1 0.9589055 0.967897
##
## $bestvalues
## Card.2 Card.3
## 0.9589055 0.9678971
##
## $bestsets
## Var.1 Var.2 Var.3
## Card.2 1 3 0
## Card.3 2 3 4
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## --------------------------------------------------------------------

## 6) An example of subset selection in the context of a Canonical
## Correlation Analysis. Two groups of variables within the Cars93
## MASS library data set are compared. The goal is to select 4- to
## 6-variable subsets of the 13-variable 'X' group that are optimal in
## terms of preserving the canonical correlations, according to the
## "ZETA_2" criterion (Warning: the 3-variable 'Y' group is kept
## intact; subset selection is carried out in the 'X'
## group only). The 'tolsym' parameter is used to relax the symmetry
## requirements on the effect matrix H which, for numerical reasons,
## is slightly asymmetric. Since corresponding off-diagonal entries of
## matrix H are different, but by less than tolsym, H is replaced
## by its symmetric part: (H+t(H))/2.

library(MASS)
data(Cars93)
CarsHmat <- lmHmat(Cars93[,c(7:8,12:15,17:22,25)],Cars93[,4:6])

names(Cars93[,4:6])
## [1] "Min.Price" "Price" "Max.Price"

## colnames(CarsHmat$mat)

## [1] "MPG.city" "MPG.highway" "EngineSize"
## [4] "Horsepower" "RPM" "Rev.per.mile"
## [7] "Fuel.tank.capacity" "Passengers" "Length"
## [10] "Wheelbase" "Width" "Turn.circle"
## [13] "Weight"

eleaps(CarsHmat$mat, kmin=4, kmax=6, H=CarsHmat$H, r=3,
crit="zeta2", tolsym=1e-9)

## $subsets
## , , Card.4
##
## Var.1 Var.2 Var.3 Var.4 Var.5 Var.6
## Solution 1 3 4 10 11 0 0
##
## , , Card.5
##
## Var.1 Var.2 Var.3 Var.4 Var.5 Var.6
## Solution 1 4 5 9 10 11 0
##
## , , Card.6
##
## Var.1 Var.2 Var.3 Var.4 Var.5 Var.6
## Solution 1 4 5 9 10 11 12
##
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##
## $values
## card.4 card.5 card.6
## Solution 1 0.4827353 0.5018922 0.5168627
##
## $bestvalues
## Card.4 Card.5 Card.6
## 0.4827353 0.5018922 0.5168627
##
## $bestsets
## Var.1 Var.2 Var.3 Var.4 Var.5 Var.6
## Card.4 3 4 10 11 0 0
## Card.5 4 5 9 10 11 0
## Card.6 4 5 9 10 11 12
##
## Warning message:
##
## The effect description matrix (H) supplied was slightly asymmetric:
## symmetric entries differed by up to 3.63797880709171e-12.
## (less than the 'tolsym' parameter).
## The H matrix has been replaced by its symmetric part.
## in: validnovcrit(mat, criterion, H, r, p, tolval, tolsym)

## --------------------------------------------------------------------

## 7) An example of variable selection in the context of a logistic
## regression model. We consider the last 100 observations of
## the iris data set (versicolor an verginica species) and try
## to find the best variable subsets for the model that takes species
## as response variable.

data(iris)
iris2sp <- iris[iris$Species != "setosa",]
logrfit <- glm(Species ~ Sepal.Length + Sepal.Width + Petal.Length + Petal.Width,
iris2sp,family=binomial)
Hmat <- glmHmat(logrfit)
eleaps(Hmat$mat,H=Hmat$H,r=1,criterion="Wald",nsol=3)

## $subsets
## , , Card.1

## Var.1 Var.2 Var.3
## Solution 1 4 0 0
## Solution 2 1 0 0
## Solution 3 3 0 0

## , , Card.2

## Var.1 Var.2 Var.3
## Solution 1 1 3 0
## Solution 2 3 4 0
## Solution 3 2 4 0
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## , , Card.3

## Var.1 Var.2 Var.3
## Solution 1 2 3 4
## Solution 2 1 3 4
## Solution 3 1 2 3

## $values
## card.1 card.2 card.3
## Solution 1 4.894554 3.522885 1.060121
## Solution 2 5.147360 3.952538 2.224335
## Solution 3 5.161553 3.972410 3.522879

## $bestvalues
## Card.1 Card.2 Card.3
## 4.894554 3.522885 1.060121

## $bestsets
## Var.1 Var.2 Var.3
## Card.1 4 0 0
## Card.2 1 3 0
## Card.3 2 3 4

## $call
## eleaps(mat = Hmat$mat, nsol = 3, criterion = "Wald", H = Hmat$H,
## r = 1)
## --------------------------------------------------------------------

## It should be stressed that, unlike other criteria in the
## subselect package, the Wald criterion is not bounded above by
## 1 and is a decreasing function of subset quality, so that the
## 3-variable subsets do, in fact, perform better than their smaller-sized
## counterparts.

farm Sixty-two economic indicators from 99 Portuguese farms.

Description

This data set is a very small subset of economic data regarding Portuguese farms in the mid-1990s,
from Portugal’s Ministry of Agriculture

Usage

farm
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Format

A 99x62 matrix. The 62 columns are numeric economic indicators, referenced by their database
code. Monetary units are in thousands of Escudos (Portugal’s pre-Euro currency).

Column Number Column Name Units Description
[,1] R15 1000 Escudos Total Standard Gross Margins (SGM)
[,2] R24 Hectares Total land surface
[,3] R35 Hectares Total cultivated surface
[,4] R36 Man Work Units Total Man Work Units
[,5] R46 1000 Escudos Land Capital
[,6] R59 1000 Escudos Total Capital (without forests)
[,7] R65 1000 Escudos Total Loans and Debts
[,8] R72 1000 Escudos Total Investment
[,9] R79 1000 Escudos Subsidies for Investment

[,10] R86 1000 Escudos Gross Plant Product Formation
[,11] R91 1000 Escudos Gross Animal Product Formation
[,12] R104 1000 Escudos Current Subsidies
[,13] R110 1000 Escudos Wheat Production
[,14] R111 1000 Escudos Maize Production
[,15] R113 1000 Escudos Other Cereals (except rice) Production
[,16] R114 1000 Escudos Dried Legumes Production
[,17] R115 1000 Escudos Potato Production
[,18] R116 1000 Escudos Industrial horticulture and Melon Production
[,19] R117 1000 Escudos Open-air horticultural Production
[,20] R118 1000 Escudos Horticultural forcing Production
[,21] R119 1000 Escudos Flower Production
[,22] R121 1000 Escudos Sub-products Production
[,23] R122 1000 Escudos Fruit Production
[,24] R123 1000 Escudos Olive Production
[,25] R124 1000 Escudos Wine Production
[,26] R125 1000 Escudos Horses
[,27] R126 1000 Escudos Bovines (excluding milk)
[,28] R127 1000 Escudos Milk and dairy products
[,29] R129 1000 Escudos Sheep
[,30] R132 1000 Escudos Goats
[,31] R135 1000 Escudos Pigs
[,32] R137 1000 Escudos Birds
[,33] R140 1000 Escudos Bees
[,34] R142 1000 Escudos Other animals (except rabbits)
[,35] R144 1000 Escudos Wood production
[,36] R145 1000 Escudos Other forest products (except cork)
[,37] R146 Hectares Land surface affected to cereals
[,38] R151 Hectares Land surface affected to dry legumes
[,39] R152 Hectares Land surface affected to potatos
[,40] R158 Hectares Land surface affected to fruits
[,41] R159 Hectares Land surface affected to olive trees
[,42] R160 Hectares Land surface affected to vineyards
[,43] R164 Hectares Fallow land surface area
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[,44] R166 Hectares Forest surface area
[,45] R168 Head Bovines
[,46] R174 Head Adult sheep
[,47] R176 Head Adult goats
[,48] R178 Head Adult pigs
[,49] R209 Kg/hectare Maize yield
[,50] R211 Kg/hectare Barley yield
[,51] R214 Kg/hectare Potato yield
[,52] R215 L/cow/year Cow milk productivity
[,53] R233 1000 Escudos Wages and social expenditure
[,54] R237 1000 Escudos Taxes and tariffs
[,55] R245 1000 Escudos Interest and financial costs
[,56] R250 1000 Escudos Total real costs
[,57] R252 1000 Escudos Gross Product
[,58] R256 1000 Escudos Gross Agricultural Product
[,59] R258 1000 Escudos Gross Value Added (GVA)
[,60] R263 1000 Escudos Final Results
[,61] R270 1000 Escudos Family labour income
[,62] R271 1000 Escudos Capital Income

Source

Obtained directly from the source.

gcd.coef Computes Yanai’s GCD in the context of the variable-subset selection
problem

Description

Computes Yanai’s Generalized Coefficient of Determination for the similarity of the subspaces
spanned by a subset of variables and a subset of the full data set’s Principal Components.

Usage

gcd.coef(mat, indices, pcindices = NULL)

Arguments

mat the full data set’s covariance (or correlation) matrix.
indices a numerical vector, matrix or 3-d array of integers giving the indices of the

variables in the subset. If a matrix is specified, each row is taken to represent
a different k-variable subset. If a 3-d array is given, it is assumed that the third
dimension corresponds to different cardinalities.

pcindices a numerical vector of indices of Principal Components. By default, the first
k PCs are chosen, where k is the cardinality of the subset of variables whose
criterion value is being computed. If a vector of PCs is specified by the user,
those PCs will be used for all cardinalities that were requested.
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Details

Computes Yanai’s Generalized Coefficient of Determination for the similarity of the subspaces
spanned by a subset of variables (specified by indices) and a subset of the full-data set’s Principal
Components (specified by pcindices). Input data is expected in the form of a (co)variance or cor-
relation matrix. If a non-square matrix is given, it is assumed to be a data matrix, and its correlation
matrix is used as input. The number of variables (k) and of PCs (q) does not have to be the same.

Yanai’s GCD is defined as:

GCD =
tr(Pv · Pc)√

k · q
where Pv and Pc are the matrices of orthogonal projections on the subspaces spanned by the k-
variable subset and by the q-Principal Component subset, respectively.

This definition is equivalent to:

GCD =
1√
kq

∑
i

(rm)2i

where (rm)i stands for the multiple correlation between the i-th Principal Component and the k-
variable subset, and the sum is carried out over the q PCs (i=1,...,q) selected.

These definitions are also equivalent to the expression used in the code, which only requires the
covariance (or correlation) matrix of the data under consideration.

The fact that indices can be a matrix or 3-d array allows for the computation of the GCD values
of subsets produced by the search functions anneal, genetic and improve (whose output option
$subsets are matrices or 3-d arrays), using a different criterion (see the example below).

Value

The value of the GCD coefficient.

References

Cadima, J. and Jolliffe, I.T. (2001), "Variable Selection and the Interpretation of Principal Sub-
spaces", Journal of Agricultural, Biological and Environmental Statistics, Vol. 6, 62-79.

Ramsay, J.O., ten Berge, J. and Styan, G.P.H. (1984), "Matrix Correlation", Psychometrika, 49,
403-423.

Examples

## An example with a very small data set.

data(iris3)
x<-iris3[,,1]
gcd.coef(cor(x),c(1,3))
## [1] 0.7666286
gcd.coef(cor(x),c(1,3),pcindices=c(1,3))
## [1] 0.584452
gcd.coef(cor(x),c(1,3),pcindices=1)
## [1] 0.6035127

## An example computing the GCDs of three subsets produced when the
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## anneal function attempted to optimize the RV criterion (using an
## absurdly small number of iterations).

data(swiss)
rvresults<-anneal(cor(swiss),2,nsol=4,niter=5,criterion="Rv")
gcd.coef(cor(swiss),rvresults$subsets)

## Card.2
##Solution 1 0.4962297
##Solution 2 0.7092591
##Solution 3 0.4748525
##Solution 4 0.4649259

genetic Genetic Algorithm searching for an optimal k-variable subset

Description

Given a set of variables, a Genetic Algorithm algorithm seeks a k-variable subset which is optimal,
as a surrogate for the whole set, with respect to a given criterion.

Usage

genetic( mat, kmin, kmax = kmin, popsize = max(100,2*ncol(mat)), nger = 100,
mutate = FALSE, mutprob = 0.01, maxclone = 5, exclude = NULL,
include = NULL, improvement = TRUE, setseed= FALSE, criterion = "default",
pcindices = "first_k", initialpop = NULL, force = FALSE, H=NULL, r=0,
tolval=1000*.Machine$double.eps,tolsym=1000*.Machine$double.eps)

Arguments

mat a covariance/correlation, information or sums of squares and products matrix of
the variables from which the k-subset is to be selected. See the Details section
below.

kmin the cardinality of the smallest subset that is wanted.

kmax the cardinality of the largest subset that is wanted.

popsize integer variable indicating the size of the population.

nger integer variable giving the number of generations for which the genetic algo-
rithm will run.

mutate logical variable indicating whether each child undergoes a mutation, with prob-
ability mutprob. By default, FALSE.

mutprob variable giving the probability of each child undergoing a mutation, if mutate
is TRUE. By default, 0.01. High values slow down the algorithm considerably
and tend to replicate the same solution.
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maxclone integer variable specifying the maximum number of identical replicates (clones)
of individuals that is acceptable in the population. Serves to ensure that the
population has sufficient genetic diversity, which is necessary to enable the al-
gorithm to complete the specified number of generations. However, even max-
clone=0 does not guarantee that there are no repetitions: only the offspring of
couples are tested for clones. If any such clones are rejected, they are replaced
by a k-variable subset chosen at random, without any further clone tests.

exclude a vector of variables (referenced by their row/column numbers in matrix mat)
that are to be forcibly excluded from the subsets.

include a vector of variables (referenced by their row/column numbers in matrix mat)
that are to be forcibly included in the subsets.

improvement a logical variable indicating whether or not the best final subset (for each cardi-
nality) is to be passed as input to a local improvement algorithm (see function
improve).

setseed logical variable indicating whether to fix an initial seed for the random number
generator, which will be re-used in future calls to this function whenever setseed
is again set to TRUE.

criterion Character variable, which indicates which criterion is to be used in judging
the quality of the subsets. Currently, the "Rm", "Rv", "Gcd", "Tau2", "Xi2",
"Zeta2", "ccr12" and "Wald" criteria are supported (see the Details section, the
References and the links rm.coef, rv.coef, gcd.coef, tau2.coef, xi2.coef,
zeta2.coef and ccr12.coef for further details). The default criterion is "Rm"
if parameter r is zero (exploratory and PCA problems), "Wald" if r is equal to
one and mat has a "FisherI" attribute set to TRUE (generalized linear models),
and "Tau2" otherwise (multivariate linear model framework).

pcindices either a vector of ranks of Principal Components that are to be used for compari-
son with the k-variable subsets (for the Gcd criterion only, see gcd.coef) or the
default text first_k. The latter will associate PCs 1 to k with each cardinality
k that has been requested by the user.

initialpop vector, matrix or 3-d array of initial population for the genetic algorithm. If a
single cardinality is required, initialpop may be a popsize x k matrix or a
popsize x k x 1 array (as produced by the $subsets output value of any of the
algorithm functions anneal, genetic, or improve). If more than one cardinal-
ity is requested, initialpop must be a popsize x kmax x length(kmin:kmax)
3-d array (as produced by the $subsets output value).
If the exclude and/or include options are used, initialpop must also respect
those requirements.

force a logical variable indicating whether, for large data sets (currently p > 400) the
algorithm should proceed anyways, regardless of possible memory problems
which may crash the R session.

