Package ‘str2str’

November 20, 2023

Type Package
Title Convert R Objects from One Structure to Another
Version 1.0.0

Description Offers a suite of functions for converting to and from
(atomic) vectors, matrices, data.frames, and (3D+) arrays as well
as lists of these objects. It is an alternative to the base R
as.<str>.<method>() functions (e.g., as.data.frame.array()) that
provides more useful and/or flexible restructuring of R objects.
To do so, it only works with common structuring of R objects (e.g.,
data.frames with only atomic vector columns).

Depends R (>= 4.0.0), datasets, stats, utils, methods
Imports abind, checkmate, plyr, reshape

License GPL (>=2)

Encoding UTF-8

RoxygenNote 7.2.3

NeedsCompilation no

Author David Disabato [aut, cre]

Maintainer David Disabato <ddisab@1@gmail.com>
Repository CRAN

Date/Publication 2023-11-20 21:50:02 UTC

R topics documented:

a2d . . . e

abind<- L
all_diff e

R topics documented:

all_sameo e 12
append<- e e e e 13
cat) . . L e e 14
chind<- e e e e e 15
chind_fill e e e e 17
cbind_fill matrix e e e 18
codes . .. e e e 20
d2a. . . e e e e 21
d2d .. e 23
d21d . . e 25
d2Iv . e e e e e 26
d2m . e e e 27
d2v e 28
dimlabels e e e 30
dimlabels<- e e e 31
€2l . e 32
fCt2v . e e 33
1 o 34
INDEW . . e e e e e e e e e 35
IS.AVECTOT o o o e e e e e e 36
IS.CNUMETIC . . . v o v e o e 37
1S.0INAMES e e e e e e e e e e e e e 38
is.Date e e e e 38
isdummy e 39
ISLBMPLY . . o v v o e e e e e e e e e e e e e e e e e 40
ISNAMES . . o v v v e 40
1. POSIXct e 41
1S POSIXIt e e e 42
ISTOWNAMES . & o & v v v o e i e 42
ISTOWNAMES . . o vt v v e e e e e e e e e e e e e e e e e e e 43
is.whole e 44
Join e 44
1a2a e e e e 47
laynames L e 48
Id2a . . . e e e 49
Id2d . . . e e e e e 50
A2V . e 52
Im2a e e e e 54
Im2d . . . e e e e 55
IM2V . . e e e e 57
IV2d . . e e e 59
IV2IM . . e e e 61
IV 2V e e e e e e e 63
m2d ..o e 65
M2IV . e e e e 66
M2V . o e e e e e e e e e e e e e e e 67
Ndim e e e e 68

str2str-package 3

NOL.ColNames e e e e e e e e e 70
NOLNAMES . . .« v v v v o e i e 70
NOLIOW.NAMES . . &« & v v v v e o e 71
NOLIOWNAMES . . &« & v v v v e o e 71
order.CuStomM e e e e e e e e 72
pick ..o 73
rbind<- 75
SIL v e e e e e e e e e e e e e e e 77
stack2 . . L e 77
Y _EXPI « o o v o o e e e e e e e e e e e e e e 79
try_fun. . ..o 80
L T 81
undim L e e e e e e e e 83
undimlabel e e e 83
undimname e e e e e e e e e e e e e e 84
unstack2 L e 86
V2d L e 88
V2ECt . e e e 89
V2frm . L L e 90
V2LV L e e 91
V2 . o e e e e e e e 92
Index 94
str2str-package Structure to Structure
Description

str2str is a package for converting R objects to different structures. It focuses on four primary
R objects: (atomic) vectors, matrices, data.frames, and arrays as well as lists of these objects. For
example, converting a (atomic) vector to a data.frame (i.e., v2d()) or a list of (atomic) vectors to a
matrix (i.e., lv2m(). The current version of the package does not have a function for every conver-
tion (e.g., a2m()), but some additional convertion functions may be included in future versions if 1
find a use for them. The package was motivated by limitations of the base R as.<str>.<method>
suite of functions and the plyr R package **ply(.fun =NULL) suite of functions for converting
R objects to different structures. While those functions are often useful, there are times different
conversions are desired or different naming schemes are desired. That is what this package offers R
users. It also contains various utility functions for working with common R objects. For example,
is.colnames and ndim.

Limitations

This packages does NOT handle the nuances of R objects. It is not for comprehensive restructuring
of any version of R objects, but rather for restructuring commonly used versions of R objects. For
example, the functions are not tested with the raw and complex typeof atomic vectors, list arrays,
or data.frames containing non-atomic vector columns (e.g., matrix or list columns). The base R
as.<str>.<method> functions allow for comprehensive restructuring of R objects; however, at the

a2d

cost of less convenient convertions for commonly used versions of R objects. The str2str package
seeks to fill that gap in useability.

Abbreviations
See the table below

(atomic) vector

m wnatrix

d data.frame
a (3D+) array
I list

el elements

nm names

uv unique values

Igl logical
int integer
dbl double
num numeric
chr character
fct factor

Ivl levels
vrb variable
frm formula
fun function
rtn return

str structure

Author(s)

Maintainer: David Disabato <ddisab@1@gmail.com>

a2d

(3D+) Array to Data-Frame

Description

a2d converts a (3D+ array) to a data.frame. It allows you to specify a dimension of the array

to be the columns.

All other dimensions are variables in the data.frame. This is different than

as.data.frame.array which converts the (3D+) array to a matrix first; although it is very similar
to as.data.frame. table when col = 0.

a2d

Usage
a2d(a, col =0,

Arguments

a

col

stringsAsFactors = FALSE, check = TRUE)

3D+ array.

integer vector or character vector of length 1 specifing the dimension of a to have
as columns in the return object. If an integer vector, col refers to the dimension
number. If a character vector, col refers to the name of the dimension (i.e.,
dimlabel). The columns are in order of the dimnames for that dimension (not
alphabetical order like reshape: : cast). If 0 (default), then no dimension of the
array are columns and the function becomes similar to as.data.frame. table.

stringsAsFactors

check

Details

logical vector of length 1 specifying whether the variable dimensions should be
factors of chracter vectors.

logical vector of length 1 specifying whether to check the structure of the input
arguments. For example, check whether a is a (3D+) array. This argument is
available to allow flexibility in whether the user values informative error mes-
sages (TRUE) vs. computational efficiency (FALSE).

a2d is mostly a wrapper for reshape: :melt.array (+ reshape: : cast) that allows for the variable
dimensions to be character vectors rather than factors.

Value

data.frame of a’s elements. The colnames of the variable dimensions are the dimlabels in a. If there
were no dimlabels in a, then each dimension is named after its number with an X in front. If col is
not 0, then the rest of the colnames are the dimnames of that dimension from a. If col is 0, then the
names of the single column with a’s elements is "element".

Examples

a2d(HairEyeColor)
a2d(HairEyeColor,
a2d(HairkyeColor,
a2d(HairkyeColor,
a2d(HairEyeColor,

col = 1)
col = "Hair”, stringsAsFactors = TRUE)
col = 2)

col = "Sex", stringsAsFactors = TRUE)

try_expr(a2d(as.matrix(attitude))) # error due to inputting a matrix. Instead use ‘m2d‘.

correlation array example from psych::corr.test(attitude[1:3])
corr_test <- psych::corr.test(attitude[1:3])

a <- 1m2a(corr_

test[c("r","se","t","p")1)

r <- matrix(c(1.0000000, 0.8254176, 0.4261169, 0.8254176, 1.0000000, 0.5582882,
0.4261169, 0.5582882, 1.0000000), nrow = 3, ncol = 3, byrow = FALSE)

se <- matrix(c(@.
0.1709662, 0.1

0000000, 0.1066848, 0.1709662, 0.1066848, 0.0000000, 0.1567886,
567886, 0.0000000), nrow = 3, ncol = 3, byrow = FALSE)

6 a2la

t <- matrix(c(Inf, 7.736978, 2.492404, 7.736978, Inf, 3.560771,
2.492404, 3.560771, Inf), nrow = 3, ncol = 3, byrow = FALSE)
p <- matrix(c(0.000000e+00, 1.987682e-08, 1.887702e-02, 5.963047e-08, 0.000000e+00,
1.345519e-03, 0.018877022, 0.002691039, 0.000000000), nrow = 3, ncol = 3, byrow = FALSE)
a <- abind::abind(r, se, t, p, along = 3L)
dimnames(a) <- list(names(attitude[1:3]), names(attitude[1:3]), c("r","se","t","p"))
d <- a2d(a = a, col = 3)

a2la (3D+) Array to List of (3D+) Arrays

Description
a2la converts an (3D+) array to a list of (3D+) arrays. This function is a simple wrapper for
asplit(x = a, MARGIN = along).

Usage

a2la(a, along = ndim(a), check = TRUE)

Arguments
a (3D+) array
along integerish vector of length 1 specifying the dimension to split the array along.
Default is the last dimension of a.
check logical vector of length 1 specifying whether to check the structure of the input
arguments. For example, check whether a is a 3D+ array. This argument is avail-
able to allow flexibility in whether the user values informative error messages
(TRUE) vs. computational efficiency (FALSE).
Value

list of arrays where each array is one dimension less than a and the names of the list are dimnames(a)[[along]].

Examples

without dimnames
a <- abind::abind(HairEyeColor*1, HairEyeColor*2, HairEyeColor*x3, along = 4L)

a2la(a)

with dimnames

a <- abind::abind("one"” = HairEyeColorx1, "two"” = HairEyeColor=*2,
"three" = HairEyeColor*3, along = 4L)

a2la(a)

a2la(a, along = 1) # along =1

a2ld 7

a2ld 3D Array to List of Data-Frames

Description

a2ld converts a 3D array to a list of data.frames. This is a simple call to a21m followed by m2d. The
default is to convert the third dimension to the list dimension.

Usage

a2ld(a, along = 3L, stringsAsFactors = FALSE, check = TRUE)

Arguments
a 3D array.
along integer vector of length 1 specifying the dimension to slice the array along. This
dimension is converted to the list dimension. 1 = rows; 2 = columns; 3 = layers.
stringsAsFactors
logical vector of length 1 specifying whether character vectors should be con-
verted to factors. Note, that if the array is character and stringsAsFactors =
TRUE, then all columns in the returned list of data.frames will be factors.
check logical vector of length 1 specifying whether to check the structure of the input
arguments. For example, check whether a is a 3D array. This argument is avail-
able to allow flexibility in whether the user values informative error messages
(TRUE) vs. computational efficiency (FALSE).
Value

list of data.frames - all with the same dimensions.

Examples

a2ld(HairEyeColor)
a2ld(HairkEyeColor, along = 1)
try_expr(a2ld(mtcars)) # error b/c not a 3D array

a2lm (3D) Array to List of Matrices

Description

a2lm converts a (3D) array to a list of matrices. This is a simple call to asplit with a default to
convert the third dimension to a list dimension.

8 alv

Usage

a2lm(a, along = 3L, check = TRUE)

Arguments
a 3D array.
along integer vector of length 1 specifying the dimension to slice the array along. This
dimension is converted to the list dimension. 1 = rows; 2 = columns; 3 = layers.
check logical vector of length 1 specifying whether to check the structure of the input
arguments. For example, check whether a is a 3D array. This argument is avail-
able to allow flexibility in whether the user values informative error messages
(TRUE) vs. computational efficiency (FALSE).
Value

list of matrices - all with the same dimensions.

Examples

a2lm(HairEyeColor)
a2lm(HairEyeColor, along = 1)
try_expr(a2lm(mtcars)) # error b/c not a 3D array

a2v (3D+) Array to (Atomic) Vector

Description

a2v converts a matrix to a (atomic) vector. The benefit of m2v over as.vector or c is that 1) the
vector can be formed along rows any sequence of dimensions and 2) the dimnames from a can be
used for the names of the returned vector.

Usage

a2v(a, along = ndim(a):1, use.dimnames = TRUE, sep = "_", check = TRUE)
Arguments

a 3D+ array.

along numeric vector of length = ndim(a) that contains the integers 1:ndim(a) spec-

ifying the order which the array elements should be concatenated. For example,
with a 3D array, 3:1 (default) specifies to split the array by layers first, then
columns, and then rows. See examples.

abind<- 9

use.dimnames logical vector of length 1 that specifies whether the dimnames of a should be
used to create the names for the returned vector. If FALSE, the returned vector
will have NULL names. If TRUE, then each element’s name will be analogous
to paste(dimnames(a)[[1L]][i], dimnames(a)[[2L]11[j], dimnames(a)[[3L]1[k],...,
sep = sep). If a does not have dimnames, then they will be replaced by dimen-
sion positions.

sep character vector of length 1 specifying the string that will separate the dimnames
from each dimension in the naming scheme of the return object. Note, sep is
not used if use.dimnames = FALSE.

check logical vector of length 1 specifying whether to check the structure of the input
arguments. For example, check whether a is a 3D+ array. This argument is avail-
able to allow flexibility in whether the user values informative error messages
(TRUE) vs. computational efficiency (FALSE).

Value

(atomic) vector of length = length(a) where the order of elements from a has been determined by
along and the names determined by the use.dimnames, dimnames(a), and sep.

Examples

a2v(HairkEyeColor) # layers, then columns, then rows (default)
a2v(HairEyeColor, along = c(3,1,2)) # layers, then rows, then columns
a2v(HairkEyeColor, along = 1:3) # rows, then columns, then layers
a2v(HairkEyeColor, along = 1:3, use.dimnames = FALSE)

abind<- Add array slices to 3D+ Array ‘abind<-‘ adds array slices to ar-
rays as a side effect. It used the function abind in the abind pack-
age. The purpose of the function is to replace the need to use ary?2
<-abind(aryl, matl); ary3 <- rbind(ary2, mat2); ary4 <- rbind(ary3,
mat3), etc. It allows you to specify the dimension you wish to bind
along as well as the dimname you wish to bind after. Unlike
‘cbind<-¢, ‘rbind<-*¢, and ‘append<-‘, it does not have overwrit-
ing functionality (I could not figure out how to code that); therefore,
if value has some dimnames that are the same as those in a, it will
NOT overwrite them and simply bind them to a, resulting in duplicate
dimnames.

Description

Some traditional R folks may find this function uncomfortable. R is famous for limiting side effects,
except for a few notable exceptions (e.g., *[<-" and ‘names<-"). Part of the reason is that side
effects can be computationally inefficient in R. The entire object often has to be re-constructed and
re-saved to memory. For example, a more computationally efficient alternative to abind(ary) <-
matl; abind(ary) <- mat2; abind(ary) <- mat3 is aryl <- do.call(what = abind, args = list(ary, matl,
mat2, mat3)). However, “abind<-* was not created for R programming use when computational
efficiency is valued; it is created for R interactive use when user convenience is valued.

10 abind<-
Usage
abind(
a)
along = ndim(a),
after = dim(a)[along],
dim.nm = NULL,
overwrite = FALSE
) <- value
Arguments
a 3D+ array.
along either an integer vector with length 1 or a character vector of length 1 specifying
the dimension along which to bind value. If an integer vector, it is the position
of the dimension. If a character vector it is the dimension with that dimlabel.
after either an integer vector with length 1 or a character vector of length 1 specifying
where to add value within the dimension specified by along. If an integer
vector, it is the position within the dimension. If a character vector it is the
dimname within the dimension. Similar to append, use OL if you want the added
array slice to be first.
dim.nm character vector of length equal to ndim(value)[along] that specifies the dim-
names of value once added to a as array slices. This is an optional argument
that defaults to NULL where the pre-existing dimnames of value are used.
overwrite not currently used, but there are plans to use it in future versions of the functions.
Right now the only option is FALSE.
value matrix or array to be added as slices to a. Must have ndim equal to ndim(a)
or ndim(a) - 1L. Note, the dimensions have to match those in a. For exam-
ple, if value is a matrix you want to bind along the third dimension of a, then
dim(value) must be equal to dim(a)[1:2]. If not, you will get an error from
abind: :abind.
Value
Like other similar functions (e.g., *names<-* and ‘[<-"), ‘rbind<-" does not appear to have a
return object. However, it technically does as a side effect. The argument data will have been
changed such that value has been added as rows. If a traditional return object is desired, and no
side effects, then it can be called like a traditional function: dat2 <- ‘rbind<-‘(dat1, value = add1).
Examples

abind along the last dimension

default ‘along‘ and ‘after®

HairEyeColor2 <- HairEyeColor

intersex_ary <- array(1:16, dim = c(4,4,1), dimnames = 1ist(NULL, NULL, "Sex" = "Intersex"))
abind(HairEyeColor2) <- intersex_ary

print(HairEyeColor2)

user-specified ‘along" and ‘after®

HairEyeColor2 <- HairEyeColor

all_diff 11

intersex_ary <- array(1:16, dim = c(4,4,1), dimnames = list(NULL, NULL, "Sex" = "Intersex"))
abind(HairEyeColor2, along = "Sex", after = QL) <- intersex_ary

print(HairEyeColor2)

matrix as ‘value®

HairkEyeColor2 <- HairEyeColor

intersex_mat <- matrix(1:16, nrow = 4, ncol = 4)

abind(HairEyeColor2, dim.nm = "Intersex”) <- intersex_mat

print(HairEyeColor2)

abind along the first dimension
array as ‘value®
HairEyeColor2 <- HairEyeColor

auburn_ary <- array(1:8, dim = c(1,4,2), dimnames = list("Hair"” = "Auburn”, NULL, NULL))
abind(HairEyeColor2, along = 1L) <- auburn_ary
print(HairEyeColor2)

matrix as ‘value®

HairEyeColor2 <- HairEyeColor

auburn_mat <- matrix(1:8, nrow = 4, ncol = 2) # rotate 90-degrees counter-clockwise in your mind
abind(HairEyeColor2, along = 1L, dim.nm = "Auburn”) <- auburn_mat

print(HairEyeColor2)

“after’ in the middle

HairEyeColor2 <- HairEyeColor

auburn_mat <- matrix(1:8, nrow = 4, ncol = 2) # rotate 90-degrees counter-clockwise in your mind
abind(HairEyeColor2, along = 1L, after = 2L, dim.nm = "Auburn”) <- auburn_mat
print(HairEyeColor2)

abind along the second dimension

array as ‘value®

HairEyeColor2 <- HairEyeColor

amber_ary <- array(1:8, dim = c(4,1,2), dimnames = list(NULL, "Eye" = "Amber"”, NULL))
abind(HairEyeColor2, along = 2L) <- amber_ary

print(HairEyeColor2)

matrix as ‘value®

HairEyeColor2 <- HairEyeColor

amber_mat <- matrix(1:8, nrow = 4, ncol = 2)

abind(HairEyeColor2, along = 2L, dim.nm = "Amber"”) <- amber_mat
print(HairEyeColor2)

“after® in the middle

HairEyeColor2 <- HairEyeColor

amber_mat <- matrix(1:8, nrow = 4, ncol = 2)

abind(HairEyeColor2, along = 2L, after = "Blue”, dim.nm = "Amber"”) <- amber_mat
print(HairEyeColor2)

all_diff Test if All Elements are Different

Description

all_diff tests if all elements are different. The elements could be either from an atomic vector,
list vector, or list. If x does not have any unique values (e.g., NULL), then FALSE is returned.