H Effect description matrix. Not used with the Rm, Rv or Gcd criteria, hence the
NULL default value. See the Details section below.

r Expected rank of the effects (H) matrix. Not used with the Rm, Rv or Gcd
criteria. See the Details section below.
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tolval the tolerance level for the reciprocal of the 2-norm condition number of the
correlation/covariance matrix, i.e., for the ratio of the smallest to the largest
eigenvalue of the input matrix. Matrices with a reciprocal of the condition num-
ber smaller than tolval will activate a restricted-search for well conditioned
subsets.

tolsym the tolerance level for symmetry of the covariance/correlation/total matrix and
for the effects (H) matrix. If corresponding matrix entries differ by more than
this value, the input matrices will be considered asymmetric and execution will
be aborted. If corresponding entries are different, but by less than this value, the
input matrix will be replaced by its symmetric part, i.e., input matrix A becomes
(A+t(A))/2.

Details

For each cardinality k (with k ranging from kmin to kmax), an initial population of popsize k-
variable subsets is randomly selected from a full set of p variables. In each iteration, popsize/2
couples are formed from among the population and each couple generates a child (a new k-variable
subset) which inherits properties of its parents (specifically, it inherits all variables common to
both parents and a random selection of variables in the symmetric difference of its parents’ genetic
makeup). Each offspring may optionally undergo a mutation (in the form of a local improvement
algorithm – see function improve), with a user-specified probability. The parents and offspring are
ranked according to their criterion value, and the best popsize of these k-subsets will make up the
next generation, which is used as the current population in the subsequent iteration.

The stopping rule for the algorithm is the number of generations (nger).

Optionally, the best k-variable subset produced by the Genetic Algorithm may be passed as input to
a restricted local improvement algorithm, for possible further improvement (see function improve).

The user may force variables to be included and/or excluded from the k-subsets, and may specify
an initial population.

For each cardinality k, the total number of calls to the procedure which computes the criterion values
is popsize+nger x popsize/2. These calls are the dominant computational effort in each iteration
of the algorithm.

In order to improve computation times, the bulk of computations are carried out by a Fortran routine.
Further details about the Genetic Algorithm can be found in Reference 1 and in the comments to
the Fortran code (in the src subdirectory for this package). For datasets with a very large number
of variables (currently p > 400), it is necessary to set the force argument to TRUE for the function
to run, but this may cause a session crash if there is not enough memory available.

The function checks for ill-conditioning of the input matrix (specifically, it checks whether the ratio
of the input matrix’s smallest and largest eigenvalues is less than tolval). For an ill-conditioned
input matrix, the search is restricted to its well-conditioned subsets. The function trim.matrix
may be used to obtain a well-conditioned input matrix.

In a general descriptive (Principal Components Analysis) setting, the three criteria Rm, Rv and Gcd
can be used to select good k-variable subsets. Arguments H and r are not used in this context. See
references [1] and [2] and the Examples for a more detailed discussion.

In the setting of a multivariate linear model, X = AΨ+U , criteria Ccr12, Tau2, Xi2 and Zeta2 can
be used to select subsets according to their contribution to an effect characterized by the violation
of a reference hypothesis, CΨ = 0 (see reference [3] for further details). In this setting, arguments
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mat and H should be set respectively to the usual Total (Hypothesis + Error) and Hypothesis, Sum
of Squares and Cross-Products (SSCP) matrices. Argument r should be set to the expected rank of
H. Currently, for reasons of computational efficiency, criterion Ccr12 is available only when r ≤
3. Particular cases in this setting include Linear Discriminant Analyis (LDA), Linear Regression
Analysis (LRA), Canonical Correlation Analysis (CCA) with one set of variables fixed and several
extensions of these and other classical multivariate methodologies.

In the setting of a generalized linear model, criterion Wald can be used to select subsets according to
the (lack of) significance of the discarded variables, as measured by the respective Wald’s statistic
(see reference [4] for further details). In this setting arguments mat and H should be set respectively
to FI and FI %*% b %*% t(b) %*% FI, where b is a column vector of variable coefficient estimates
and FI is an estimate of the corresponding Fisher information matrix.

The auxiliary functions lmHmat, ldaHmat glhHmat and glmHmat are provided to automatically cre-
ate the matrices mat and H in all the cases considered.

Value

A list with five items:

subsets A popsize x kmax x length(kmin:kmax) 3-dimensional array, giving for each
cardinality (dimension 3) and each subset in the final population (dimension 1)
the list of variables (referenced by their row/column numbers in matrix mat) in
the subset (dimension 2). (For cardinalities smaller than kmax, the extra final
positions are set to zero).

values A popsize x length(kmin:kmax) matrix, giving for each cardinality (columns),
the (ordered) criterion values of the popsize (rows) subsets in the final genera-
tion.

bestvalues A length(kmin:kmax) vector giving the best values of the criterion obtained for
each cardinality. If improvement is TRUE, these values result from the final
restricted local search algorithm (and may therefore exceed the largest value for
that cardinality in values).

bestsets A length(kmin:kmax) x kmax matrix, giving, for each cardinality (rows), the
variables (referenced by their row/column numbers in matrix mat) in the best
k-subset that was found.

call The function call which generated the output.

References

[1] Cadima, J., Cerdeira, J. Orestes and Minhoto, M. (2004) Computational aspects of algorithms
for variable selection in the context of principal components. Computational Statistics and Data
Analysis, 47, 225-236.

[2] Cadima, J. and Jolliffe, I.T. (2001). Variable Selection and the Interpretation of Principal Sub-
spaces, Journal of Agricultural, Biological and Environmental Statistics, Vol. 6, 62-79.

[3] Duarte Silva, A.P. (2001) Efficient Variable Screening for Multivariate Analysis, Journal of
Multivariate Analysis, Vol. 76, 35-62.

[4] Lawless, J. and Singhal, K. (1978). Efficient Screening of Nonnormal Regression Models,
Biometrics, Vol. 34, 318-327.
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See Also

rm.coef, rv.coef, gcd.coef, tau2.coef, xi2.coef, zeta2.coef, ccr12.coef, genetic, anneal,
eleaps, trim.matrix, lmHmat, ldaHmat, glhHmat, glmHmat.

Examples

## --------------------------------------------------------------------

##
## 1) For illustration of use, a small data set with very few iterations
## of the algorithm. Escoufier's 'RV' criterion is used to select variable
## subsets of size 3 and 4.
##

data(swiss)
genetic(cor(swiss),3,4,popsize=10,nger=5,criterion="Rv")

## For cardinality k=
##[1] 4
## there is not enough genetic diversity in generation number
##[1] 3
## for acceptable levels of consanguinity (couples differing by at least 2 genes).
## Try reducing the maximum acceptable number of clones (maxclone) or
## increasing the population size (popsize)
## Best criterion value found so far:
##[1] 0.9557145
##$subsets
##, , Card.3
##
## Var.1 Var.2 Var.3 Var.4
##Solution 1 1 2 3 0
##Solution 2 1 2 3 0
##Solution 3 1 2 3 0
##Solution 4 3 4 6 0
##Solution 5 3 4 6 0
##Solution 6 3 4 5 0
##Solution 7 3 4 5 0
##Solution 8 1 3 6 0
##Solution 9 1 3 6 0
##Solution 10 1 3 6 0
##
##, , Card.4
##
## Var.1 Var.2 Var.3 Var.4
##Solution 1 2 4 5 6
##Solution 2 1 2 5 6
##Solution 3 1 2 3 5
##Solution 4 1 2 4 5
##Solution 5 1 2 4 5
##Solution 6 1 4 5 6
##Solution 7 1 4 5 6
##Solution 8 1 4 5 6
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##Solution 9 1 3 4 5
##Solution 10 1 3 4 5
##
##
##$values
## card.3 card.4
##Solution 1 0.9141995 0.9557145
##Solution 2 0.9141995 0.9485699
##Solution 3 0.9141995 0.9455508
##Solution 4 0.9034868 0.9433203
##Solution 5 0.9034868 0.9433203
##Solution 6 0.9020271 0.9428967
##Solution 7 0.9020271 0.9428967
##Solution 8 0.8988192 0.9428967
##Solution 9 0.8988192 0.9357982
##Solution 10 0.8988192 0.9357982
##
##$bestvalues
## Card.3 Card.4
##0.9141995 0.9557145
##
##$bestsets
## Var.1 Var.2 Var.3 Var.4
##Card.3 1 2 3 0
##Card.4 2 4 5 6
##
##$call
##genetic(mat = cor(swiss), kmin = 3, kmax = 4, popsize = 10, nger = 5,
## criterion = "Rv")

## --------------------------------------------------------------------

##
## 2) An example of subset selection in the context of Multiple Linear
## Regression. Variable 5 (average car price) in the Cars93 MASS library
## data set is regressed on 13 other variables. The six-variable subsets
## of linear predictors are chosen using the "CCR1_2" criterion which,
## in the case of a Linear Regression, is merely the standard Coefficient
## of Determination, R^2 (as are the other three criteria for the
## multivariate linear hypothesis, "XI_2", "TAU_2" and "ZETA_2").
##

library(MASS)
data(Cars93)
CarsHmat <- lmHmat(Cars93[,c(7:8,12:15,17:22,25)],Cars93[,5])

names(Cars93[,5,drop=FALSE])
## [1] "Price"

colnames(CarsHmat)
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## [1] "MPG.city" "MPG.highway" "EngineSize"
## [4] "Horsepower" "RPM" "Rev.per.mile"
## [7] "Fuel.tank.capacity" "Passengers" "Length"
## [10] "Wheelbase" "Width" "Turn.circle"
## [13] "Weight"

genetic(CarsHmat$mat, kmin=6, H=CarsHmat$H, r=1, crit="CCR12")

##
## (Partial results only)
##
## $subsets
## Var.1 Var.2 Var.3 Var.4 Var.5 Var.6
## Solution 1 4 5 9 10 11 12
## Solution 2 4 5 9 10 11 12
## Solution 3 4 5 9 10 11 12
## Solution 4 4 5 9 10 11 12
## Solution 5 4 5 9 10 11 12
## Solution 6 4 5 9 10 11 12
## Solution 7 4 5 8 10 11 12
##
## (...)
##
## Solution 94 1 4 5 6 10 11
## Solution 95 1 4 5 6 10 11
## Solution 96 1 4 5 6 10 11
## Solution 97 1 4 5 6 10 11
## Solution 98 1 4 5 6 10 11
## Solution 99 1 4 5 6 10 11
## Solution 100 1 4 5 6 10 11
##
## $values
## Solution 1 Solution 2 Solution 3 Solution 4 Solution 5 Solution 6
## 0.7310150 0.7310150 0.7310150 0.7310150 0.7310150 0.7310150
## Solution 7 Solution 8 Solution 9 Solution 10 Solution 11 Solution 12
## 0.7310150 0.7271056 0.7271056 0.7271056 0.7271056 0.7271056
## Solution 13 Solution 14 Solution 15 Solution 16 Solution 17 Solution 18
## 0.7271056 0.7270257 0.7270257 0.7270257 0.7270257 0.7270257
##
## (...)
##
## Solution 85 Solution 86 Solution 87 Solution 88 Solution 89 Solution 90
## 0.7228800 0.7228800 0.7228800 0.7228800 0.7228800 0.7228800
## Solution 91 Solution 92 Solution 93 Solution 94 Solution 95 Solution 96
## 0.7228463 0.7228463 0.7228463 0.7228463 0.7228463 0.7228463
## Solution 97 Solution 98 Solution 99 Solution 100
## 0.7228463 0.7228463 0.7228463 0.7228463
##
## $bestvalues
## Card.6
## 0.731015
##
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## $bestsets
## Var.1 Var.2 Var.3 Var.4 Var.5 Var.6
## 4 5 9 10 11 12
##
## $call
## genetic(mat = CarsHmat$mat, kmin = 6, criterion = "CCR12", H = CarsHmat$H,
## r = 1)

## --------------------------------------------------------------------

## 3) An example of subset selection in the context of a Canonical
## Correlation Analysis. Two groups of variables within the Cars93
## MASS library data set are compared. The goal is to select 4- to
## 6-variable subsets of the 13-variable 'X' group that are optimal in
## terms of preserving the canonical correlations, according to the
## "ZETA_2" criterion (Warning: the 3-variable 'Y' group is kept
## intact; subset selection is carried out in the 'X'
## group only). The 'tolsym' parameter is used to relax the symmetry
## requirements on the effect matrix H which, for numerical reasons,
## is slightly asymmetric. Since corresponding off-diagonal entries of
## matrix H are different, but by less than tolsym, H is replaced
## by its symmetric part: (H+t(H))/2.

library(MASS)
data(Cars93)
CarsHmat <- lmHmat(Cars93[,c(7:8,12:15,17:22,25)],Cars93[,4:6])

names(Cars93[,4:6])
## [1] "Min.Price" "Price" "Max.Price"

colnames(CarsHmat$mat)

## [1] "MPG.city" "MPG.highway" "EngineSize"
## [4] "Horsepower" "RPM" "Rev.per.mile"
## [7] "Fuel.tank.capacity" "Passengers" "Length"
## [10] "Wheelbase" "Width" "Turn.circle"
## [13] "Weight"

genetic(CarsHmat$mat, kmin=5, kmax=6, H=CarsHmat$H, r=3, crit="zeta2", tolsym=1e-9)