12 all same

Usage
all_diff(x)

Arguments

X atomic vector, list vector, or list.

Details

The machine precision of all_diff for numeric vectors is the same as unique. This can causes a
problem for some floating-point numbers.

Value

logical vector of length 1 specifying whether all the elements in x are the same (TRUE) or not
(FALSE).

Examples

all_diff(1:10)

all_diff(c(1:10, 10))

all_diff(c(1.0000000, 1.0000001, ©.9999999)) # machine precision good for most cases
all_diff (1) # works for vectors of length 1

all_same Test if All Elements are the Same

Description

all_same tests if all elements are the same. The elements could be either from an atomic vector,
list vector, or list. If x does not have any unique values (e.g., NULL), then FALSE is returned.

Usage

all_same(x)

Arguments

X atomic vector, list vector, or list.

Details

The machine precision of all_same for numeric vectors is the same as unique. This can causes a
problem for some floating-point numbers.

Value

logical vector of length 1 specifying whether all the elements in x are the same (TRUE) or not
(FALSE).

append<- 13

Examples

all_same(rep.int("a", times = 10))

all_same(rep.int(1, times = 10))

all_same(c(1.0000000, 1.0000001, ©.9999999)) # machine precision good for most cases
all_same(1) # works for vectors of length 1

append<- Add Elements to Vectors

Description

*append<-" adds elements to vectors as a side effect. The purpose of the function is to replace the
need to use vec2 <- append(vecl, add1); vec3 <- append(vec2, add2); vec4 <- append(vec3, add3),
etc. It functions similarly to *[<-.default®, but allows you to specify the location of the elements
similar to append (vs. c).

Usage
append(x, after = length(x), nm = NULL, overwrite = TRUE) <- value

Arguments
X atomic vector, list vector, or list.
after either an integer vector with length 1 or a character vector of length 1 specifying
where to add value. If an integer vector, it is the position of an element. If a
character vector, it is the element with that name. Similar to append, use OL if
you want the added elements to be first.
nm character vector of length equal to the length(value) that specifies the names
of value once added to x as elements. This is an optional argument that defaults
to NULL where the pre-existing names of value are used.
overwrite logical vector of length 1 specifying whether elements from value or nm should
overwrite elements in x with the same names. Note, if overwrite = FALSE,
repeat names are possible similar to append.
value vector of the same typeof as x to be added as elements to x. Note that for
atomic vectors, if more complex elements are added, then the return object will
be typeof the most complex element in x and value.
Details

Some traditional R folks may find this function uncomfortable. R is famous for limiting side effects,
except for a few notable exceptions (e.g., *[<-" and ‘names<-"). Part of the reason is that side
effects can be computationally inefficient in R. The entire object often has to be re-constructed and
re-saved to memory. For example, a more computationally efficient alternative to append(vec) <-
addl; append(vec) <- add2; append(vec) <- add3 is vecl <- do.call(what = ¢, args = list(dat, addl,
add2, add3)). However, “append<-* was not created for R programming use when computational
efficiency is valued; it was created for R interactive use when user convenience is valued.

14 cat0

Value

Like other similar functions (e.g., *names<-"* and *[<-"), it does not appear to have a return object.
However, it technically does as a side effect. The argument x will have been changed such that
value has been added as elements. If a traditional return object is desired, and no side effects, then
it can be called like a traditional function: vec2 <- ‘append<-‘(vecl, value = add1).

Examples

no names

x <- letters

append(x) <- LETTERS

append(x, after = match("z", table
of the added value specified

x)) <- "case_switch” # with the position

ya names

y <- setNames(object = letters, nm = LETTERS)

append(y) <- c("ONE" = 1, "TWO" = 2, "THREE" = 3) # with names provided by ‘value®
tmp <- 1:(length(y) - 3)

y <= y[tmp] # if I put a () inside of a [], Roxygen doesn't like it

append(y, nm = c("ONE","TWO","THREE")) <- c(1,2,3) # with names specified by ‘nm®
append(y, after = "Z", nm = "ZERQ") <- "@" # using name to provide ‘after®

using overwrite

append(y, overwrite = TRUE) <- c("ONE"” = "one"”,"TWO" = "two", "THREE" = "three")
append(y, overwrite = FALSE) <- c("ONE"” = "one”,"TWO" = "two", "THREE" = "three")
cato Concatenate and Print with No Separator

Description

cat®@ concatenates and prints objects without any separator. cat is to cat as paste® is to paste. It
also allows you to specify line breaks before (n.before) and after (n.after) the the printing of the
concatenated R objects. cat@ function can be useful in conjunction with sink for quick and dirty
exporting of results.

Usage

cato(

n.before = 1L,

n.after = 1L,
file = "",
fill = FALSE,

labels = NULL,
append = FALSE

cbind<-

Arguments

n.before

n.after

file

fill

labels
append

Value

15

one or more R objects. See details of cat for types of objects allowed.

integer vector of length 1 specifying how many line breaks to have before print-
ing the concatenated R objects.

integer vector of length 1 specifying how many line breaks to have after printing
the concatenated R objects.

A connection or a character string naming the file to print to. If "" (default),
cat@ prints to the standard output connection - the console - unless redirected
by sink.

A logical or (positive) numeric vector of length 1 controlling how the output
is broken into successive lines. If FALSE (default), new line breaks are only
created explicity by "\n" bring called. If TRUE, the output is broken into lines
with print width equal to the option "width" (options()[["width"]]). If a
(positive) number, then the output is broken after width of that length.

A character vector of labels for the lines printed. Ignored if fill = FALSE.

A logical vector of length 1. Only used if the argument file is the name of a
file (and not a connection). If TRUE, output will be appended to the existing
file. If FALSE, output will overwrite the contents of the file.

nothing as the function only prints and does not return an R object.

Examples

cat@(names(attitude))
cat@("MODEL COEFFICIENTS:", coef(lm(rating ~ critical + advance, data = attitude)),
n.before = @, n.after = 2)

cbind<-

Add Columns to Data Objects

Description

‘cbind<-" adds columns to data objects as a side effect. The purpose of the function is to replace
the need to use dat2 <- cbind(datl, addl); dat3 <- cbind(dat2, add2); dat4 <- cbind(dat3, add3),
etc. For data.frames, it functions similarly to *[<-.data.frame", but allows you to specify the
location of the columns similar to append (vs. c¢) and overwrite columns with the same colnames.
For matrices, it offers more novel functionality since *[<-.matrix" does not exist.

Usage

cbind(data, after = ncol(data), col.nm = NULL, overwrite = TRUE) <- value

16 cbind<-

Arguments
data data.frame or matrix of data.
after either an integer vector with length 1 or a character vector of length 1 specifying
where to add value. If an integer vector, it is the position of a column. If a
character vector it is the column with that name. Similar to append, use OL if
you want the added columns to be first.
col.nm character vector of length equal to NCOL (value) that specifies the colnames of
value once added to data as columns. This is an optional argument that defaults
to NULL where the pre-existing colnames of value are used.
overwrite logical vector of length 1 specifying whether columns from value or col.nm
should overwrite columns in data with the same colnames. Note, if overwrite
= FALSE, repeat colnames are possible similar to cbind.
value data.frame, matrix, or atomic vector to be added as columns to data. If a
data.frame or matrix, it must have the same nrow as data. If an atomic vec-
tor, it must have length equal to nrow of data. Note, if it is an atomic vector and
col.nmis NULL, then the name of the added column will be "value".
Details

Some traditional R folks may find this function uncomfortable. R is famous for limiting side effects,
except for a few notable exceptions (e.g., *[<-" and ‘names<-"). Part of the reason is that side
effects can be computationally inefficient in R. The entire object often has to be re-constructed and
re-saved to memory. For example, a more computationally efficient alternative to cbind(dat) <-
addl; cbind(dat) <- add2; cbind(dat) <- add3 is datl <- do.call(what = cbind, args = list(dat, addl,
add2, add3)). However, ‘cbind<-* was not created for R programming use when computational
efficiency is valued; it is created for R interactive use when user convenience is valued.