## (PARTIAL RESULTS ONLY)
##
## $subsets
##
## Var.1 Var.2 Var.3 Var.4 Var.5 Var.6
## Solution 1 4 5 9 10 11 0
## Solution 2 4 5 9 10 11 0
## Solution 3 4 5 9 10 11 0
## Solution 4 4 5 9 10 11 0
## Solution 5 4 5 9 10 11 0
## Solution 6 4 5 9 10 11 0
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## Solution 7 4 5 9 10 11 0
## Solution 8 3 4 9 10 11 0
## Solution 9 3 4 9 10 11 0
## Solution 10 3 4 9 10 11 0
##
## (...)
##
## Solution 87 3 4 6 9 10 11
## Solution 88 3 4 6 9 10 11
## Solution 89 3 4 6 9 10 11
## Solution 90 2 3 4 10 11 12
## Solution 91 2 3 4 10 11 12
## Solution 92 2 3 4 10 11 12
## Solution 93 2 3 4 10 11 12
## Solution 94 2 3 4 10 11 12
## Solution 95 2 3 4 10 11 12
## Solution 96 2 3 4 10 11 12
## Solution 97 1 3 4 6 10 11
## Solution 98 1 3 4 6 10 11
## Solution 99 1 3 4 6 10 11
## Solution 100 1 3 4 6 10 11
##
##
## $values
##
## card.5 card.6
## Solution 1 0.5018922 0.5168627
## Solution 2 0.5018922 0.5168627
## Solution 3 0.5018922 0.5168627
## Solution 4 0.5018922 0.5168627
## Solution 5 0.5018922 0.5168627
## Solution 6 0.5018922 0.5168627
## Solution 7 0.5018922 0.5096500
## Solution 8 0.4966191 0.5096500
## Solution 9 0.4966191 0.5096500
## Solution 10 0.4966191 0.5096500
##
## (...)
##
## Solution 87 0.4893824 0.5038649
## Solution 88 0.4893824 0.5038649
## Solution 89 0.4893824 0.5038649
## Solution 90 0.4893824 0.5035489
## Solution 91 0.4893824 0.5035489
## Solution 92 0.4893824 0.5035489
## Solution 93 0.4893824 0.5035489
## Solution 94 0.4893824 0.5035489
## Solution 95 0.4893824 0.5035489
## Solution 96 0.4893824 0.5035489
## Solution 97 0.4890986 0.5035386
## Solution 98 0.4890986 0.5035386
## Solution 99 0.4890986 0.5035386
## Solution 100 0.4890986 0.5035386
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##
## $bestvalues
## Card.5 Card.6
## 0.5018922 0.5168627
##
## $bestsets
## Var.1 Var.2 Var.3 Var.4 Var.5 Var.6
## Card.5 4 5 9 10 11 0
## Card.6 4 5 9 10 11 12
##
## $call
## genetic(mat = CarsHmat$mat, kmin = 5, kmax = 6, criterion = "zeta2",
## H = CarsHmat$H, r = 3, tolsym = 1e-09)
##
## Warning message:
##
## The effect description matrix (H) supplied was slightly asymmetric:
## symmetric entries differed by up to 3.63797880709171e-12.
## (less than the 'tolsym' parameter).
## The H matrix has been replaced by its symmetric part.
## in: validnovcrit(mat, criterion, H, r, p, tolval, tolsym)
##

## The selected best variable subsets

colnames(CarsHmat$mat)[c(4,5,9,10,11)]

## [1] "Horsepower" "RPM" "Length" "Wheelbase" "Width"

colnames(CarsHmat$mat)[c(4,5,9,10,11,12)]

## [1] "Horsepower" "RPM" "Length" "Wheelbase" "Width"
## [6] "Turn.circle"

## --------------------------------------------------------------------

glhHmat Total and Effect Deviation Matrices for General Linear Hypothesis

Description

Computes total and effect matrices of Sums of Squares and Cross-Product (SSCP) deviations for
a general multivariate effect characterized by the violation of a linear hypothesis. These matrices
may be used as input to the variable selection search routines anneal, genetic improve or eleaps.

Usage

## Default S3 method:
glhHmat(x,A,C,...)
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## S3 method for class 'data.frame'
glhHmat(x,A,C,...)

## S3 method for class 'formula'
glhHmat(formula,C,data=NULL,...)

Arguments

x A matrix or data frame containing the variables for which the SSCP matrix is to
be computed.

A A matrix or data frame containing a design matrix specifying a linear model in
which x is the response.

C A matrix or vector containing the coefficients of the reference hypothesis.

formula A formula of the form 'x ~ A1 + A2 + ...' That is, the response is the set of
variables whose subsets are to be compared and the right hand side specifies the
columns of the design matrix.

data Data frame from which variables specified in ’formula’ are preferentially to be
taken.

... further arguments for the method.

Details

Consider a multivariate linear model x = AΨ+ U and a reference hypothesis H0 : CΨ = 0, with
Ψ being a matrix of unknown parameters and C a known coefficient matrix with rank r. It is well
known that, under classical Gaussian assumptions, H0 can be tested by several increasing functions
of the r positive eigenvalues of a product T−1H , where T and H are total and effect matrices of
SSCP deviations associated with H0. Furthermore, whether or not the classical assumptions hold,
the same eigenvalues can be used to define descriptive indices that measure an "effect" characterized
by the violation of H0 (see reference [1] for further details). Those SSCP matrices are given by
T = x′(I − Pω)x and H = x′(PΩ − Pω)x, where I is an identity matrix and PΩ = A(A′A)−A′ ,

Pω = A(A′A)−A′ −A(A′A)−C ′[C(A′A)−C ′]−C(A′A)−A′

are projection matrices on the spaces spanned by the columns of A (space Ω) and by the linear
combinations of these columns that satisfy the reference hypothesis (space ω). In these formulae
M ′ denotes the transpose of M and M− a generalized inverse. glhHmat computes the T and H
matrices which then can be used as input to the search routines anneal, genetic improve and
eleaps that try to select subsets of x according to their contribution to the violation of H0.

Value

A list with four items:

mat The total SSCP matrix

H The effect SSCP matrix
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r The expected rank of the H matrix which equals the rank of C. The true rank of
H can be different from r if the x variables are linearly dependent.

call The function call which generated the output.

References

[1] Duarte Silva. A.P. (2001). Efficient Variable Screening for Multivariate Analysis, Journal of
Multivariate Analysis, Vol. 76, 35-62.

See Also

anneal, genetic, improve, eleaps, lmHmat, ldaHmat.

Examples

##----------------------------------------------------------------------------

## The following examples create T and H matrices for different analysis
## of the MASS data set "crabs". This data records physical measurements
## on 200 specimens of Leptograpsus variegatus crabs observed on the shores
## of Western Australia. The crabs are classified by two factors, sex and sp
## (crab species as defined by its colour: blue or orange), with two levels
## each. The measurement variables include the carapace length (CL),
## the carapace width (CW), the size of the frontal lobe (FL) and the size of
## the rear width (RW). In the analysis provided, we assume that there is
## an interest in comparing the subsets of these variables measured in their
## original and logarithmic scales.

library(MASS)
data(crabs)
lFL <- log(crabs$FL)
lRW <- log(crabs$RW)
lCL <- log(crabs$CL)
lCW <- log(crabs$CW)

# 1) Create the T and H matrices associated with a linear
# discriminant analysis on the groups defined by the sp factor.
# This call is equivalent to ldaHmat(sp ~ FL + RW + CL + CW + lFL +
# lRW + lCL + lCW,crabs)

Hmat1 <- glhHmat(cbind(FL,RW,CL,CW,lFL,lRW,lCL,lCW) ~ sp,c(0,1),crabs)
Hmat1

##$mat
## FL RW CL CW lFL lRW lCL
##FL 2431.2422 1623.4509 4846.9787 5283.6093 162.718609 133.360397 158.865134
##RW 1623.4509 1317.7935 3254.5776 3629.6883 109.877182 107.287243 108.335721
##CL 4846.9787 3254.5776 10085.3040 11096.5141 326.243285 269.564742 330.912570
##CW 5283.6093 3629.6883 11096.5141 12331.5680 356.317934 300.786770 364.620761
##lFL 162.7186 109.8772 326.2433 356.3179 11.114733 9.188391 10.910730
##lRW 133.3604 107.2872 269.5647 300.7868 9.188391 8.906350 9.130692
##lCL 158.8651 108.3357 330.9126 364.6208 10.910730 9.130692 11.088706
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##lCW 152.7872 106.4277 321.0253 357.0051 10.503303 8.970570 10.765175
## lCW
##FL 152.78716
##RW 106.42775
##CL 321.02534
##CW 357.00510
##lFL 10.50330
##lRW 8.97057
##lCL 10.76517
##lCW 10.54334

##$H
## FL RW CL CW lFL lRW lCL
##FL 466.34580 247.526700 625.30650 518.41650 30.7408809 19.4543206 20.5494907
##RW 247.52670 131.382050 331.89975 275.16475 16.3166234 10.3259508 10.9072444
##CL 625.30650 331.899750 838.45125 695.12625 41.2193540 26.0856066 27.5540813
##CW 518.41650 275.164750 695.12625 576.30125 34.1733106 21.6265286 22.8439819
##lFL 30.74088 16.316623 41.21935 34.17331 2.0263971 1.2824024 1.3545945
##lRW 19.45432 10.325951 26.08561 21.62653 1.2824024 0.8115664 0.8572531
##lCL 20.54949 10.907244 27.55408 22.84398 1.3545945 0.8572531 0.9055117
##lCW 15.16136 8.047335 20.32933 16.85423 0.9994161 0.6324790 0.6680840
## lCW
##FL 15.1613582
##RW 8.0473352
##CL 20.3293260
##CW 16.8542276
##lFL 0.9994161
##lRW 0.6324790
##lCL 0.6680840
##lCW 0.4929106

##$r
##[1] 1

##$call
##glhHmat.formula(formula = cbind(FL, RW, CL, CW, lFL, lRW, lCL,
## lCW) ~ sp, C = c(0, 1), data = crabs)

# 2) Create the T and H matrices associated with an analysis
# of the interactions between the sp and sex factors

Hmat2 <- glhHmat(cbind(FL,RW,CL,CW,lFL,lRW,lCL,lCW) ~ sp*sex,c(0,0,0,1),crabs)
Hmat2

##$mat
## FL RW CL CW lFL lRW lCL
##FL 1960.3362 1398.52890 4199.1581 4747.5409 131.651804 115.607172 137.663744
##RW 1398.5289 1074.36105 3034.2793 3442.0233 95.176151 88.529040 100.659912
##CL 4199.1581 3034.27925 9135.6987 10314.2389 283.414814 251.877591 300.140005
##CW 4747.5409 3442.02325 10314.2389 11686.9387 320.883015 285.744945 339.253367
##lFL 131.6518 95.17615 283.4148 320.8830 9.065041 8.027569 9.509543
##lRW 115.6072 88.52904 251.8776 285.7449 8.027569 7.460222 8.516618
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##lCL 137.6637 100.65991 300.1400 339.2534 9.509543 8.516618 10.090003
##lCW 137.2059 100.46203 298.6227 338.5254 9.473873 8.494741 10.037059
## lCW
##FL 137.205863
##RW 100.462028
##CL 298.622747
##CW 338.525352
##lFL 9.473873
##lRW 8.494741
##lCL 10.037059
##lCW 10.011755

##$H
## FL RW CL CW lFL lRW lCL
##FL 80.645000 68.389500 153.73350 191.57950 5.4708199 5.1596883 5.2140868
##RW 68.389500 57.996450 130.37085 162.46545 4.6394276 4.3755782 4.4217098
##CL 153.733500 130.370850 293.06205 365.20785 10.4290197 9.8359098 9.9396095
##CW 191.579500 162.465450 365.20785 455.11445 12.9964281 12.2573068 12.3865353
##lFL 5.470820 4.639428 10.42902 12.99643 0.3711311 0.3500245 0.3537148
##lRW 5.159688 4.375578 9.83591 12.25731 0.3500245 0.3301182 0.3335986
##lCL 5.214087 4.421710 9.93961 12.38654 0.3537148 0.3335986 0.3371158
##lCW 5.584150 4.735535 10.64506 13.26565 0.3788193 0.3572754 0.3610421
## lCW
##FL 5.5841501
##RW 4.7355352
##CL 10.6450610
##CW 13.2656543
##lFL 0.3788193
##lRW 0.3572754
##lCL 0.3610421
##lCW 0.3866667

##$r
##[1] 1

##$call
##glhHmat.formula(formula = cbind(FL, RW, CL, CW, lFL, lRW, lCL,
## lCW) ~ sp * sex, C = c(0, 0, 0, 1), data = crabs)

## 3) Create the T and H matrices associated with an analysis
## of the effect of the sp factor after controlling for sex

C <- matrix(0.,2,4)
C[1,3] = C[2,4] = 1.
C

## [,1] [,2] [,3] [,4]
## [1,] 0 0 1 0
## [2,] 0 0 0 1

Hmat3 <- glhHmat(cbind(FL,RW,CL,CW,lFL,lRW,lCL,lCW) ~ sp*sex,C,crabs)
Hmat3
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##$mat
## FL RW CL CW lFL lRW lCL
##FL 1964.8964 1375.92420 4221.6722 4765.1928 131.977728 113.906076 138.315643
##RW 1375.9242 1186.41150 2922.6779 3354.5236 93.560559 96.961292 97.428477
##CL 4221.6722 2922.67790 9246.8527 10401.3878 285.023931 243.479136 303.358489
##CW 4765.1928 3354.52360 10401.3878 11755.2667 322.144623 279.160241 341.776779
##lFL 131.9777 93.56056 285.0239 322.1446 9.088336 7.905989 9.556135
##lRW 113.9061 96.96129 243.4791 279.1602 7.905989 8.094783 8.273439
##lCL 138.3156 97.42848 303.3585 341.7768 9.556135 8.273439 10.183194
##lCW 137.6258 98.38041 300.6960 340.1509 9.503886 8.338091 10.097091
## lCW
##FL 137.625801
##RW 98.380414
##CL 300.696018
##CW 340.150874
##lFL 9.503886
##lRW 8.338091
##lCL 10.097091
##lCW 10.050426

##$H
## FL RW CL CW lFL lRW
##FL 85.205200 45.784800 176.247600 209.231400 5.7967443 3.45859277
##RW 45.784800 170.046900 18.769500 74.965800 3.0238356 12.80782993
##CL 176.247600 18.769500 404.216100 452.356800 12.0381364 1.43745463
##CW 209.231400 74.965800 452.356800 523.442500 14.2580360 5.67260253
##lFL 5.796744 3.023836 12.038136 14.258036 0.3944254 0.22844463
##lRW 3.458593 12.807830 1.437455 5.672603 0.2284446 0.96467943
##lCL 5.865986 1.190274 13.158093 14.909948 0.4003070 0.09041999
##lCW 6.004088 2.653921 12.718332 14.891177 0.4088329 0.20062548
## lCL lCW
##FL 5.86598627 6.0040883
##RW 1.19027431 2.6539211
##CL 13.15809339 12.7183319
##CW 14.90994753 14.8911765
##lFL 0.40030704 0.4088329
##lRW 0.09041999 0.2006255
##lCL 0.43030750 0.4210740
##lCW 0.42107404 0.4253378

##$r
##[1] 2

##$call
##glhHmat.formula(formula = cbind(FL, RW, CL, CW, lFL, lRW, lCL,
## lCW) ~ sp * sex, C = C, data = crabs)

glmHmat Input matrices for subselect search routines in generalized linear mod-
els
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Description

glmHmat uses a glm object (fitdglmmodel) to build an estimate of Fisher’s Information (FI) matrix
together with an auxiliarly rank-one positive-defenite matrix (H), such that the positive eigenvalue
of FI−1H equals the value of Wald’s statistic for testing the global significance of fitdglmmodel.
These matrices may be used as input to the variable selection search routines anneal, genetic
improve or eleaps, usign the minimization of Wald’s statistic as criterion for discarding variables.

Usage

## S3 method for class 'glm'
glmHmat(fitdglmmodel,...)

Arguments

fitdglmmodel A glm object containaing the estimates, and respective covariance matrix, of a
generalized linear model.

... further arguments for the method.

Details

Variable selection in the context of generalized linear models is typically based on the minimization
of statistics that test the significance of excluded variables. In particular, the likelihood ratio, Wald’s,
Rao’s and some adaptations of such statistics, are often proposed as comparison criteria for variable
subsets of the same dimensionality. All these statistics are assympotically equivalent and can be
converted into information criteria, like the AIC, that are also able to compare subsets of different
dimensionalities (see references [1] and [2] for further details).

Among these criteria, Wald’s statistic has some computational advantages because it can always
be derived from the same (concerning the full model) maximum likelihood and Fisher informa-
tion estimates. In particular, if Wallv is the value of the Wald statistic testing the significance
of the full covariate vector, b and FI are coefficient and Fisher information estimates and H is
an auxiliary rank-one matrix given by H = FI %*% b %*% t(b) %*% FI, it follows that the value of
Wald’s statistic for the excluded variables (Wexcv) in a given subset is given by Wexcv = Wallv −
tr(FI−1

indicesHindices), where FIindices and Hindices are the portions of the FI and H matrices
associated with the selected variables.

glmHmat retrieves the values of the FI and H matrices from a glm object. These matrices may then
be used as input to the search functions anneal, genetic, improve and eleaps.

Value

A list with four items:

mat An estimate (FI) of Fisher’s information matrix for the full model variable-
coefficient estimates

H A product of the form (FI %*% b %*% t(b) %*% FI) where b is a vector of variable-
coefficient estimates

r The rank of the H matrix. Always set to one in glmHmat.

call The function call which generated the output.
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See Also

anneal, genetic, improve, eleaps, glm.

Examples

##----------------------------------------------------------------

##----------------------------------------------------------------

## An example of variable selection in the context of binary response
## regression models. We consider the last 100 observations of
## the iris data set (versicolor an verginica species) and try
## to find the best variable subsets for models that take species
## as the response variable.

data(iris)
iris2sp <- iris[iris$Species != "setosa",]

# Create the input matrices for the search routines in a logistic regression model

modelfit <- glm(Species ~ Sepal.Length + Sepal.Width + Petal.Length +
Petal.Width,iris2sp,family=binomial)
Hmat <- glmHmat(modelfit)
Hmat

## $mat
## Sepal.Length Sepal.Width Petal.Length Petal.Width
## Sepal.Length 0.28340358 0.03263437 0.09552821 -0.01779067
## Sepal.Width 0.03263437 0.13941541 0.01086596 0.04759284
## Petal.Length 0.09552821 0.01086596 0.08847655 -0.01853044
## Petal.Width -0.01779067 0.04759284 -0.01853044 0.03258730

## $H
## Sepal.Length Sepal.Width Petal.Length Petal.Width
## Sepal.Length 0.11643732 0.013349227 -0.063924853 -0.050181400
## Sepal.Width 0.01334923 0.001530453 -0.007328813 -0.005753163
## Petal.Length -0.06392485 -0.007328813 0.035095164 0.027549918
## Petal.Width -0.05018140 -0.005753163 0.027549918 0.021626854

## $r
## [1] 1

## $call
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## glmHmat(fitdglmmodel = modelfit)

# Search for the 3 best variable subsets of each dimensionality by an exausitve search

eleaps(Hmat$mat,H=Hmat$H,r=1,criterion="Wald",nsol=3)

## $subsets
## , , Card.1

## Var.1 Var.2 Var.3
## Solution 1 4 0 0
## Solution 2 1 0 0
## Solution 3 3 0 0

## , , Card.2

## Var.1 Var.2 Var.3
## Solution 1 1 3 0
## Solution 2 3 4 0
## Solution 3 2 4 0

## , , Card.3

## Var.1 Var.2 Var.3
## Solution 1 2 3 4
## Solution 2 1 3 4
## Solution 3 1 2 3

## $values
## card.1 card.2 card.3
## Solution 1 4.894554 3.522885 1.060121
## Solution 2 5.147360 3.952538 2.224335
## Solution 3 5.161553 3.972410 3.522879

## $bestvalues
## Card.1 Card.2 Card.3
## 4.894554 3.522885 1.060121

## $bestsets
## Var.1 Var.2 Var.3
## Card.1 4 0 0
## Card.2 1 3 0
## Card.3 2 3 4

## $call
## eleaps(mat = Hmat$mat, nsol = 3, criterion = "Wald", H = Hmat$H,
## r = 1)

## It should be stressed that, unlike other criteria in the
## subselect package, the Wald criterion is not bounded above by
## 1 and is a decreasing function of subset quality, so that the
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## 3-variable subsets do, in fact, perform better than their smaller-sized
## counterparts.

## >
## > proc.time()
## [1] 0.680 0.064 0.736 0.000 0.000

improve Restricted Local Improvement search for an optimal k-variable subset

Description

Given a set of variables, a Restricted Local Improvement algorithm seeks a k-variable subset which
is optimal, as a surrogate for the whole set, with respect to a given criterion.

Usage

improve( mat, kmin, kmax = kmin, nsol = 1, exclude = NULL,
include = NULL, setseed = FALSE, criterion = "default", pcindices="first_k",
initialsol = NULL, force = FALSE, H=NULL, r=0,
tolval=1000*.Machine$double.eps,tolsym=1000*.Machine$double.eps)

Arguments

mat a covariance/correlation, information or sums of squares and products matrix of
the variables from which the k-subset is to be selected. See the Details section
below.

kmin the cardinality of the smallest subset that is wanted.

kmax the cardinality of the largest subset that is wanted.

nsol the number of different subsets (runs of the algorithm) wanted.

exclude a vector of variables (referenced by their row/column numbers in matrix mat)
that are to be forcibly excluded from the subsets.

include a vector of variables (referenced by their row/column numbers in matrix mat)
that are to be forcibly included from the subsets.

setseed logical variable indicating whether to fix an initial seed for the random number
generator, which will be re-used in future calls to this function whenever setseed
is again set to TRUE.

criterion Character variable, which indicates which criterion is to be used in judging
the quality of the subsets. Currently, the "Rm", "Rv", "Gcd", "Tau2", "Xi2",
"Zeta2", "ccr12" and "Wald" criteria are supported (see the Details section, the
References and the links rm.coef, rv.coef, gcd.coef, tau2.coef, xi2.coef,
zeta2.coef and ccr12.coef for further details). The default criterion is "Rm"
if parameter r is zero (exploratory and PCA problems), "Wald" if r is equal to
one and mat has a "FisherI" attribute set to TRUE (generalized linear models),
and "Tau2" otherwise (multivariate linear model framework).
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pcindices either a vector of ranks of Principal Components that are to be used for compari-
son with the k-variable subsets (for the Gcd criterion only, see gcd.coef) or the
default text first_k. The latter will associate PCs 1 to k with each cardinality
k that has been requested by the user.

initialsol vector, matrix or 3-d array of initial solutions for the restricted local improve-
ment search. If a single cardinality is required, initialsol may be a vector of
length k(accepted even if nsol > 1, in which case it is used as the initial solu-
tion for all nsol final solutions that are requested with a warning that the same
initial solution necessarily produces the same final solution); a 1 x k matrix (as
produced by the $bestsets output value of the algorithm functions anneal,
genetic, or improve), or a 1 x k x 1 array (as produced by the $subsets output
value), in which case it will be treated as the above k-vector; or an nsol x k
matrix, or nsol x k x 1 3-d array, in which case each row (dimension 1) will be
used as the initial solution for each of the nsol final solutions requested. If more
than one cardinality is requested, initialsol can be a length(kmin:kmax) x
kmax matrix (as produced by the $bestsets option of the algorithm functions)
(even if nsol > 1, in which case each row will be replicated to produced the
initial solution for all nsol final solutions requested in each cardinality, with a
warning that a single initial solution necessarily produces identical final solu-
tions), or a nsol x kmax x length(kmin:kmax) 3-d array (as produced by the
$subsets output option), in which case each row (dimension 1) is interpreted
as a different initial solution.
If the exclude and/or include options are used, initialsol must also respect
those requirements.

force a logical variable indicating whether, for large data sets (currently p > 400) the
algorithm should proceed anyways, regardless of possible memory problems
which may crash the R session.

H Effect description matrix. Not used with the Rm, Rv or Gcd criteria, hence the
NULL default value. See the Details section below.

r Expected rank of the effects (H) matrix. Not used with the Rm, Rv or Gcd
criteria. See the Details section below.

tolval the tolerance level for the reciprocal of the 2-norm condition number of the
correlation/covariance matrix, i.e., for the ratio of the smallest to the largest
eigenvalue of the input matrix. Matrices with a reciprocal of the condition num-
ber smaller than tolval will activate a restricted-search for well conditioned
subsets.

tolsym the tolerance level for symmetry of the covariance/correlation/total matrix and
for the effects (H) matrix. If corresponding matrix entries differ by more than
this value, the input matrices will be considered asymmetric and execution will
be aborted. If corresponding entries are different, but by less than this value, the
input matrix will be replaced by its symmetric part, i.e., input matrix A becomes
(A+t(A))/2.

Details

An initial k-variable subset (for k ranging from kmin to kmax) of a full set of p variables is ran-
domly selected and the variables not belonging to this subset are placed in a queue. The possibility
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of replacing a variable in the current k-subset with a variable from the queue is then explored. More
precisely, a variable is selected, removed from the queue, and the k values of the criterion which
would result from swapping this selected variable with each variable in the current subset are com-
puted. If the best of these values improves the current criterion value, the current subset is updated
accordingly. In this case, the variable which leaves the subset is added to the queue, but only if it
has not previously been in the queue (i.e., no variable can enter the queue twice). The algorithm
proceeds until the queue is emptied.

The user may force variables to be included and/or excluded from the k-subsets, and may specify
initial solutions.

For each cardinality k, the total number of calls to the procedure which computes the criterion
values is O(nsol x k x p). These calls are the dominant computational effort in each iteration of the
algorithm.

In order to improve computation times, the bulk of computations are carried out in a Fortran routine.
Further details about the algorithm can be found in Reference 1 and in the comments to the Fortran
code (in the src subdirectory for this package). For datasets with a very large number of variables
(currently p > 400), it is necessary to set the force argument to TRUE for the function to run, but
this may cause a session crash if there is not enough memory available.

The function checks for ill-conditioning of the input matrix (specifically, it checks whether the ratio
of the input matrix’s smallest and largest eigenvalues is less than tolval). For an ill-conditioned
input matrix, the search is restricted to its well-conditioned subsets. The function trim.matrix
may be used to obtain a well-conditioned input matrix.

In a general descriptive (Principal Components Analysis) setting, the three criteria Rm, Rv and Gcd
can be used to select good k-variable subsets. Arguments H and r are not used in this context. See
references [1] and [2] and the Examples for a more detailed discussion.

In the setting of a multivariate linear model, X = AΨ+U , criteria Ccr12, Tau2, Xi2 and Zeta2 can
be used to select subsets according to their contribution to an effect characterized by the violation
of a reference hypothesis, CΨ = 0 (see reference [3] for further details). In this setting, arguments
mat and H should be set respectively to the usual Total (Hypothesis + Error) and Hypothesis, Sum
of Squares and Cross-Products (SSCP) matrices. Argument r should be set to the expected rank of
H. Currently, for reasons of computational efficiency, criterion Ccr12 is available only when r ≤
3. Particular cases in this setting include Linear Discriminant Analyis (LDA), Linear Regression
Analysis (LRA), Canonical Correlation Analysis (CCA) with one set of variables fixed and several
extensions of these and other classical multivariate methodologies.

In the setting of a generalized linear model, criterion Wald can be used to select subsets according to
the (lack of) significance of the discarded variables, as measured by the respective Wald’s statistic
(see reference [4] for further details). In this setting arguments mat and H should be set respectively
to FI and FI %*% b %*% t(b) %*% FI, where b is a column vector of variable coefficient estimates
and FI is an estimate of the corresponding Fisher information matrix.

The auxiliary functions lmHmat, ldaHmat glhHmat and glmHmat are provided to automatically cre-
ate the matrices mat and H in all the cases considered.

Value

A list with five items:

subsets An nsol x kmax x length(kmin:kmax) 3-dimensional array, giving for each car-
dinality (dimension 3) and each solution (dimension 1) the list of variables (ref-
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erenced by their row/column numbers in matrix mat) in the subset (dimension
2). (For cardinalities smaller than kmax, the extra final positions are set to zero).

values An nsol x length(kmin:kmax) matrix, giving for each cardinality (columns), the
criterion values of the nsol (rows) solutions obtained.

bestvalues A length(kmin:kmax) vector giving the best values of the criterion obtained for
each cardinality.

bestsets A length(kmin:kmax) x kmax matrix, giving, for each cardinality (rows), the
variables (referenced by their row/column numbers in matrix mat) in the best
k-subset that was found.

call The function call which generated the output.

References
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See Also

rm.coef, rv.coef, gcd.coef, tau2.coef, xi2.coef, zeta2.coef, ccr12.coef, genetic, anneal,
eleaps, trim.matrix, lmHmat, ldaHmat, glhHmat, glmHmat.