Similar to *cbind", *cbind<-" works with both data.frames and matrices. This is because ‘cbind*
is a generic function with a default method that works with matrices and a data.frame method that
works with data.frames. Similar to *cbind®, if colnames of value are not given and col.nm is left
NULL, then the colnames of the return object are automatically created and can be dissatisfying.

Value

\

Like other similar functions (e.g., *names<-* and ‘[<-"), *cbind<-" does not appear to have a
return object. However, it technically does as a side effect. The argument data will have been
changed such that value has been added as columns. If a traditional return object is desired, and no
side effects, then it can be called like a traditional function: dat2 <- ‘cbind<-‘(datl, value = add1).

Examples

attitude2 <- attitude

chbind(attitude2) <- rowMeans(attitude2) # defaults to colnames = "value”

attitude2["value"”] <- NULL

cbind(attitude2, col.nm = "mean") <- rowMeans(attitude2) # colnames specified by ‘col.nm"

attitude2["mean”] <- NULL

cbind(attitude2, after = "privileges”, col.nm = c("mean"”,”sum")) <-
cbind(rowMeans(attitude2), rowSums(attitude2)) # ‘value‘ can be a matrix

attitude2[c("mean”,"sum")] <- NULL

cbind_fill 17

attitude2 <- ‘cbind<-‘(data = attitude2, value = rowMeans(attitude2)) # traditional call
attitude2[”value”] <- NULL
chbind(attitude2, after = "privileges”, col.nm = "mean”) <-

rowMeans(attitude2) # ‘data‘ can be a matrix
chind(attitude2) <- data.frame("mean” = rep.int(x = "mean”, times = 30L)) # overwrite = TRUE
chbind(attitude2, overwrite = FALSE) <-

data.frame("mean” = rep.int(x = "mean”, times = 30L)) # overwrite = FALSE
chind(attitude2) <- data.frame("mean” = rep.int(x = "MEAN", times = 30L),
"sum” = rep.int(x = "SUM", times = 30L)) # will overwrite only the first "mean” column

then will append the remaining columns

cbind_fill Bind DataFrames Along Columns - Filling in Missing Rows with NA

Description

cbind_fill binds together matrix-like objects by columns. The input objects will all internally
be converted to data.frames by the generic function as.data.frame. When some objects do not
contain rows that are present in other objects, NAs will be added to fill up the returned combined
data.frame. If a matrix doesn’t have rownames, the row number is used. Note that this means that a
row with name "1" is merged with the first row of a matrix without name and so on. The returned
matrix will always have row names. Colnames are ignored.

Usage
cbind_fill(...)

Arguments
any combination of data.frames, matrices, or atomic vectors input as separate
arguments or a list.

Details

cbind_fill ensures each object has unique colnames and then calls Join(by = "0"). It is intended
to be the column version of plyr::rbind.fill; it differs by allowing inputs to be matrices or
vectors in addition to data.frames.

Value

data.frame created by combining all the objects input together. It will always have rownames. If
colnames are not provided to the matrix-like objects, the returned colnames can be rather esoteric
since default colnaming will be revised to ensure each colname is unique. If . . . is a list of vectors,
then the colnames will be the names of the list.

See Also
cbind_fill_matrix rbind.fill

18 cbind_fill_matrix

Examples

standard use

A <- data.frame("first” = 1:2, "second” = 3:4)
B <- data.frame("third” = 6:8, "fourth” = 9:11)
print(A)

print(B)

cbind_fill(A, B)

help with unstack()

row_keep <- sample(1:nrow(InsectSprays), size = 36)
InsectSprays2 <- InsectSprays[row_keep,]

unstacked <- unstack(InsectSprays2)
cbind_fill(unstacked)

using rownames for binding

rownames(A) <- c("one”, "two")
rownames(B) <- c("three”,"two"”,"one")
print(A)

print(B)

cbind_fill(A, B)

matrices as input
A <- matrix(1:4, 2)
B <- matrix(6:11, 3)
print(A)

print(B)
cbind_fill(A, B)

atomic vector input

<- data.frame("first” = 1:2, "second” = 3:4)
<- data.frame("third"” = 6:8, "fourth” = 9:11)
<- ¢(12,13,14,15)

<- ¢(16,17,18,19)

cbind_fill(A, B, C, D)

O 0O W > H

same as plyr::rbind.fill, it doesn't handles well some inputs with custom rownames
and others with default rownames

rownames(A) <- c("one”, "two")

print(A)

print(B)

cbind_fill(A, B)

cbind_fill_matrix Bind Matrices Along Columns - Filling in Missing Rows with NA

Description

cbind_fill_matrix binds together matrix-like objects by columns. The input objects will all
internally be converted to matrices by the generic function as.matrix. When some objects do not

cbind_fill_matrix 19

contain rows that are present in other objects, NAs will be added to fill up the returned combined
matrix. If a matrix doesn’t have rownames, the row number is used. Note that this means that a row
with name "1" is merged with the first row of a matrix without name and so on. The returned matrix
will always have row names. Colnames are ignored.

Usage

cbind_fill_matrix(...)

Arguments

any combination of matrices, data.frames, or atomic vectors input as separate
arguments or a list.

Details

cbind_fill_matrix is t.default + plyr::rbind.fill.matrix + t.default and is based on
the code within plyr::rbind.fill.matrix.

Value

matrix created by combining all the objects input together. It will always have rownames. It will
only have colnames if . .. is a list of vectors, in which the colnames will be the names of the list.

See Also
cbind_fill rbind.fill.matrix

Examples

standard use

A <- matrix(1:4, 2)

B <- matrix(6:11, 3)
print(A)

print(B)
cbind_fill_matrix(A, B)

help with unstack()

row_keep <- sample(1:nrow(InsectSprays), size = 36)
InsectSprays2 <- InsectSprays[row_keep,]
unstacked <- unstack(InsectSprays2)
cbind_fill_matrix(unstacked)

using rownames for binding

rownames(A) <- c("one"”, "two")
rownames (B) <- c("three"”,"two","one")
print(A)

print(B)

cbind_fill_matrix(A, B)

data.frame input

20 codes
C <- data.frame("V1" = c(12,13,14,15), row.names = c("one","two","three","four"))
print(C)
cbind_fill_matrix(A, B, C)

atomic vector input
A <- matrix(1:4, 2)
B <- matrix(6:11, 3)
C <- ¢(12,13,14,15)
cbind_fill_matrix(A, B, C)
same as plyr::rbind.fill.matrix, cbind_fill_matrix doesn't like some input
with dimnames and others without...
rownames (A) <- c("one", "two")
print(A)
print(B)
cbind_fill_matrix(A, B)
codes Integer Codes of Factor Levels

Description
codes returns the integer codes for each factor level from a factor.

Usage
codes(fct)

Arguments
fct factor.

Value
integer vector with length = length(levels(fct)), elements = integer codes of fct and names =
levels(fct).

Examples

codes(state.region)
codes(iris$"”Species”)

d2a 21

d2a Data-Frame to (3D+) Array or Matrix

Description

d2a converts a data.frame to a (3D+) array or matrix. This function assumes the data.frame contains
2+ variable dimensions, which will correspond to the returned arrays/matrix dimensions. One or
multiple variables can contain the elements of the returned array (only one variable can contain the
elements for returning a matrix). In the case of multiple variables, they will be binded as the last
dimension in the returned array with dimnames equal to the variable names.

Usage

d2a(d, dim.nm = names(d)[-ncol(d)], rtn.dim.lab = "el_nm", check = TRUE)

Arguments

d data.frame with at least 3 columns, where 2+ columns are variable dimensions
and 1+ columns contain the to-be returned array/matrix elements.

dim.nm character vector of 2+ length specifying the colnames in d that contain the vari-
able dimensions. These do not need to be factors or character vectors. Note, all
columns in d other than dim.nm are assumed to be element columns.

rtn.dim.lab character vector of length 1 specifying the dimlabel to use for the last dimension
in the returned array when there are multiple element columns in d. Note, that
NA will be converted to "NA" and NULL will return an error. If you don’t want
any dimlabel to show, "" is probably the best option. If there is only one element
column in d, this argument is ignored by d2a.

check logical vector of length 1 specifying whether to check the structure of the input
arguments. For example, check whether d is a data.frame. This argument is
available to allow flexibility in whether the user values informative error mes-
sages (TRUE) vs. computational efficiency (FALSE).

Details

d2a is a wrapper for reshape: :cast with the addition of reordering the dimnames by position,
which sorts the dimnames by the position they first appear in the variable dimensions of the data.frame
(reshape: : cast sorts all the dimnames alphabetically).

Value

(3D+) array or matrix formed from the dimensions d[dim.nm] with dimlabels = dim.nm (and
rtn.dim.lab if there are multiple element columns). The dimnames are the unique elements
d[dim.nm] and are ordered by position (rather than alphabetically), which allow for conversions
back to the original array after a call to a2d() or matrix after a call to m2d().