Examples

## --------------------------------------------------------------------

##
## 1) For illustration of use, a small data set with very few iterations
## of the algorithm.
## Subsets of 2 and of 3 variables are sought using the RM criterion.
##

data(swiss)
improve(cor(swiss),2,3,nsol=4,criterion="GCD")
## $subsets
## , , Card.2
##
## Var.1 Var.2 Var.3
## Solution 1 3 6 0
## Solution 2 3 6 0
## Solution 3 3 6 0
## Solution 4 3 6 0
##
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## , , Card.3
##
## Var.1 Var.2 Var.3
## Solution 1 4 5 6
## Solution 2 4 5 6
## Solution 3 4 5 6
## Solution 4 4 5 6
##
##
## $values
## card.2 card.3
## Solution 1 0.8487026 0.925372
## Solution 2 0.8487026 0.925372
## Solution 3 0.8487026 0.925372
## Solution 4 0.8487026 0.925372
##
## $bestvalues
## Card.2 Card.3
## 0.8487026 0.9253720
##
## $bestsets
## Var.1 Var.2 Var.3
## Card.2 3 6 0
## Card.3 4 5 6
##
##$call
##improve(cor(swiss), 2, 3, nsol = 4, criterion = "GCD")

## --------------------------------------------------------------------

##
## 2) Forcing the inclusion of variable 1 in the subset
##

improve(cor(swiss),2,3,nsol=4,criterion="GCD",include=c(1))

## $subsets
## , , Card.2
##
## Var.1 Var.2 Var.3
## Solution 1 1 6 0
## Solution 2 1 6 0
## Solution 3 1 6 0
## Solution 4 1 6 0
##
## , , Card.3
##
## Var.1 Var.2 Var.3
## Solution 1 1 5 6
## Solution 2 1 5 6
## Solution 3 1 5 6
## Solution 4 1 5 6
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##
##
## $values
## card.2 card.3
## Solution 1 0.7284477 0.8048528
## Solution 2 0.7284477 0.8048528
## Solution 3 0.7284477 0.8048528
## Solution 4 0.7284477 0.8048528
##
## $bestvalues
## Card.2 Card.3
## 0.7284477 0.8048528
##
## $bestsets
## Var.1 Var.2 Var.3
## Card.2 1 6 0
## Card.3 1 5 6
##
##$call
##improve(cor(swiss), 2, 3, nsol = 4, criterion = "GCD", include = c(1))

## --------------------------------------------------------------------

## 3) An example of subset selection in the context of Multiple Linear
## Regression. Variable 5 (average car price) in the Cars93 MASS library
## data set is regressed on 13 other variables. Three variable subsets of
## cardinalities 4, 5 and 6 are requested, using the "XI_2" criterion which,
## in the case of a Linear Regression, is merely the standard Coefficient of
## Determination, R^2 (as are the other three criteria for the
## multivariate linear hypothesis, "TAU_2", "CCR1_2" and "ZETA_2").

library(MASS)
data(Cars93)
CarsHmat <- lmHmat(Cars93[,c(7:8,12:15,17:22,25)],Cars93[,5])

names(Cars93[,5,drop=FALSE])
## [1] "Price"

colnames(CarsHmat$mat)

## [1] "MPG.city" "MPG.highway" "EngineSize"
## [4] "Horsepower" "RPM" "Rev.per.mile"
## [7] "Fuel.tank.capacity" "Passengers" "Length"
## [10] "Wheelbase" "Width" "Turn.circle"
## [13] "Weight"

improve(CarsHmat$mat, kmin=4, kmax=6, H=CarsHmat$H, r=1, crit="xi2", nsol=3)

## $subsets
## , , Card.4
##
## Var.1 Var.2 Var.3 Var.4 Var.5 Var.6
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## Solution 1 3 4 11 13 0 0
## Solution 2 3 4 11 13 0 0
## Solution 3 4 5 10 11 0 0
##
## , , Card.5
##
## Var.1 Var.2 Var.3 Var.4 Var.5 Var.6
## Solution 1 3 4 8 11 13 0
## Solution 2 4 5 10 11 12 0
## Solution 3 4 5 10 11 12 0
##
## , , Card.6
##
## Var.1 Var.2 Var.3 Var.4 Var.5 Var.6
## Solution 1 4 5 6 10 11 12
## Solution 2 4 5 8 10 11 12
## Solution 3 4 5 9 10 11 12
##
##
## $values
## card.4 card.5 card.6
## Solution 1 0.6880773 0.6899182 0.7270257
## Solution 2 0.6880773 0.7241457 0.7271056
## Solution 3 0.7143794 0.7241457 0.7310150
##
## $bestvalues
## Card.4 Card.5 Card.6
## 0.7143794 0.7241457 0.7310150
##
## $bestsets
## Var.1 Var.2 Var.3 Var.4 Var.5 Var.6
## Card.4 4 5 10 11 0 0
## Card.5 4 5 10 11 12 0
## Card.6 4 5 9 10 11 12
##
## $call
## improve(mat = CarsHmat$mat, kmin = 4, kmax = 6, nsol = 3, criterion = "xi2",
## H = CarsHmat$H, r = 1)

## --------------------------------------------------------------------

## 4) A Linear Discriminant Analysis example with a very small data set.
## We consider the Iris data and three groups, defined by species (setosa,
## versicolor and virginica). The goal is to select the 2- and 3-variable
## subsets that are optimal for the linear discrimination (as measured
## by the "TAU_2" criterion).

data(iris)
irisHmat <- ldaHmat(iris[1:4],iris$Species)
improve(irisHmat$mat,kmin=2,kmax=3,H=irisHmat$H,r=2,crit="ccr12")
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## $subsets
## , , Card.2
##
## Var.1 Var.2 Var.3
## Solution 1 2 3 0
##
## , , Card.3
##
## Var.1 Var.2 Var.3
## Solution 1 2 3 4
##
##
## $values
## card.2 card.3
## Solution 1 0.8079476 0.8419635
##
## $bestvalues
## Card.2 Card.3
## 0.8079476 0.8419635
##
## $bestsets
## Var.1 Var.2 Var.3
## Card.2 2 3 0
## Card.3 2 3 4
##
## $call
## improve(mat = irisHmat$mat, kmin = 2, kmax = 3,
## criterion = "tau2", H = irisHmat$H, r = 2)
##

## --------------------------------------------------------------------

## 5) An example of subset selection in the context of a Canonical
## Correlation Analysis. Two groups of variables within the Cars93
## MASS library data set are compared. The goal is to select 4- to
## 6-variable subsets of the 13-variable 'X' group that are optimal in
## terms of preserving the canonical correlations, according to the
## "ZETA_2" criterion (Warning: the 3-variable 'Y' group is kept
## intact; subset selection is carried out in the 'X'
## group only). The 'tolsym' parameter is used to relax the symmetry
## requirements on the effect matrix H which, for numerical reasons,
## is slightly asymmetric. Since corresponding off-diagonal entries of
## matrix H are different, but by less than tolsym, H is replaced
## by its symmetric part: (H+t(H))/2.

library(MASS)
data(Cars93)
CarsHmat <- lmHmat(Cars93[,c(7:8,12:15,17:22,25)],Cars93[,4:6])

names(Cars93[,4:6])
## [1] "Min.Price" "Price" "Max.Price"

colnames(CarsHmat$mat)
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## [1] "MPG.city" "MPG.highway" "EngineSize"
## [4] "Horsepower" "RPM" "Rev.per.mile"
## [7] "Fuel.tank.capacity" "Passengers" "Length"
## [10] "Wheelbase" "Width" "Turn.circle"
## [13] "Weight"

improve(CarsHmat$mat, kmin=4, kmax=6, H=CarsHmat$H, r=3, crit="zeta2", tolsym=1e-9)

## $subsets
## , , Card.4
##
## Var.1 Var.2 Var.3 Var.4 Var.5 Var.6
## Solution 1 3 4 11 13 0 0
##
## , , Card.5
##
## Var.1 Var.2 Var.3 Var.4 Var.5 Var.6
## Solution 1 3 4 9 11 13 0
##
## , , Card.6
##
## Var.1 Var.2 Var.3 Var.4 Var.5 Var.6
## Solution 1 3 4 5 9 10 11
##
##
## $values
## card.4 card.5 card.6
## Solution 1 0.4626035 0.4875495 0.5071096
##
## $bestvalues
## Card.4 Card.5 Card.6
## 0.4626035 0.4875495 0.5071096
##
## $bestsets
## Var.1 Var.2 Var.3 Var.4 Var.5 Var.6
## Card.4 3 4 11 13 0 0
## Card.5 3 4 9 11 13 0
## Card.6 3 4 5 9 10 11
##
## $call
## improve(mat = CarsHmat$mat, kmin = 4, kmax = 6, criterion = "zeta2",
## H = CarsHmat$H, r = 3, tolsym = 1e-09)
##
## Warning message:
##
## The effect description matrix (H) supplied was slightly asymmetric:
## symmetric entries differed by up to 3.63797880709171e-12.
## (less than the 'tolsym' parameter).
## The H matrix has been replaced by its symmetric part.
## in: validnovcrit(mat, criterion, H, r, p, tolval, tolsym)
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## --------------------------------------------------------------------

## 6) An example of variable selection in the context of a logistic
## regression model. We consider the last 100 observations of
## the iris data set (versicolor and verginica species) and try
## to find the best variable subsets for the model that takes species
## as response variable.

data(iris)
iris2sp <- iris[iris$Species != "setosa",]
logrfit <- glm(Species ~ Sepal.Length + Sepal.Width + Petal.Length + Petal.Width,
iris2sp,family=binomial)
Hmat <- glmHmat(logrfit)
improve(Hmat$mat,1,3,H=Hmat$H,r=1,criterion="Wald")

## $subsets
## , , Card.1
##
## Var.1 Var.2 Var.3
## Solution 1 4 0 0

## , , Card.2

## Var.1 Var.2 Var.3
## Solution 1 1 3 0

## , , Card.3

## Var.1 Var.2 Var.3
## Solution 1 2 3 4

## $values
## card.1 card.2 card.3
## Solution 1 4.894554 3.522885 1.060121

## $bestvalues
## Card.1 Card.2 Card.3
## 4.894554 3.522885 1.060121

## $bestsets
## Var.1 Var.2 Var.3
## Card.1 4 0 0
## Card.2 1 3 0
## Card.3 2 3 4

## $call
## improve(mat = Hmat$mat, kmin = 1, kmax = 3, criterion = "Wald",
## H = Hmat$H, r = 1)
## --------------------------------------------------------------------

## It should be stressed that, unlike other criteria in the
## subselect package, the Wald criterion is not bounded above by
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## 1 and is a decreasing function of subset quality, so that the
## 3-variable subsets do, in fact, perform better than their smaller-sized
## counterparts.

ldaHmat Total and Between-Group Deviation Matrices in Linear Discriminant
Analysis

Description

Computes total and between-group matrices of Sums of Squares and Cross-Product (SSCP) devia-
tions in linear discriminant analysis. These matrices may be used as input to the variable selection
search routines anneal, genetic improve or eleaps.

Usage

## Default S3 method:
ldaHmat(x,grouping,...)

## S3 method for class 'data.frame'
ldaHmat(x,grouping,...)

## S3 method for class 'formula'
ldaHmat(formula,data=NULL,...)

Arguments

x A matrix or data frame containing the discriminators for which the SSCP matrix
is to be computed.

grouping A factor specifying the class for each observation.
formula A formula of the form 'groups ~ x1 + x2 + ...' That is, the response is the

grouping factor and the right hand side specifies the (non-factor) discriminators.
data Data frame from which variables specified in ’formula’ are preferentially to be

taken.
... further arguments for the method.

Value

A list with four items:

mat The total SSCP matrix
H The between-groups SSCP matrix
r The expected rank of the H matrix which equals the minimum between the num-

ber of discriminators and the number of groups minus one. The true rank of H
can be different from r if the discriminators are linearly dependent.

call The function call which generated the output.
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See Also

anneal, genetic, improve, eleaps.

Examples

##--------------------------------------------------------------------

## An example with a very small data set. We consider the Iris data
## and three groups, defined by species (setosa, versicolor and
## virginica).

data(iris)
irisHmat <- ldaHmat(iris[1:4],iris$Species)
irisHmat

##$mat
## Sepal.Length Sepal.Width Petal.Length Petal.Width
##Sepal.Length 102.168333 -6.322667 189.8730 76.92433
##Sepal.Width -6.322667 28.306933 -49.1188 -18.12427
##Petal.Length 189.873000 -49.118800 464.3254 193.04580
##Petal.Width 76.924333 -18.124267 193.0458 86.56993

##$H
## Sepal.Length Sepal.Width Petal.Length Petal.Width
##Sepal.Length 63.21213 -19.95267 165.2484 71.27933
##Sepal.Width -19.95267 11.34493 -57.2396 -22.93267
##Petal.Length 165.24840 -57.23960 437.1028 186.77400
##Petal.Width 71.27933 -22.93267 186.7740 80.41333

##$r
##[1] 2

##$call
##ldaHmat.data.frame(x = iris[1:4], grouping = iris$Species)

lmHmat Total and Effect Deviation Matrices for Linear Regression and Canon-
ical Correlation Analysis

Description

Computes total an effect matrices of Sums of Squares and Cross-Product (SSCP) deviations, divided
by a normalizing constant, in linear regression or canonical correlation analysis. These matrices
may be used as input to the variable selection search routines anneal, genetic improve or eleaps.
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Usage

## Default S3 method:
lmHmat(x,y,...)

## S3 method for class 'data.frame'
lmHmat(x,y,...)

## S3 method for class 'formula'
lmHmat(formula,data=NULL,...)

## S3 method for class 'lm'
lmHmat(fitdlmmodel,...)

Arguments

x A matrix or data frame containing the variables for which the SSCP matrix is to
be computed.

y A matrix or data frame containing the set of fixed variables, the association of x
is to be measured with.

formula A formula of the form 'y ~ x1 + x2 + ...'. That is, the response is the set of
fixed variables and the right hand side specifies the variables whose subsets are
to be compared.

data Data frame from which variables specified in ’formula’ are preferentially to be
taken.

fitdlmmodel An object of class lm, as produced by R’s lm function.

... further arguments for the method.

Details

Let x and y be two different groups of linearly independent variables observed on the same set of
data units. It is well known that the association between x and y can be measured by their squared
canonical correlations which may be found as the positive eigenvalues of certain matrix products.
In particular, if Tx and Hx/y denote SSCP matrices of deviations from the mean, respectively for
the original x variables (Tx) and for their orthogonal projections onto the space spanned by the y’s
(Hx/y), then the positive eigenvalues of T−1

x Hx/y equal the squared correlations between x and
y. Alternatively these correlations could also be found from T−1

y Hy/x but here, assuming a goal
of comparing x’s subsets for a given fixed set of y’s, we will focus on the former product. lmHmat
computes a scaled version of Tx and Hx/y such that Tx is converted into a covariance matrix. These
matrices can be used as input to the search routines anneal, genetic improve and eleaps that try
to select x subsets based on several functions of their squared correlations with y. We note that when
there is only one variable in the y set, this is equivalent to selecting predictors for linear regression
based on the traditional coefficient of determination.