22 d2a

Examples

3D array

print(HairEyeColor)

d <- reshape::melt.array(HairEyeColor)

a <- reshape::cast(d, Hair ~ Eye ~ Sex)

identical(a, unclass(HairEyeColor)) # not the same as HairEyeColor
d <- a2d(HairEyeColor)

a <- d2a(d, dim.nm = c("Hair","Eye","Sex"))

identical(a, unclass(HairEyeColor)) # yes the same as HairEyeColor

matrix

attitude_mat <- d2m(attitude)

d <- m2d(attitude_mat, col = 0)

m <- d2a(d)

identical(m, attitude_mat) # yes the same as attitude_mat

correlation data.frame example for p-values using psych::corr.test(attitude[1:3])

corr_test <- psych::corr.test(attitude)

a <- 1lm2a(corr_test[c("r","se","t","p")1)

r <- matrix(c(1.0000000, 0.8254176, 0.4261169, 0.8254176, 1.0000000, ©.5582882,
0.4261169, 0.5582882, 1.0000000), nrow = 3, ncol = 3, byrow = FALSE)

se <- matrix(c(0.0000000, 0.1066848, 0.1709662, 0.1066848, 0.0000000, 0.1567886,
0.1709662, 0.1567886, 0.0000000), nrow = 3, ncol = 3, byrow = FALSE)

t <- matrix(c(Inf, 7.736978, 2.492404, 7.736978, Inf, 3.560771,
2.492404, 3.560771, Inf), nrow = 3, ncol = 3, byrow = FALSE)

p <- matrix(c(0.000000e+00, 1.987682e-08, 1.887702e-02, 5.963047e-08, 0.000000e+00,
1.345519e-03, 0.018877022, 0.002691039, 0.000000000), nrow = 3, ncol = 3, byrow = FALSE)

a <- abind::abind(r, se, t, p, along = 3L)

dimnames(a) <- list(names(attitude[1:3]), names(attitude[1:3]), c("r","se","t","p"))

d <- a2d(a = a, col = 3)

a2 <- d2a(d = d, dim.nm = c("X1","X2"))

all.equal(a, a2) # dimlabels differ

dimnames(a2) <- unname(dimnames(a2))

all.equal(a, a2) # now it is true

correlation data.frame example for confidence intervals using psych::corr.test(attitude[1:3])
corr_test <- psych::corr.test(attitude[1:3])
d <- corr_test[["ci"11[c("r","p","lower", "upper"”)]

cbind(d, after = 0L) <- reshape::colsplit(row.names(d), split = "-", names = c("X1","X2"))
tmp <- d[C(”XZ”,”X1”,”r”,"p”,"lOWer",”Upper”)]
d2 <- plyr::rename(tmp, c("X1" = "X2", "X2" = "X1"))

short_nm <- unique(c(fct2v(d[["X1"11), fct2v(d[["X2"11)))

d3 <- data.frame(”"X1" = short_nm, "X2" = short_nm,

"r" = NA_real_, "p" = NA_real_, "lower” = NA_real_, "upper"” = NA_real_)

d_all <- 1d2d(1ld = list(d, d2, d3), rtn.listnames.nm = NULL, rtn.rownames.nm = NULL)
d_all <- data.frame(

"X1" = c¢("ratng”,"ratng”,

non non non non "o

cmpln”,"cmpln”, "prvlg"”,"prvlg"”, "ratng”,"cmpln”, "prvlg"),
"X2" = c("cmpln”, "prvlg”, "prvlg”, "ratng”, "ratng”, "cmpln”, "ratng”, "cmpln”, "prvlg"),
"r" = c(0.8254176, 0.4261169, 0.5582882, 0.8254176, 0.4261169, 0.5582882, NA, NA, NA),
"p" = c(1.987682e-08, 1.887702e-02, 1.345519¢-03, 1.987682¢-08,

1.887702e-02, 1.345519e-03, NA, NA, NA),

d2d 23

"lower"” = c(0.66201277, 0.07778967, 0.24787510, 0.66201277, 0.07778967,
0.24787510, NA, NA, NA),
"upper"” = c(0.9139139, 0.6817292, 0.7647418, ©.9139139, 0.6817292,
0.7647418, NA, NA, NA)
)
tmp <- d2a(d = d_all, dim.nm = c("X1","X2"), rtn.dim.lab = "stat")
short_nm <- c("ratng","cmpln”,"prvlg")
dim_names <- list(short_nm, short_nm, c("r","p","lower”,"upper”))
a <- do.call(what = [, args = c(list(tmp), dim_names))

print(a)

d2d Data-Frame to Data-Frame (e.g., factors to character vectors)

Description

d2d converts a data.frame to a modified version of the data.frame. It is used to convert factors,
character vectors, and logical vectors to different classes/types (e.g., factors to character vectors).

Usage
d2d(
d)
fct = "chr"”,
chr = "chr",
lgl = "int",
order.1lvl = "alphanum”,

decreasing = FALSE,
na.lvl = FALSE,

check = TRUE
)
Arguments

d data.frame.

fct character vector of length 1 specifying what factors should be converted to.
There are three options: 1) "chr" for converting to character vectors (i.e., factor
labels), 2) "int" for converting to integer vectors (i.e., factor codes), or 3) "fct"
for keeping the factor as is without any changes.

chr character vector of length 1 specifying what character vectors should be con-

verted to. There are three options: 1) "fct" for converting to factors (i.e., ele-
ments will be factor labels), 2) "int" for converting to integer vectors (i.e., factor
codes after first converting to a factor), or 3) "chr" for keeping the character
vectors as is without any changes.

24

1gl

order.1lvl

decreasing

na.lvl

check

Details

d2d

character vector of length 1 specifying what logical vectors should be converted
to. There are four options: 1) "fct" for converting to factors (i.e., "TRUE" and
"FALSE" will be factor labels), 2) "chr" for converting to character vectors (i.e.,
elements will be "TRUE" and "FALSE"), 3) "int" for converting to integer vec-
tors (i.e., TRUE = 1; FALSE = 0), and 4) "Igl" for keeping the logical vectors as
is without any changes.

character vector of length 1 specifying how you want to order the levels of the
factor. The options are "alphanum", which sorts the levels alphanumerically
(with NA last); "position", which sorts the levels by the position the level first
appears; "frequency", which sorts the levels by their frequency. If any frequen-
cies are tied, then the ties are sorted alphanumerically (with NA last).

logical vector of length 1 specifying whether the ordering of the levels should
be decreasing (TRUE) rather than increasing (FALSE).

logical vector of length 1 specifying if NA should be considered a level.

logical vector of length 1 specifying whether to check the structure of the input
arguments. For example, check whether d is a data.frame. This argument is
available to allow flexibility in whether the user values informative error mes-
sages (TRUE) vs. computational efficiency (FALSE).

d2d internally uses the fct2v and v2fct functions. See them or more details about how column

conversions work.

Value

data.frame with the same dim and dimnames as d, but with potentially altered columns which were
factors, character vectors, and/or integer vectors.

Examples

dat <- data.frame
"1gl_1" = c(TRUE,
"1gl_2" = c(FALSE
"int_1" = c(1L, N

(
FALSE, NA),

, TRUE, NA),
A, 2L),

"int_2" = c(2L, NA, 1L),

"dbl_1" = c(1.1,
"dbl_2" = c(2.2,
"chr_1" = c(NA, "
"chr_2" = c(NA, "
"fct_1" = factor(
"fct_2" = factor(
)

str(dat)

X <- d2d(dat); st
x <- d2d(dat, fct
X <- d2d(dat, fct

NA, 2.2),
NA, 1.1),
all,”bll)’
b”!"a“)!
c(NA, "one","two")),
c(NA, "two","one"))

r(x) # default
= "fct", chr = "fct", 1gl = "fct"); str(x) # all to factors

- n

= "int", chr = "int"); str(x) # all to integers

d2id

25

d21d

Data-Frame to List of Data-Frames

Description

d21d converts a data.frame to a list of data.frames. This is a simple call to split.data.frame
splitting the data.frame up by groups.

Usage
d21d(
d,
by,

keep.by = TRUE,

drop = FALSE,

n o n

sep = ".",

lex.order = FALSE,

check = TRUE

Arguments
d
by

keep.by

drop

sep

lex.order

check

Value

list of data.frames

data.frame.

character vector of colnames specifying the groups to split the data.frame up by.
Can be multiple colnames, which implicitly calls interaction.

logical vector of length 1 specifying whether the by columns should be kept in
the list of data.frames (TRUE) or removed (FALSE).

logical vector of length 1 specifying whether unused groups from the by columns
should be dropped (TRUE) or kept (FALSE). This only applies when there are
multiple by columns. drop = FALSE can then result in some data.frames with
nrow = (. See interaction for details.

character vector of length 1 specifying the string used to separate the group
names. Only applicable with multiple by columns. See interaction for details.

logical vector of length 1 specifying the order of the data.frames in the list based
on the groups in the by columns. This only applies when there are multiple by
columns. See interaction for details.

logical vector of length 1 specifying whether to check the structure of the input
arguments. For example, check whether d is a data.frame and by are colnames
of d. This argument is available to allow flexibility in whether the user values
informative error messages (TRUE) vs. computational efficiency (FALSE).

split by the groups specified in the by columns. The list names are the group

names (with sep if there are multiple by columns).

26 d2lv

Examples

one grouping variable
d21d(d = mtcars, by = "vs")
d21d(d = mtcars, by = "gear")

two grouping variables
d21d(d = mtcars, by = c("vs","gear"))
d21d(d = mtcars, by = c("vs","gear"”), lex.order = TRUE)

keep.by argument
d21d(d = mtcars, by = "vs"”, keep.by = FALSE)
d21d(d = mtcars, by = "gear", keep.by = FALSE)

d21d(d = mtcars, by = c("vs","gear"), keep.by = FALSE)
d21lv Data-Frame to List of (Atomic) Vectors
Description

d21v converts a data.frame to a list of (atomic) vectors. This function is really only worthwhile
when along = 1 since when along = 2, the function is essentially as.list.data.frame(d).

Usage

d2lv(d, along, check = TRUE)

Arguments
d data.frame.
along numeric vector of length 1 specifying which dimension to slice the data.frame
along. If 1, then the data.frame is sliced by rows. If 2, then the data.frame is
sliced by columns.
check logical vector of length 1 specifying whether to check the structure of the input
arguments. For example, check whether d is a data.frame. This argument is
available to allow flexibility in whether the user values informative error mes-
sages (TRUE) vs. computational efficiency (FALSE).
Value

list of (atomic) vectors. If along = 1, then the names are the rownames of d and the vectors are
rows from d. If along = 2, then the names are the colnames of d and the vector are columns from
d. Note, the vectors always have the same length as nrow(d).

d2m 27

Examples

d2lv(mtcars, along = 1)
d2lv(mtcars, along = 2)
d21v(C02, along = 1) # all vectors converted to typeof character

d21v(C02, along = 2) # each column stays its own typeof (or class for factors)
check = FALSE

try_expr(d2lv(mtcars, along = 3, check
try_expr(d2lv(mtcars, along = 3, check

FALSE)) # less informative error message
TRUE)) # more informative error message

d2m Data-Frame to Matrix

Description

d2m converts a data.frame to a matrix. The user can specify how to convert factors, character
vectors, and integer vectors in the data.frame through the internal use of the d2d function. After
the call to d2d, d2m simply calls as.matrix.data.frame(rownames.force = TRUE), which will
return a matrix of the most complex typeof of any column in the data.frame (most complex to least
complex: character, double, integer, logical). Therefore, if any factors or character vectors are left
in the data.frame, it will return a character matrix. On the other side of things, if all columns in
the data.frame are logical, then it will return a logical matrix. However, if every column in the
data.frame is logical except for one factor or character vector, then it will return a character matrix.
(If you have a data.frame where 2 columns are the matrix dimnames and one column is the matrix
elements, then use d2a()).

Usage
d2m(
d’
fct = "chr”,
chr = "chr",
lgl = "int",
order.1lvl = "alphanum”,

decreasing = FALSE,
na.lvl = FALSE,

check = TRUE
)
Arguments
d data.frame.
fct character vector of length 1 specifying what factors should be converted to.

There are three options: 1) "chr" for converting to character vectors (i.e., factor
labels), 2) "int" for converting to integer vectors (i.e., factor codes), or 3) "fct"
for keeping the factor as is without any changes.

28

chr

1gl

order.1lvl

decreasing

na.lvl

check

Value

d2v

character vector of length 1 specifying what character vectors should be con-
verted to. There are three options: 1) "fct" for converting to factors (i.e., ele-
ments will be factor labels), 2) "int" for converting to integer vectors (i.e., factor
codes after first converting to a factor), or 3) "chr" for keeping the character
vectors as is without any changes.

character vector of length 1 specifying what logical vectors should be converted
to. There are four options: 1) "fct" for converting to factors (i.e., "TRUE" and
"FALSE" will be factor labels), 2) "chr" for converting to character vectors (i.e.,
elements will be "TRUE" and "FALSE"), 3) "int" for converting to integer vec-
tors (i.e., TRUE = 1; FALSE = 0), and 4) "Igl" for keeping the logical vectors as
is without any changes.

character vector of length 1 specifying how you want to order the levels of the
factor. The options are "alphanum", which sorts the levels alphanumerically
(with NA last); "position", which sorts the levels by the position the level first
appears; "frequency", which sorts the levels by their frequency. If any frequen-
cies are tied, then the ties are sorted alphanumerically (with NA last).

logical vector of length 1 specifying whether the ordering of the levels should
be decreasing (TRUE) rather than increasing (FALSE).

logical vector of length 1 specifying if NA should be considered a level.

logical vector of length 1 specifying whether to check the structure of the input
arguments. For example, check whether d is a data.frame. This argument is
available to allow flexibility in whether the user values informative error mes-
sages (TRUE) vs. computational efficiency (FALSE).

matrix with the same dim and dimnames as d. After applying the factor, character vector, and/or
integer vector conversions through d2d, the matrix will have typeof = most complex typeof of any
column in the modified data.frame.

Examples

x <- d2m(mtcars); str(x)

dat <- as.data.frame(C02)

x <- d2m(dat); str(x)

x <- d2m(dat, fct = "int"); str(x)

d2v

Data-Frame to (Atomic) Vector

Description

d2v converts a data.frame to a matrix. The user can specify how to convert factors, character vectors,
and integer vectors in the data.frame through the internal use of the d2d function. After the call to
d2d, the data.frame is simplied to an atomic vector, which will return a vector of the most complex
typeof of any column in the data.frame (most complex to least complex: character, double, integer,

d2v

29

logical). Therefore, if any factors or character vectors are left in the data.frame, it will return a
character vector. On the other side of things, if all columns in the data.frame are logical, then it will
return a logical vector. However, if every column in the data.frame is logical except for one factor
or character vector, then it will return a character vector.

Usage

d2v(
d)
along = 2,
use.dimnames = TRUE,
sep = "_",
fct = "chr"”,
chr = "chr”,
lgl = "int",
order.1lvl = "alphanum”,

decreasing = FALSE,
na.lvl = FALSE,

check = TRUE

Arguments

d
along

use.dimnames

sep

fct

chr

1gl

data.frame.

numeric vector of length one that is equal to either 1 or 2. 1 means that d is split
along rows (i.e., dimension 1) and then concatenated. 2 means that d is split
along columns (i.e., dimension 2) and then concatenated.

logical vector of length 1 that specifies whether the dimnames of d should be
used to create the names for the returned vector. If FALSE, the returned vector
will have NULL names. If TRUE, see details of m2v.

character vector of length 1 specifying the string that will separate the rownames
and colnames in the naming scheme of the returned vector. Note, sep is not used
if use.dimnames = FALSE.

character vector of length 1 specifying what factors should be converted to.
There are three options: 1) "chr" for converting to character vectors (i.e., factor
labels), 2) "int" for converting to integer vectors (i.e., factor codes), or 3) "fct"
for keeping the factor as is without any changes.

character vector of length 1 specifying what character vectors should be con-
verted to. There are three options: 1) "fct" for converting to factors (i.e., ele-
ments will be factor labels), 2) "int" for converting to integer vectors (i.e., factor
codes after first converting to a factor), or 3) "chr" for keeping the character
vectors as is without any changes.

character vector of length 1 specifying what logical vectors should be converted
to. There are four options: 1) "fct" for converting to factors (i.e., "TRUE" and
"FALSE" will be factor labels), 2) "chr" for converting to character vectors (i.e.,
elements will be "TRUE" and "FALSE"), 3) "int" for converting to integer vec-
tors (i.e., TRUE = 1; FALSE = 0), and 4) "Igl" for keeping the logical vectors as
is without any changes.

30

order.1lvl

decreasing

na.lvl

check

Value

dimlabels

character vector of length 1 specifying how you want to order the levels of the
factor. The options are "alphanum", which sorts the levels alphanumerically
(with NA last); "position", which sorts the levels by the position the level first
appears; "frequency", which sorts the levels by their frequency. If any frequen-
cies are tied, then the ties are sorted alphanumerically (with NA last).

logical vector of length 1 specifying whether the ordering of the levels should
be decreasing (TRUE) rather than increasing (FALSE).

logical vector of length 1 specifying if NA should be considered a level.

logical vector of length 1 specifying whether to check the structure of the input
arguments. For example, check whether d is a data.frame. This argument is
available to allow flexibility in whether the user values informative error mes-
sages (TRUE) vs. computational efficiency (FALSE).

(atomic) vector with elements from d. If d had one row, then the names of the return object are
names(d). If d has one column, then the names of the return object are row.names(d).

Examples

general data.frame

d2v(mtcars) # default

d2v(d = mtcars, along = 1) # concatenate along rows

d2v(d = mtcars, sep = ".") # change the sep of the rownames(d) and colnames(d)
d2v(d = mtcars, use.dimnames = FALSE) # return object has no names

one row/column data.frame

one_row <- mtcars[1,, drop = FALSE]

d2v(one_row)

one_col <- mtcars[, 1, drop = FALSE]

d2v(one_col)

one_all <- mtcars[1,1, drop

d2v(one_all)

FALSE]

d2v(one_all, use.dimnames = FALSE)

dimlabels

Dimension labels (i.e., names of dimnames)

Description

dimlabels returns the the dimension labels (i.e., names of dimnames) of an object. This is most
useful for arrays, which can have anywhere from 1 to 1000+ dimensions.

Usage
dimlabels(x)

Arguments

X

object that has dimensions (e.g., array).

dimlabels<- 31

Details

dimlabels is a very simple function that is simply names(dimnames(x)).