Value

A list with four items:



60 lmHmat

mat The total SSCP matrix divided by nrow(x)-1

H The effect SSCP matrix divided by nrow(x)-1

r The expected rank of the H matrix which, under the assumption of linear inde-
pendence, equals the minimum between the number of variables in the x and
y sets. The true rank of H can be different from r if the linear independence
condition fails.

call The function call which generated the output.

See Also

anneal, genetic, improve, eleaps, lm.

Examples

##------------------------------------------------------------------

## 1) An example of subset selection in the context of Multiple
## Linear Regression. Variable 5 (average price) in the Cars93 MASS
## library is to be regressed on 13 other variables. The goal is to
## compare subsets of these 13 variables according to their ability
## to predict car prices.

library(MASS)
data(Cars93)
CarsHmat1 <- lmHmat(Cars93[c(7:8,12:15,17:22,25)],Cars93[5])
CarsHmat1

##$mat
## MPG.city MPG.highway EngineSize Horsepower
##MPG.city 31.582281 28.283427 -4.1391655 -1.979799e+02
##MPG.highway 28.283427 28.427302 -3.4667602 -1.728655e+02
##EngineSize -4.139165 -3.466760 1.0761220 3.977700e+01
##Horsepower -197.979897 -172.865475 39.7769986 2.743079e+03
##RPM 1217.478962 997.335203 -339.1637447 1.146634e+03
##Rev.per.mile 1941.631019 1555.243104 -424.4118163 -1.561070e+04
##Fuel.tank.capacity -14.985799 -13.743654 2.5830820 1.222536e+02
##Passengers -2.433964 -2.583567 0.4017181 5.040907e-01
##Length -54.673329 -42.267765 11.8197055 4.212964e+02
##Wheelbase -25.567087 -22.375760 5.1819425 1.738928e+02
##Width -15.302127 -12.902291 3.3992286 1.275437e+02
##Turn.circle -12.071061 -10.202782 2.6029453 9.474252e+01
##Weight -2795.094670 -2549.654628 517.1327139 2.282550e+04
## RPM Rev.per.mile Fuel.tank.capacity Passengers
##MPG.city 1217.4790 1941.6310 -14.985799 -2.4339645
##MPG.highway 997.3352 1555.2431 -13.743654 -2.5835671
##EngineSize -339.1637 -424.4118 2.583082 0.4017181
##Horsepower 1146.6339 -15610.7036 122.253612 0.5040907
##RPM 356088.7097 146589.3233 -652.324684 -289.6213184
##Rev.per.mile 146589.3233 246518.7295 -992.747020 -172.8003740
##Fuel.tank.capacity -652.3247 -992.7470 10.754271 1.6085203
##Passengers -289.6213 -172.8004 1.608520 1.0794764
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##Length -3844.9158 -5004.3139 33.063850 7.3626695
##Wheelbase -1903.7693 -2156.2932 16.944811 4.9177186
##Width -1217.0933 -1464.3712 9.898282 1.9237962
##Turn.circle -972.5806 -1173.3281 7.096283 1.5037401
##Weight -150636.1325 -215349.6757 1729.468268 339.0953717
## Length Wheelbase Width Turn.circle
##MPG.city -54.67333 -25.567087 -15.302127 -12.071061
##MPG.highway -42.26777 -22.375760 -12.902291 -10.202782
##EngineSize 11.81971 5.181942 3.399229 2.602945
##Horsepower 421.29640 173.892824 127.543712 94.742520
##RPM -3844.91585 -1903.769285 -1217.093268 -972.580645
##Rev.per.mile -5004.31393 -2156.293245 -1464.371201 -1173.328074
##Fuel.tank.capacity 33.06385 16.944811 9.898282 7.096283
##Passengers 7.36267 4.917719 1.923796 1.503740
##Length 213.22955 82.021973 45.367929 34.780622
##Wheelbase 82.02197 46.507948 20.803062 15.899836
##Width 45.36793 20.803062 14.280739 9.962015
##Turn.circle 34.78062 15.899836 9.962015 10.389434
##Weight 6945.16129 3507.549088 1950.471599 1479.365358
## Weight
##MPG.city -2795.0947
##MPG.highway -2549.6546
##EngineSize 517.1327
##Horsepower 22825.5049
##RPM -150636.1325
##Rev.per.mile -215349.6757
##Fuel.tank.capacity 1729.4683
##Passengers 339.0954
##Length 6945.1613
##Wheelbase 3507.5491
##Width 1950.4716
##Turn.circle 1479.3654
##Weight 347977.8927

##$H
## MPG.city MPG.highway EngineSize Horsepower
##MPG.city 11.1644681 9.9885440 -2.07077758 -137.938111
##MPG.highway 9.9885440 8.9364770 -1.85266802 -123.409453
##EngineSize -2.0707776 -1.8526680 0.38408635 25.584662
##Horsepower -137.9381108 -123.4094525 25.58466246 1704.239046
##RPM 9.8795182 8.8389345 -1.83244599 -122.062428
##Rev.per.mile 707.3855707 632.8785101 -131.20537141 -8739.818920
##Fuel.tank.capacity -6.7879209 -6.0729671 1.25901874 83.865437
##Passengers -0.2008651 -0.1797085 0.03725632 2.481709
##Length -24.5727044 -21.9845261 4.55772770 303.598201
##Wheelbase -11.4130722 -10.2109633 2.11688849 141.009639
##Width -5.7581866 -5.1516920 1.06802435 71.142967
##Turn.circle -4.2281864 -3.7828426 0.78424099 52.239662
##Weight -1275.6139645 -1141.2569026 236.59996884 15760.337110
## RPM Rev.per.mile Fuel.tank.capacity Passengers
##MPG.city 9.879518 707.38557 -6.7879209 -0.200865141
##MPG.highway 8.838935 632.87851 -6.0729671 -0.179708544
##EngineSize -1.832446 -131.20537 1.2590187 0.037256323
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##Horsepower -122.062428 -8739.81892 83.8654369 2.481708752
##RPM 8.742457 625.97059 -6.0066801 -0.177747010
##Rev.per.mile 625.970586 44820.25860 -430.0856347 -12.726903044
##Fuel.tank.capacity -6.006680 -430.08563 4.1270099 0.122124645
##Passengers -0.177747 -12.72690 0.1221246 0.003613858
##Length -21.744563 -1556.93728 14.9400378 0.442098962
##Wheelbase -10.099510 -723.13724 6.9390706 0.205337894
##Width -5.095461 -364.84122 3.5009384 0.103598215
##Turn.circle -3.741553 -267.89973 2.5707087 0.076071269
##Weight -1128.799984 -80823.45772 775.5646486 22.950164550
## Length Wheelbase Width Turn.circle
##MPG.city -24.572704 -11.4130722 -5.7581866 -4.22818636
##MPG.highway -21.984526 -10.2109633 -5.1516920 -3.78284262
##EngineSize 4.557728 2.1168885 1.0680243 0.78424099
##Horsepower 303.598201 141.0096393 71.1429669 52.23966202
##RPM -21.744563 -10.0995098 -5.0954608 -3.74155256
##Rev.per.mile -1556.937281 -723.1372362 -364.8412174 -267.89973369
##Fuel.tank.capacity 14.940038 6.9390706 3.5009384 2.57070866
##Passengers 0.442099 0.2053379 0.1035982 0.07607127
##Length 54.083885 25.1198756 12.6736193 9.30612843
##Wheelbase 25.119876 11.6672121 5.8864067 4.32233724
##Width 12.673619 5.8864067 2.9698426 2.18072961
##Turn.circle 9.306128 4.3223372 2.1807296 1.60129079
##Weight 2807.593227 1304.0186214 657.9107222 483.09812289
## Weight
##MPG.city -1275.61396
##MPG.highway -1141.25690
##EngineSize 236.59997
##Horsepower 15760.33711
##RPM -1128.79998
##Rev.per.mile -80823.45772
##Fuel.tank.capacity 775.56465
##Passengers 22.95016
##Length 2807.59323
##Wheelbase 1304.01862
##Width 657.91072
##Turn.circle 483.09812
##Weight 145747.29199

##$r
##[1] 1

##$call
##lmHmat.data.frame(x = Cars93[c(7:8, 12:15, 17:22, 25)], y = Cars93[5])

## 2) An example of subset selection in the context of Canonical
## Correlation Analysis. Two groups of variables within the Cars93
## MASS library data set are compared. The first group (variables 4th,
## 5th and 6th) relates to price, while the second group is formed by 13
## variables that describe several technical car specifications. The
## goal is to select subsets of the second group that are optimal in
## terms of preserving the canonical correlations with the variables in
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## the first group (Warning: the 3-variable "response" group is kept
## intact; subset selection is to be performed only in the 13-variable
## group).

library(MASS)
data(Cars93)
CarsHmat2 <- lmHmat(Cars93[c(7:8,12:15,17:22,25)],Cars93[4:6])

names(Cars93[4:6])
## [1] "Min.Price" "Price" "Max.Price"

CarsHmat2

##$mat
## MPG.city MPG.highway EngineSize Horsepower
##MPG.city 31.582281 28.283427 -4.1391655 -1.979799e+02
##MPG.highway 28.283427 28.427302 -3.4667602 -1.728655e+02
##EngineSize -4.139165 -3.466760 1.0761220 3.977700e+01
##Horsepower -197.979897 -172.865475 39.7769986 2.743079e+03
##RPM 1217.478962 997.335203 -339.1637447 1.146634e+03
##Rev.per.mile 1941.631019 1555.243104 -424.4118163 -1.561070e+04
##Fuel.tank.capacity -14.985799 -13.743654 2.5830820 1.222536e+02
##Passengers -2.433964 -2.583567 0.4017181 5.040907e-01
##Length -54.673329 -42.267765 11.8197055 4.212964e+02
##Wheelbase -25.567087 -22.375760 5.1819425 1.738928e+02
##Width -15.302127 -12.902291 3.3992286 1.275437e+02
##Turn.circle -12.071061 -10.202782 2.6029453 9.474252e+01
##Weight -2795.094670 -2549.654628 517.1327139 2.282550e+04
## RPM Rev.per.mile Fuel.tank.capacity Passengers
##MPG.city 1217.4790 1941.6310 -14.985799 -2.4339645
##MPG.highway 997.3352 1555.2431 -13.743654 -2.5835671
##EngineSize -339.1637 -424.4118 2.583082 0.4017181
##Horsepower 1146.6339 -15610.7036 122.253612 0.5040907
##RPM 356088.7097 146589.3233 -652.324684 -289.6213184
##Rev.per.mile 146589.3233 246518.7295 -992.747020 -172.8003740
##Fuel.tank.capacity -652.3247 -992.7470 10.754271 1.6085203
##Passengers -289.6213 -172.8004 1.608520 1.0794764
##Length -3844.9158 -5004.3139 33.063850 7.3626695
##Wheelbase -1903.7693 -2156.2932 16.944811 4.9177186
##Width -1217.0933 -1464.3712 9.898282 1.9237962
##Turn.circle -972.5806 -1173.3281 7.096283 1.5037401
##Weight -150636.1325 -215349.6757 1729.468268 339.0953717
## Length Wheelbase Width Turn.circle
##MPG.city -54.67333 -25.567087 -15.302127 -12.071061
##MPG.highway -42.26777 -22.375760 -12.902291 -10.202782
##EngineSize 11.81971 5.181942 3.399229 2.602945
##Horsepower 421.29640 173.892824 127.543712 94.742520
##RPM -3844.91585 -1903.769285 -1217.093268 -972.580645
##Rev.per.mile -5004.31393 -2156.293245 -1464.371201 -1173.328074
##Fuel.tank.capacity 33.06385 16.944811 9.898282 7.096283
##Passengers 7.36267 4.917719 1.923796 1.503740
##Length 213.22955 82.021973 45.367929 34.780622
##Wheelbase 82.02197 46.507948 20.803062 15.899836
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##Width 45.36793 20.803062 14.280739 9.962015
##Turn.circle 34.78062 15.899836 9.962015 10.389434
##Weight 6945.16129 3507.549088 1950.471599 1479.365358
## Weight
##MPG.city -2795.0947
##MPG.highway -2549.6546
##EngineSize 517.1327
##Horsepower 22825.5049
##RPM -150636.1325
##Rev.per.mile -215349.6757
##Fuel.tank.capacity 1729.4683
##Passengers 339.0954
##Length 6945.1613
##Wheelbase 3507.5491
##Width 1950.4716
##Turn.circle 1479.3654
##Weight 347977.8927