Value

character vector of length = ndim(x) specifying the dimension labels (i.e., names of dimnames) of
x. If x does not have any dimensions, or has dimensions but no dimension labels, then NULL is
returned.

Examples

dimlabels(state.region)
dimlabels(attitude)
dimlabels(HairEyeColor)

dimlabels<- Add Elements to Vectors

Description

‘dimlabels<-" adds elements to vectors as a side effect. The purpose of the function is to replace
names (dimnames(x)) with a single function call.

Usage

dimlabels(x) <- value

Arguments
X array or any object with dimnames. The object may or may not already have
dimlabels.
value character vector of dimlabels to be added to x. If *dimlabels<-" is used on its
own, then the length of value must be the same as ndim. If *dimlabels<-*
is used in confunction with the subsetting function *[[<-* or ‘[<-", then the
length of values should be equal to the length of dimlabels after from the sub-
setting. This is the same way *names<-* works.
Value

Like other similar functions (e.g., *names<-"* and *[<-"), it does not appear to have a return object.
However, it technically does as a side effect. The argument x will have been changed such that
value has been added as dimlabels. If a traditional return object is desired, and no side effects, then
it can be called like a traditional function: obj2 <- ‘dimlabels<-‘(x = obj, value = dimlab).

32 e2l

Examples

a <- array(c(letters, NA), dim = c(3,3,3),

dimnames = replicate(3, expr = 1:3, simplify = FALSE))
dimlabels(a) <- c("first”,"second”,”third")
dimlabels(a)[[2]1] <- c("2nd")
dimlabels(a)[c(1,3)] <- c("1st","3rd")
print(a)

e2l Environment to List

Description

e2l converts an environment to a list. The function assumes you don’t want *all* objects in an
environment and uses pick to determine which objects you want included. If you want all objects
in an environment, then use grab(x = objects(envir, all.names = TRUE), envir).

Usage
e2l(
e = sys.frame(),
val,
pat = FALSE,
not = FALSE,
fixed = FALSE,
sorted = FALSE,
check = TRUE
)
Arguments
e environment to pull the objects from. Default is the global environment.
val character vector specifying which objects from e will be extracted. If pat =
FALSE (default), then val can have length > 1, and exact matching will be
done via is.element (essentially match). If pat = TRUE, then val has to be
a character vector of length 1 and partial matching will be done via grepl with
the option of regular expressions if fixed = FALSE (default).
pat logical vector of length 1 specifying whether val should refer to exact match-
ing (FALSE) via is.element (essentially match) or partial matching (TRUE)
and/or use of regular expressions via grepl. See details for a brief description
of some common symbols and help(regex) for more.
not logical vector of length 1 specifying whether val indicates values that should be
retained (FALSE) or removed (TRUE).
fixed logical vector of length 1 specifying whether val refers to values as is (TRUE)

or a regular expression (FALSE). Only used if pat = TRUE.

fet2v

sorted

check

Value

33

logical vector of length 1 specifying whether the objects should be sorted al-
phanumerically. If FALSE, the objects are usually in the order they were initially
created, but not always (see help(objects)).

logical vector of length 1 specifying whether to check the structure of the input
arguments. For example, check whether e is an environment. This argument is
available to allow flexibility in whether the user values informative error mes-
sages (TRUE) vs. computational efficiency (FALSE).

list with object contents from environment e with names as the object names.

Examples

model_1 <- 1Im(v2frm(names(attitude)), data = attitude)
model_2 <- Im(v2frm(names(mtcars)), data = mtcars)
model_3 <- Im(v2frm(names(airquality)), data = airquality)
e2l(val = "model_", pat = TRUE)

fct2v

Factor to (Atomic) Vector

Description

fct2v converts a factor to an (atomic) vector. It allows the user to specify whether they want the
factor to always return a character vector (simplify = TRUE), simplified if possible (simplify =
FALSE), or just return the integer codes (codes = TRUE).

Usage

fct2v(fct, simplify = TRUE, codes = FALSE, check = TRUE)

Arguments

fct
simplify

codes

check

factor.

logical vector of length 1 specifying whether R should attempt to simplify fct
to typeof simplier than character (e.g., logical, integer, double). If FALSE, a
character vector is always returned.

logical vector of length 1 specifying whether the integer codes of fct should be
returned. If codes = TRUE, then simplify is ignored.

logical vector of length 1 specifying whether to check the structure of the input
arguments. For example, check whether fct is a factor. This argument is avail-
able to allow flexibility in whether the user values informative error messages
(TRUE) vs. computational efficiency (FALSE).

34 grab

Details

When simplify = TRUE, fct2v uses type.convert to try to simplify the factor. Note, missing
values are assumed to be "NA" and decimals are assumed to be "."; however, "L" after a number is
not interpreted as an integer specifier.

Value

(atomic) vector of the same length as fct. If codes = TRUE, then the returned vector is typeof
integer containing the underlying factor codes. If codes = FALSE and simplify = FALSE, then the
returned vector is typeof character containing the factor levels. If codes = FALSE, and simplify
= TRUE, then the returned vector is the simpliest typeof possible without having to coerce any
elements to NA. For example, if fct contains all integer numerals (e.g., "1", "2", "3", etc), then it
will be converted to an integer vector. See examples.

Examples

fct2v(state.region)
fct2v(fct = factor(c("7.00001","8.54321","9.99999"))) # double
fct2v(fct = factor(c("7","8","9")), simplify = FALSE) # character
fct2v(fct = factor(c("7","8","9")), simplify = TRUE) # integer
fct2v(fct = factor(c("7","8","9")), codes = TRUE) # integer codes
fct2v(fct = factor(c("7L","8L","9L")),

simplify = TRUE) # does not understand "L" for integers

grab grab extracts the contents of objects in an environment based on their
object names as a character vector. The object contents are stored to
a list where the names are the object names.

Description

grab extracts the contents of objects in an environment based on their object names as a character
vector. The object contents are stored to a list where the names are the object names.

Usage

grab(x, envir = sys.frame())

Arguments
X character vector providing the exact names of objects in the environment envir.
envir environment to pull the objects from. Default is the global environment.

Value

list of objects with names x.

inbtw 35

Examples

non

grab(x = c("attitude”,"mtcars”,"airquality"))

grab(x = c("mean.default”, "mean.Date"”,"mean.difftime"))

inbtw Elements Inbetween Values Within a (Atomic) Vector

Description

inbtw extracts all elements inbetween (by position) two specific elements of a (atomic) vector. This
can be useful when working with rownames and colnames since seq does not work with names.
Primary for character vectors but can be used with other typeof.

Usage

inbtw(x, from, to, left = TRUE, right = TRUE)

Arguments
X atomic vector.
from vector of length 1 specifying the element to start with on the left.
to vector of length 1 specifying the element to end with on the right.
left logical vector of length 1 specifying whether the leftmost element, from, should
be included in the return object.
right logical vector of length 1 specifying whether the rightmost element, to, should
be included in the return object.
Details

An error is returned if either from or to don’t appear in x or appear more than once in x.

Value
vector of the same type as x that only includes elements in x inbetween (by position) from and to,

which may or may not include from and to themselves, depending on lef't and right, respectively.

Examples

character vector

row_names <- inbtw(x = row.names(LifeCycleSavings), from = "China"”, to = "Peru")
LifeCycleSavings[row_names,] # default use
row_names <- inbtw(x = row.names(LifeCycleSavings), from = "China”, to = "Peru”,

right = FALSE, left = FALSE)
LifeCycleSavings[row_names,] # use with right and left arguments FALSE
try_expr(inbtw(x = row.names(LifeCycleSavings), from = "china”,

to = "peru”)) error due to ‘from* and ‘to‘ not appearing in ‘x*
try_expr(inbtw(x = rep.int(x = row.names(LifeCycleSavings), times = 2), from = "China"”,

n +# 1

36 is.avector

[NRPRN

to = "Peru”)) # error due to ‘from‘ and ‘to‘ appearing more than once in

numeric vector

vec <- sample(x = 150:199, size = 50)

inbtw(x = vec, from = 150, to = 199)

list vector (error)

1st <- list(FALSE, 3L, 9.87, "abc", factor(”1lvl"))

try_expr(inbtw(x = 1st, from = 3L, to = "abc")) # error because ‘lst‘ is a
list vector and not an atomic vector

X

is.avector Test for an Atomic Vector

Description
is.avector returns whether an object is an atomic vector with typeof character, logical, integer, or
double.

Usage

is.avector(x, attr.ok = TRUE, fct.ok = TRUE)

Arguments
X object whose structure is desired to be tested.
attr.ok logical vector with length 1 specifying whether non-core attributes are allowed
in x. Core attributes are 1) "names", 2) "dim", 3) "dimnames", 4) "levels", and
5) "class". Therefore, attr. ok refers to attributes *other* than these 5.
fct.ok logical vector with length 1 specifying whether factors are allowed.
Details

is.avector is simply a logical "and" of is.atomic and is.vector.

Value

logical vector with length 1 specifying whether x is an atomic vector. If attr.ok is TRUE then
non-core attributes are allowed (e.g., "value.labels"). If fct. ok is TRUE then factors are allowed.