##$H
## MPG.city MPG.highway EngineSize Horsepower
##MPG.city 12.6374638 11.1802504 -2.44856549 -149.055525
##MPG.highway 11.1802504 9.9241995 -2.15551417 -132.381671
##EngineSize -2.4485655 -2.1555142 0.48131168 28.438641
##Horsepower -149.0555255 -132.3816709 28.43864077 1788.168412
##RPM 116.9463468 90.2758380 -29.90735790 -935.019669
##Rev.per.mile 850.6791690 744.7148717 -168.44221351 -9825.172173
##Fuel.tank.capacity -7.3863845 -6.5473387 1.41367337 88.391549
##Passengers -0.2756475 -0.2507147 0.05519028 3.036255
##Length -29.0878749 -25.4205633 5.74148535 337.880225
##Wheelbase -12.4579187 -11.0208656 2.38906697 148.928887
##Width -6.8768553 -6.0641799 1.35405290 79.579106
##Turn.circle -4.9652258 -4.3460777 0.97719452 57.833523
##Weight -1399.0819460 -1239.6883974 268.43952022 16693.580681
## RPM Rev.per.mile Fuel.tank.capacity Passengers
##MPG.city 116.946347 850.67917 -7.3863845 -0.27564745
##MPG.highway 90.275838 744.71487 -6.5473387 -0.25071469
##EngineSize -29.907358 -168.44221 1.4136734 0.05519028
##Horsepower -935.019669 -9825.17217 88.3915487 3.03625516
##RPM 8930.289631 11941.01945 -51.6620352 -3.30491485
##Rev.per.mile 11941.019450 59470.19917 -490.0061258 -18.17896445
##Fuel.tank.capacity -51.662035 -490.00613 4.3742368 0.14814085
##Passengers -3.304915 -18.17896 0.1481409 0.01208827
##Length -397.601848 -2033.81167 16.8646785 0.57474210
##Wheelbase -93.828737 -830.92582 7.3783050 0.24261242
##Width -84.771418 -472.37388 3.9523474 0.16370704
##Turn.circle -64.578815 -345.33527 2.8839031 0.09876958
##Weight -10423.776629 -93087.56026 826.3348263 28.56899347
## Length Wheelbase Width Turn.circle
##MPG.city -29.0878749 -12.4579187 -6.8768553 -4.96522585
##MPG.highway -25.4205633 -11.0208656 -6.0641799 -4.34607767
##EngineSize 5.7414854 2.3890670 1.3540529 0.97719452
##Horsepower 337.8802249 148.9288871 79.5791065 57.83352310
##RPM -397.6018484 -93.8287370 -84.7714184 -64.57881537
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##Rev.per.mile -2033.8116669 -830.9258201 -472.3738765 -345.33527111
##Fuel.tank.capacity 16.8646785 7.3783050 3.9523474 2.88390313
##Passengers 0.5747421 0.2426124 0.1637070 0.09876958
##Length 69.9185456 28.6482825 16.0342179 11.86931842
##Wheelbase 28.6482825 12.4615297 6.6687394 4.89477408
##Width 16.0342179 6.6687394 3.8217667 2.73004255
##Turn.circle 11.8693184 4.8947741 2.7300425 2.01640426
##Weight 3199.4701647 1393.7884808 751.2183342 546.92139008
## Weight
##MPG.city -1399.08195
##MPG.highway -1239.68840
##EngineSize 268.43952
##Horsepower 16693.58068
##RPM -10423.77663
##Rev.per.mile -93087.56026
##Fuel.tank.capacity 826.33483
##Passengers 28.56899
##Length 3199.47016
##Wheelbase 1393.78848
##Width 751.21833
##Turn.circle 546.92139
##Weight 156186.68328

##$r
##[1] 3

##$call
##lmHmat.data.frame(x = Cars93[c(7:8, 12:15, 17:22, 25)], y = Cars93[4:6])

rm.coef Computes the RM coefficient for variable subset selection

Description

Computes the RM coefficient, measuring the similarity of the spectral decompositions of a p-
variable data matrix, and of the matrix which results from regressing all the variables on a subset of
only k variables.

Usage

rm.coef(mat, indices)

Arguments

mat the full data set’s covariance (or correlation) matrix
indices a numerical vector, matrix or 3-d array of integers giving the indices of the

variables in the subset. If a matrix is specified, each row is taken to represent
a different k-variable subset. If a 3-d array is given, it is assumed that the third
dimension corresponds to different cardinalities.
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Details

Computes the RM coefficient that measures the similarity of the spectral decompositions of a p-
variable data matrix, and of the matrix which results from regressing those variables on a subset
(given by "indices") of the variables. Input data is expected in the form of a (co)variance or corre-
lation matrix. If a non-square matrix is given, it is assumed to be a data matrix, and its correlation
matrix is used as input.

The definition of the RM coefficient is as follows:

RM =

√
tr(XtPvX)

XtX

where X is the full (column-centered) data matrix and Pv is the matrix of orthogonal projections
on the subspace spanned by a k-variable subset.

This definition is equivalent to:

RM =

√√√√√√√
p∑

i=1

λi(r)2i

p∑
j=1

λj

where λi stands for the i-th largest eigenvalue of the covariance matrix defined by X and r stands
for the multiple correlation between the i-th Principal Component and the k-variable subset.

These definitions are also equivalent to the expression used in the code, which only requires the
covariance (or correlation) matrix of the data under consideration.

The fact that indices can be a matrix or 3-d array allows for the computation of the RM values
of subsets produced by the search functions anneal, genetic and improve (whose output option
$subsets are matrices or 3-d arrays), using a different criterion (see the example below).

Value

The value of the RM coefficient.

References

Cadima, J. and Jolliffe, I.T. (2001), "Variable Selection and the Interpretation of Principal Sub-
spaces", Journal of Agricultural, Biological and Environmental Statistics, Vol. 6, 62-79.

McCabe, G.P. (1986) "Prediction of Principal Components by Variable Subsets", Technical Report
86-19, Department of Statistics, Purdue University.

Ramsay, J.O., ten Berge, J. and Styan, G.P.H. (1984), "Matrix Correlation", Psychometrika, 49,
403-423.

Examples

## An example with a very small data set.

data(iris3)
x<-iris3[,,1]
rm.coef(var(x),c(1,3))
## [1] 0.8724422
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## An example computing the RMs of three subsets produced when the
## anneal function attempted to optimize the RV criterion (using an
## absurdly small number of iterations).

data(swiss)
rvresults<-anneal(cor(swiss),2,nsol=4,niter=5,criterion="Rv")
rm.coef(cor(swiss),rvresults$subsets)

## Card.2
##Solution 1 0.7982296
##Solution 2 0.7945390
##Solution 3 0.7649296
##Solution 4 0.7623326

rv.coef Computes the RV-coefficient applied to the variable subset selection
problem

Description

Computes the RV coefficient, measuring the similarity (after rotations, translations and global re-
sizing) of two configurations of n points given by: (i) observations on each of p variables, and (ii)
the regression of those p observed variables on a subset of the variables.

Usage

rv.coef(mat, indices)

Arguments

mat the full data set’s covariance (or correlation) matrix

indices a numerical vector, matrix or 3-d array of integers giving the indices of the
variables in the subset. If a matrix is specified, each row is taken to represent
a different k-variable subset. If a 3-d array is given, it is assumed that the third
dimension corresponds to different cardinalities.

Details

Input data is expected in the form of a (co)variance or correlation matrix of the full data set. If a
non-square matrix is given, it is assumed to be a data matrix, and its correlation matrix is used as
input. The subset of variables on which the full data set will be regressed is given by indices.

The RV-coefficient, for a (coumn-centered) data matrix (with p variables/columns) X, and for the
regression of these columns on a k-variable subset, is given by:

RV =
tr(XXt · (PvX)(PvX)t)√

tr((XXt)2) · tr(((PvX)(PvX)t)2)
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where Pv is the matrix of orthogonal projections on the subspace defined by the k-variable subset.

This definition is equivalent to the expression used in the code, which only requires the covariance
(or correlation) matrix of the data under consideration.

The fact that indices can be a matrix or 3-d array allows for the computation of the RV values
of subsets produced by the search functions anneal, genetic and improve (whose output option
$subsets are matrices or 3-d arrays), using a different criterion (see the example below).

Value

The value of the RV-coefficient.

References

Robert, P. and Escoufier, Y. (1976), "A Unifying tool for linear multivariate statistical methods: the
RV-coefficient", Applied Statistics, Vol.25, No.3, p. 257-265.

Examples

# A simple example with a trivially small data set

data(iris3)
x<-iris3[,,1]
rv.coef(var(x),c(1,3))
## [1] 0.8659685

## An example computing the RVs of three subsets produced when the
## anneal function attempted to optimize the RM criterion (using an
## absurdly small number of iterations).

data(swiss)
rmresults<-anneal(cor(swiss),2,nsol=4,niter=5,criterion="Rm")
rv.coef(cor(swiss),rmresults$subsets)

## Card.2
##Solution 1 0.8389669
##Solution 2 0.8663006
##Solution 3 0.8093862
##Solution 4 0.7529066

tau2.coef Computes the Tau squared coefficient for a multivariate linear hypoth-
esis

Description

Computes the Tau squared index of "effect magnitude". The maximization of this criterion is equiv-
alent to the minimization of Wilk’s lambda statistic.
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Usage

tau2.coef(mat, H, r, indices,
tolval=10*.Machine$double.eps, tolsym=1000*.Machine$double.eps)

Arguments

mat the Variance or Total sums of squares and products matrix for the full data set.

H the Effect description sums of squares and products matrix (defined in the same
way as the mat matrix).

r the Expected rank of the H matrix. See the Details below.

indices a numerical vector, matrix or 3-d array of integers giving the indices of the
variables in the subset. If a matrix is specified, each row is taken to represent
a different k-variable subset. If a 3-d array is given, it is assumed that the third
dimension corresponds to different cardinalities.

tolval the tolerance level to be used in checks for ill-conditioning and positive-definiteness
of the ’total’ and ’effects’ (H) matrices. Values smaller than tolval are consid-
ered equivalent to zero.

tolsym the tolerance level for symmetry of the covariance/correlation/total matrix and
for the effects (H) matrix. If corresponding matrix entries differ by more than
this value, the input matrices will be considered asymmetric and execution will
be aborted. If corresponding entries are different, but by less than this value, the
input matrix will be replaced by its symmetric part, i.e., input matrix A becomes
(A+t(A))/2.

Details

Different kinds of statistical methodologies are considered within the framework, of a multivariate
linear model:

X = AΨ+ U

where X is the (nxp) data matrix of original variables, A is a known (nxp) design matrix, Ψ an
(qxp) matrix of unknown parameters and U an (nxp) matrix of residual vectors. The τ2 index is
related to the traditional test statistic (Wilk’s lambda statistic) and measures the contribution of each
subset to an Effect characterized by the violation of a linear hypothesis of the form CΨ = 0, where
C is a known cofficient matrix of rank r. The Wilk’s lambda statistic (λ) is given by:

Λ =
det(E)

det(T )

where E is the Error matrix and T is the Total matrix. The index τ2 is related to the Wilk’s lambda
statistic (Λ) by:

τ2 = 1− λ(1/r)

where r is the rank of H the Effect matrix.

The fact that indices can be a matrix or 3-d array allows for the computation of the τ2 values of
subsets produced by the search functions anneal, genetic, improve and eleaps (whose output
option $subsets are matrices or 3-d arrays), using a different criterion (see the example below).
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Value

The value of the τ2 coefficient.

Examples

## ---------------------------------------------------------------

## 1) A Linear Discriminant Analysis example with a very small data set.
## We considered the Iris data and three groups,
## defined by species (setosa, versicolor and virginica).

data(iris)
irisHmat <- ldaHmat(iris[1:4],iris$Species)
tau2.coef(irisHmat$mat,H=irisHmat$H,r=2,c(1,3))
## [1] 0.8003044

## ---------------------------------------------------------------

## 2) An example computing the value of the tau_2 criterion for two
## subsets produced when the anneal function attempted to optimize
## the xi_2 criterion (using an absurdly small number of iterations).

xiresults<-anneal(irisHmat$mat,2,nsol=2,niter=2,criterion="xi2",
H=irisHmat$H,r=2)
tau2.coef(irisHmat$mat,H=irisHmat$H,r=2,xiresults$subsets)

## Card.2
##Solution 1 0.8079476
##Solution 2 0.7907710

## ---------------------------------------------------------------

trim.matrix Given an ill-conditioned square matrix, deletes rows/columns until a
well-conditioned submatrix is obtained.

Description

This function seeks to deal with ill-conditioned matrices, for which the search algorithms of opti-
mal k-variable subsets could encounter numerical problems. Given a square matrix mat which is
assumed positive semi-definite, the function checks whether it has reciprocal of the 2-norm condi-
tion number (i.e., the ratio of the smallest to the largest eigenvalue) smaller than tolval. If not, the
matrix is considered well-conditioned and remains unchanged. If the ratio of the smallest to largest
eigenvalue is smaller than tolval, an iterative process is begun, which deletes rows/columns (using
Jolliffe’s method for subset selections described on pg. 138 of the Reference below) until a principal
submatrix with reciprocal of the condition number larger than tolval is obtained.
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Usage

trim.matrix(mat,tolval=10*.Machine$double.eps)

Arguments

mat a symmetric matrix, assumed positive semi-definite.

tolval the tolerance value for the reciprocal condition number of matrix mat.

Details

For the given matrix mat, eigenvalues are computed. If the ratio of the smallest to the largest
eigenvalue is less than tolval, matrix mat remains unchanged and the function stops. Otherwise,
an iterative process is begun, in which the eigenvector associated with the smallest eigenvalue is
considered and its largest (in absolute value) element is identified. The corresponding row/column
are deleted from matrix mat and the eigendecomposition of the resulting submatrix is computed.
This iterative process stops when the ratio of the smallest to largest eigenvalue is not smaller than
tolval.

The function checks whether the input matrix is square, but not whether it is positive semi-definite.
This trim.matrix function can be used to delete rows/columns of square matrices, until only non-
negative eigenvalues appear.

Value

Output is a list with four items:

trimmedmat is a principal submatrix of the original matrix, with the ratio of its smallest to
largest eigenvalues no smaller than tolval. This matrix can be used as input for
the search algorithms in this package.

numbers.discarded

is a list of the integer numbers of the original variables that were discarded.
names.discarded

is a list of the original column numbers of the variables that were discarded.

size is the size of the output matrix.

Note

When the trim.matrix function is used to produce a well-conditioned matrix for use with the
anneal, genetic, improve or eleaps functions, care must be taken in interpreting the output of
those functions. In those search functions, the selected variable subsets are specified by variable
numbers, and those variable numbers indicate the position of the variables in the input matrix.
Hence, if a trimmed matrix is supplied to functions anneal, genetic, improve or eleaps, variable
numbers refer to the trimmed matrix.

References

Jolliffe, I.T. (2002) Principal Component Analysis, second edition, Springer Series in Statistics.



72 trim.matrix

Examples

# a trivial example, for illustration of use: creating an extra column,
# as the sum of columns in the "iris" data, and then using the function
# trim.matrix to exclude it from the data's correlation matrix

data(iris)
lindepir<-cbind(apply(iris[,-5],1,sum),iris[,-5])
colnames(lindepir)[1]<-"Sum"
cor(lindepir)

## Sum Sepal.Length Sepal.Width Petal.Length Petal.Width
##Sum 1.0000000 0.9409143 -0.2230928 0.9713793 0.9538850
##Sepal.Length 0.9409143 1.0000000 -0.1175698 0.8717538 0.8179411
##Sepal.Width -0.2230928 -0.1175698 1.0000000 -0.4284401 -0.3661259
##Petal.Length 0.9713793 0.8717538 -0.4284401 1.0000000 0.9628654
##Petal.Width 0.9538850 0.8179411 -0.3661259 0.9628654 1.0000000

trim.matrix(cor(lindepir))

##$trimmedmat
## Sepal.Length Sepal.Width Petal.Length Petal.Width
##Sepal.Length 1.0000000 -0.1175698 0.8717538 0.8179411
##Sepal.Width -0.1175698 1.0000000 -0.4284401 -0.3661259
##Petal.Length 0.8717538 -0.4284401 1.0000000 0.9628654
##Petal.Width 0.8179411 -0.3661259 0.9628654 1.0000000
##
##$numbers.discarded
##[1] 1
##
##$names.discarded
##[1] "Sum"
##
##$size
##[1] 4

data(swiss)
lindepsw<-cbind(apply(swiss,1,sum),swiss)
colnames(lindepsw)[1]<-"Sum"
trim.matrix(cor(lindepsw))

##$lowrankmat
## Fertility Agriculture examination Education Catholic
##Fertility 1.0000000 0.35307918 -0.6458827 -0.66378886 0.4636847
##Agriculture 0.3530792 1.00000000 -0.6865422 -0.63952252 0.4010951
##Examination -0.6458827 -0.68654221 1.0000000 0.69841530 -0.5727418
##Education -0.6637889 -0.63952252 0.6984153 1.00000000 -0.1538589
##Catholic 0.4636847 0.40109505 -0.5727418 -0.15385892 1.0000000
##Infant.Mortality 0.4165560 -0.06085861 -0.1140216 -0.09932185 0.1754959
## Infant.Mortality
##Fertility 0.41655603
##Agriculture -0.06085861
##Examination -0.11402160
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##Education -0.09932185
##Catholic 0.17549591
##Infant.Mortality 1.00000000
##
##$numbers.discarded
##[1] 1
##
##$names.discarded
##[1] "Sum"
##
##$size
##[1] 6

wald.coef Wald statistic for variable selection in generalized linear models

Description

Computes the value of Wald’s statistic, testing the significance of the excluded variables, in the
context of variable subset selection in generalized linear models

Usage

wald.coef(mat, H, indices,
tolval=10*.Machine$double.eps, tolsym=1000*.Machine$double.eps)

Arguments

mat An estimate (FI) of Fisher’s information matrix for the full model variable-
coefficient estimates

H A matrix product of the form FI %*% b %*% t(b) %*% FI where b is a vector of
variable-coefficient estimates

indices a numerical vector, matrix or 3-d array of integers giving the indices of the
variables in the subset. If a matrix is specified, each row is taken to represent
a different k-variable subset. If a 3-d array is given, it is assumed that the third
dimension corresponds to different cardinalities.

tolval the tolerance level to be used in checks for ill-conditioning and positive-definiteness
of the Fisher Information and the auxiliar (H) matrices. Values smaller than
tolval are considered equivalent to zero.

tolsym the tolerance level for symmetry of the Fisher Information and the auxiliar (H)
matrices. If corresponding matrix entries differ by more than this value, the
input matrices will be considered asymmetric and execution will be aborted. If
corresponding entries are different, but by less than this value, the input matrix
will be replaced by its symmetric part, i.e., input matrix A becomes (A+t(A))/2.
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Details

Variable selection in the context of generalized linear models is typically based on the minimization
of statistics that test the significance of excluded variables. In particular, the likelihood ratio, Wald’s,
Rao’s and some adaptations of such statistics, are often proposed as comparison criteria for variable
subsets of the same dimensionality. All these statistics are assympotically equivalent and can be
converted into information criteria, like the AIC, that are also able to compare subsets of different
dimensionalities (see references [1] and [2] for further details).

Among these criteria, Wald’s statistic has some computational advantages because it can always
be derived from the same (concerning the full model) maximum likelihood and Fisher informa-
tion estimates. In particular, if Wallv is the value of the Wald statistic testing the significance
of the full covariate vector, b and FI are coefficient and Fisher information estimates and H is
an auxiliary rank-one matrix given by H = FI %*% b %*% t(b) %*% FI, it follows that the value of
Wald’s statistic for the excluded variables (Wexcv) in a given subset is given by Wexcv = Wallv −
tr(FI−1

indicesHindices), where FIindices and Hindices are the portions of the FI and H matrices
associated with the selected variables.

The FI and H matrices can be retrieved (from a glm object) by the glmHmat function and may be
used as input to the search functions anneal, genetic, improve and eleaps. The Wald function
computes the value of Wald statistc from these matrices for a subset specified by indices

The fact that indices can be a matrix or 3-d array allows for the computation of the Wald statistic
values of subsets produced by the search functions anneal, genetic, improve and eleaps (whose
output option $subsets are matrices or 3-d arrays), using a different criterion (see the example
below).

Value

The value of the Wald statistic.

References

[1] Lawless, J. and Singhal, K. (1978). Efficient Screening of Nonnormal Regression Models,
Biometrics, Vol. 34, 318-327.

[2] Lawless, J. and Singhal, K. (1987). ISMOD: An All-Subsets Regression Program for Gener-
alized Models I. Statistical and Computational Background, Computer Methods and Programs in
Biomedicine, Vol. 24, 117-124.

Examples

## ---------------------------------------------------------------

## An example of variable selection in the context of binary response
## regression models. The logarithms and original physical measurements
## of the "Leptograpsus variegatus crabs" considered in the MASS crabs
## data set are used to fit a logistic model that takes the sex of each crab
## as the response variable.

library(MASS)
data(crabs)
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lFL <- log(crabs$FL)
lRW <- log(crabs$RW)
lCL <- log(crabs$CL)
lCW <- log(crabs$CW)
logrfit <- glm(sex ~ FL + RW + CL + CW + lFL + lRW + lCL + lCW,
crabs,family=binomial)
## Warning message:
## fitted probabilities numerically 0 or 1 occurred in: glm.fit(x = X, y = Y,
## weights = weights, start = start, etastart = etastart,

lHmat <- glmHmat(logrfit)
wald.coef(lHmat$mat,lHmat$H,c(1,6,7),tolsym=1E-06)
## [1] 2.286739
## Warning message:

## The covariance/total matrix supplied was slightly asymmetric:
## symmetric entries differed by up to 6.57252030578093e-14.
## (less than the 'tolsym' parameter).
## It has been replaced by its symmetric part.
## in: validmat(mat, p, tolval, tolsym)

## ---------------------------------------------------------------

## 2) An example computing the value of the Wald statistic in a logistic
## model for five subsets produced when a probit model was originally
## considered

library(MASS)
data(crabs)
lFL <- log(crabs$FL)
lRW <- log(crabs$RW)
lCL <- log(crabs$CL)
lCW <- log(crabs$CW)
probfit <- glm(sex ~ FL + RW + CL + CW + lFL + lRW + lCL + lCW,
crabs,family=binomial(link=probit))
## Warning message:
## fitted probabilities numerically 0 or 1 occurred in: glm.fit(x = X, y = Y,
## weights = weights, start = start, etastart = etastart)

pHmat <- glmHmat(probfit)
probresults <-eleaps(pHmat$mat,kmin=3,kmax=3,nsol=5,criterion="Wald",H=pHmat$H,
r=1,tolsym=1E-10)
## Warning message:

## The covariance/total matrix supplied was slightly asymmetric:
## symmetric entries differed by up to 3.14059889205964e-12.
## (less than the 'tolsym' parameter).
## It has been replaced by its symmetric part.
## in: validmat(mat, p, tolval, tolsym)

logrfit <- glm(sex ~ FL + RW + CL + CW + lFL + lRW + lCL + lCW,
crabs,family=binomial)
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## Warning message:
## fitted probabilities numerically 0 or 1 occurred in: glm.fit(x = X, y = Y,
## weights = weights, start = start, etastart = etastart)

lHmat <- glmHmat(logrfit)
wald.coef(lHmat$mat,H=lHmat$H,probresults$subsets,tolsym=1e-06)
## Card.3
## Solution 1 2.286739
## Solution 2 2.595165
## Solution 3 2.585149
## Solution 4 2.669059
## Solution 5 2.690954
## Warning message:

## The covariance/total matrix supplied was slightly asymmetric:
## symmetric entries differed by up to 6.57252030578093e-14.
## (less than the 'tolsym' parameter).
## It has been replaced by its symmetric part.
## in: validmat(mat, p, tolval, tolsym)

xi2.coef Computes the Xi squared coefficient for a multivariate linear hypoth-
esis

Description

Computes the Xi squared index of "effect magnitude". The maximization of this criterion is equiv-
alent to the maximization of the traditional test statistic, the Bartllet-Pillai trace.

Usage

xi2.coef(mat, H, r, indices,
tolval=10*.Machine$double.eps, tolsym=1000*.Machine$double.eps)

Arguments

mat the Variance or Total sums of squares and products matrix for the full data set.

H the Effect description sums of squares and products matrix (defined in the same
way as the mat matrix).

r the Expected rank of the H matrix. See the Details below.

indices a numerical vector, matrix or 3-d array of integers giving the indices of the
variables in the subset. If a matrix is specified, each row is taken to represent
a different k-variable subset. If a 3-d array is given, it is assumed that the third
dimension corresponds to different cardinalities.

tolval the tolerance level to be used in checks for ill-conditioning and positive-definiteness
of the ’total’ and ’effects’ (H) matrices. Values smaller than tolval are consid-
ered equivalent to zero.
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tolsym the tolerance level for symmetry of the covariance/correlation/total matrix and
for the effects (H) matrix. If corresponding matrix entries differ by more than
this value, the input matrices will be considered asymmetric and execution will
be aborted. If corresponding entries are different, but by less than this value, the
input matrix will be replaced by its symmetric part, i.e., input matrix A becomes
(A+t(A))/2.

Details

Different kinds of statistical methodologies are considered within the framework, of a multivariate
linear model:

X = AΨ+ U

where X is the (nxp) data matrix of original variables, A is a known (nxp) design matrix, Ψ an (qxp)
matrix of unknown parameters and U an (nxp) matrix of residual vectors. The Xi squared index
is related to the traditional test statistic (Bartllet-Pillai trace) and measures the contribution of each
subset to an Effect characterized by the violation of a linear hypothesis of the form CΨ = 0, where
C is a known cofficient matrix of rank r. The Bartllet-Pillai trace (P ) is given by: P = tr(HT−1)
where H is the Effect matrix and T is the Total matrix. The Xi squared index is related to Bartllet-
Pillai trace (P ) by:

ξ2 =
P

r

where r is the rank of H matrix.

The fact that indices can be a matrix or 3-d array allows for the computation of the Xi squared
values of subsets produced by the search functions anneal, genetic, improve and eleaps (whose
output option $subsets are matrices or 3-d arrays), using a different criterion (see the example
below).

Value

The value of the ξ2 coefficient.

Examples

## ---------------------------------------------------------------

## 1) A Linear Discriminant Analysis example with a very small data set.
## We considered the Iris data and three groups,
## defined by species (setosa, versicolor and virginica).

data(iris)
irisHmat <- ldaHmat(iris[1:4],iris$Species)
xi2.coef(irisHmat$mat,H=irisHmat$H,r=2,c(1,3))
## [1] 0.4942503

## ---------------------------------------------------------------

## 2) An example computing the value of the xi_2 criterion for two subsets
## produced when the anneal function attempted to optimize the tau_2
## criterion (using an absurdly small number of iterations).
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tauresults<-anneal(irisHmat$mat,2,nsol=2,niter=2,criterion="tau2",
H=irisHmat$H,r=2)
xi2.coef(irisHmat$mat,H=irisHmat$H,r=2,tauresults$subsets)

## Card.2
##Solution 1 0.5718811
##Solution 2 0.5232262

## ---------------------------------------------------------------

zeta2.coef Computes the Zeta squared coefficient for a multivariate linear hy-
pothesis

Description

Computes the Zeta squared index of "effect magnitude". The maximization of this criterion is
equivalent to the maximization of the traditional test statistic, the Lawley-Hotelling trace.

Usage

zeta2.coef(mat, H, r, indices,
tolval=10*.Machine$double.eps, tolsym=1000*.Machine$double.eps)

Arguments

mat the Variance or Total sums of squares and products matrix for the full data set.

H the Effect description sums of squares and products matrix (defined in the same
way as the mat matrix).

r the Expected rank of the H matrix. See the Details below.

indices a numerical vector, matrix or 3-d array of integers giving the indices of the
variables in the subset. If a matrix is specified, each row is taken to represent
a different k-variable subset. If a 3-d array is given, it is assumed that the third
dimension corresponds to different cardinalities.

tolval the tolerance level to be used in checks for ill-conditioning and positive-definiteness
of the ’total’ and ’effects’ (H) matrices. Values smaller than tolval are consid-
ered equivalent to zero.

tolsym the tolerance level for symmetry of the covariance/correlation/total matrix and
for the effects (H) matrix. If corresponding matrix entries differ by more than
this value, the input matrices will be considered asymmetric and execution will
be aborted. If corresponding entries are different, but by less than this value, the
input matrix will be replaced by its symmetric part, i.e., input matrix A becomes
(A+t(A))/2.
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Details

Different kinds of statistical methodologies are considered within the framework, of a multivariate
linear model:

X = AΨ+ U

where X is the (nxp) data matrix of original variables, A is a known (nxp) design matrix, Ψ an (qxp)
matrix of unknown parameters and U an (nxp) matrix of residual vectors. The ζ2 index is related to
the traditional test statistic (Lawley-Hotelling trace) and measures the contribution of each subset
to an Effect characterized by the violation of a linear hypothesis of the form CΨ = 0, where C is a
known cofficient matrix of rank r. The Lawley-Hotelling trace is given by: V = tr(HE−1) where
H is the Effect matrix and E is the Error matrix. The index ζ2 is related to Lawley-Hotelling trace
(V ) by:

ζ2 =
V

V + r

where r is the rank of H matrix.

The fact that indices can be a matrix or 3-d array allows for the computation of the ζ2 values of
subsets produced by the search functions anneal, genetic, improve and eleaps (whose output
option $subsets are matrices or 3-d arrays), using a different criterion (see the example below).

Value

The value of the ζ2 coefficient.

Examples

## ---------------------------------------------------------------

## 1) A Linear Discriminant Analysis example with a very small data set.
## We considered the Iris data and three groups,
## defined by species (setosa, versicolor and virginica).

data(iris)
irisHmat <- ldaHmat(iris[1:4],iris$Species)
zeta2.coef(irisHmat$mat,H=irisHmat$H,r=2,c(1,3))
## [1] 0.9211501

## ---------------------------------------------------------------

## 2) An example computing the value of the zeta_2 criterion for two
## subsets produced when the anneal function attempted to optimize
## the ccr1_2 criterion (using an absurdly small number of iterations).

ccr1results<-anneal(irisHmat$mat,2,nsol=2,niter=2,criterion="ccr12",
H=irisHmat$H,r=2)
zeta2.coef(irisHmat$mat,H=irisHmat$H,r=2,ccr1results$subsets)

## Card.2
##Solution 1 0.9105021
##Solution 2 0.9161813
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## ---------------------------------------------------------------
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