Examples

normal use

is.avector(x = c(1,2,3))

is.avector(x = c("one"” =1, "two" = 2, "three” = 3)) # names are always okay
is.avector(x = array(c(1,2,3))) # returns false for arrays

is.avector(x = list(1,2,3)) # returns false for lists

non-core attributes

is.cnumeric 37

X <- structure(.Data = c(1,2,3), "names” = c("one”,"two","three"),
"value.labels” = c("woman”,"man","non-binary"))
attributes(x)

is.avector(x)
is.avector(x, attr.ok = FALSE)

factors

x <- factor(c(1,2,3), labels = c("one","two","three"))
is.avector(x)

is.avector(x, fct.ok = FALSE)

is.cnumeric Test for Character Numbers

Description

is.cnumeric returns whether an object is a character vector with all number strings.

Usage

is.cnumeric(x, warn = FALSE)

Arguments
X object whose structure is desired to be tested.
warn logical vector with length 1 specifying whether warnings should be printed due
to coercing a character vector that is not all number strings (i.e., one reason the
return object could be ‘FALSE®).
Details

is.cnumeric is useful for ensuring that converting a character vector to a numeric vector is safe
(i.e., won’t introduce NAs).

Value

logical vector with length 1 specifying whether ‘x‘ is a character vector with all number strings.

Examples

is.cnumeric(x = c("1","2","3")) # returns TRUE

is.cnumeric(x = c("1","number”,"”3")) # returns FALSE

is.cnumeric(x = c("1","number”,"”3"), warn = TRUE) # includes the warning
is.cnumeric(x = c(1,2,3)) # returns false because not a character vector

38 is.Date

is.colnames Test for ‘colnames*

Description

is.colnames returns whether elements of a character vector are colnames of an object.

Usage

is.colnames(nm, x)

Arguments

nm character vector.

X object whose colnames are desired to be tested.
Details

If the object does not have any colnames, then the function will return ‘FALSE*® for each element
of the character vector.

Value
TRUE for every element of ‘nm‘ that is a colname of x and FALSE otherwise. The structure is a
logical vector with length = length(‘nm*) and names = ‘nm‘. See details for special cases.

Examples

data("mtcars")
is.colnames(x = as.matrix(mtcars), nm = c("MPG", "mpg"))

is.Date Test for a Date object

Description

is.Date returns whether an object is a Date object (aka has class = "Date").

Usage

is.Date(x)

Arguments

X an object.

is.dummy 39

Value

TRUE is x has class "Date" and FALSE if x does not have class "Date".

Examples

date <- as.Date("2021-05-24", format = "%Y-%m-%d") # as.Date.character
is.Date(date)

class(date) <- append(class(date), "extra_class")

is.Date(date) # classes other than Date are allowed
is.Date(list(date)) # returns FALSE

is.dummy Test for a Dummy Variable

Description

is.dummy returns whether a numeric vector is a dummy variable, meaning all elements one of two
observed values (or missing values). Depending on the argument any.values, the two observed
values are required to be 0 and 1 or any values.

Usage

is.dummy(x, any.values = FALSE)

Arguments
X atomic vector.
any.values logical vector of length 1 specifying whether the two observed values need to be
0 or 1 (FALSE) or can be any values (TRUE).
Value

TRUE if ‘x‘ is a dummy variable; FALSE otherwise.

Examples

any.values = FALSE (default)

is.dummy(mtcars$”am”) # TRUE

is.dummy(c(mtcars$”am”, NA, NaN)) # works with missing values
is.dummy(c(as.integer(mtcars$”am”), NA, NaN)) # works with typeof integer
x <- ifelse(mtcars$”"am” == 1, yes = 2, no = 1)

is.dummy(x) # FALSE

any.values = TRUE

is.dummy(x, any.values = TRUE) # TRUE

is.dummy(c(x, NA), any.values = TRUE) # work with missing values
is.dummy(c(as.character(x), NA), any.values = TRUE) # work with typeof character
is.dummy(mtcars$”gear”) # FALSE for nominal variables with more than 2 levels

40 is.names

is.empty Test for Empty Characters

Description

is.empty returns whether elements of a character vector are empty (i.e., "").

Usage

is.empty(x, trim = FALSE)

Arguments
X character vector.
trim logical vector with a single element specifying whether white spaces should be
trimmed from the character vector. See trimws.
Value

TRUE for every element of ‘x‘ that is empty (i.e., "") and FALSE otherwise. The structure is a
logical vector with length = length(‘x‘) and names = names(‘x°).

Examples

vo<m c(r1n, oy
is.empty(v)

is.names Test for ‘names

Description

is.names returns whether elements of a character vector are names of an object.

Usage

is.names(nm, x)

Arguments

nm character vector.

X object whose names are desired to be tested.
Details

If the object does not have any names, then the function will return ‘FALSE" for each element ‘nm*.

1is.POSIXct 41

Value

TRUE for every element of ‘nm* that is a name of ‘x‘ and FALSE otherwise. The structure is a
logical vector with length = length(‘nm*) and names = ‘nm‘. See details for special cases.

Examples

v <- setNames(object = letters, nm = LETTERS)
is.names(x = v, nm = c("A","a"))
data("mtcars")

is.names(x = mtcars, nm = c("MPG","mpg"))

is.POSIXct Test for a POSIXct object

Description

is.POSIXct returns whether an object is a POSIXct object (aka has class = "POSIXct").

Usage

is.POSIXct(x)

Arguments

X an object.

Value

TRUE is x has class "POSIXct" and FALSE if x does not have class "POSIXct".

Examples

tmp <- as.POSIX1t("2021-05-24 21:49:11", tz = "America/New_York",
format = "%Y-%m-%d %H:%M:%0S") # as.POSIX1lt.character

time <- as.POSIXct(tmp) # as.POSIXct.POSIX1t

is.POSIXct(time)

class(time) <- append(class(time), "extra_class")

is.POSIXct(time) # classes other than POSIXct are allowed

is.POSIXct(list(time)) # returns FALSE

42 is.row.names

is.POSIX1t Test for a POSIXIt object

Description

is.POSIX1t returns whether an object is a POSIXIt object (aka has class = "POSIXIt").

Usage
is.POSIX1t(x)

Arguments

X an object.

Value

TRUE is x has class "POSIXIt" and FALSE if x does not have class "POSIXIt".

Examples

time <- as.POSIX1t("2021-05-24 21:49:11", tz = "America/New_York",
format = "%Y-%m-%d %H:%M:%0S") # as.POSIX1t.character

is.POSIX1t(time)

class(time) <- append(class(time), "extra_class")

is.POSIX1t(time) # classes other than POSIX1t are allowed

is.POSIX1t(list(time)) # returns FALSE

is.row.names Test for ‘row.names*

Description

is.row.names returns whether elements of a character vector are row.names of an object.

Usage

is.row.names(nm, x)

Arguments

nm character vector.

X object whose row.names are desired to be tested.

is.rownames 43

Details

If the object does not have any row.names, then the function will return ‘FALSE* for each element of
the character vector. As a reminder, row.names does not respond to a manually added "row.names"
attribute (e.g., to a vector). If this is tried, then is. row.names will return ‘FALSE‘ for each element

3 3

nm .

Value

TRUE for every element of ‘nm° that is a row.name of x and FALSE otherwise. The structure is a
logical vector with length = length(‘nm*) and names = ‘nm‘. See details for special cases.

Examples

data("mtcars")
is.row.names(x = mtcars, nm = c("Mazda RX4","mazda RX4"))

is.rownames Test for ‘rownames

Description

is.rownames returns whether elements of a character vector are rownames of an object.

Usage

is.rownames(nm, x)

Arguments

nm character vector.

X object whose rownames are desired to be tested.
Details

If the object does not have any rownames, then the function will return ‘FALSE‘ for each element
of the character vector.

Value
TRUE for every element of ‘nm‘ that is a rowname of x and FALSE otherwise. The structure is a
logical vector with length = length(‘nm*) and names = ‘nm‘. See details for special cases.

Examples

data("mtcars")
is.rownames(x = as.matrix(mtcars), nm = c(”"Mazda RX4","mazda RX4"))

44 Join

is.whole Test for Whole Numbers

Description

is.whole returns whether elements of a numeric vector are whole numbers.

Usage

is.whole(x, tol = .Machine[["double.eps”"]1)

Arguments
X numeric vector.
tol tolerance allowed for double floating point numbers. This is always a positive
number. The default is based on the numerical characteristics of the machine
that R is running on. See .Machine.
Value

TRUE for every element of ‘x‘ that is a whole number and FALSE otherwise. The structure is a
logical vector with length = length(‘x‘) and names = names(‘x°).

Examples

v <- c(1.0, 1L, 1.1)
is.whole(v)

Join Join (or Merge) a List of Data-frames

Description

Join merges a list of data.frames into a single data.frame. It is a looped version of plyr::join
that allows you to merge more than 2 data.frames in the same function call. It is different from
plyr::join_all because it allows you to join by the row.names.

Usage

Join(
data.list,
by,
type = "full”,
match = "all",
rownamesAsColumn = FALSE,
rtn.rownames.nm = "row_names”

Join 45

Arguments

data.list list of data.frames of data.

by character vector specifying what colnames to merge data.list by. It can in-
clude "0" which specifies the rownames of data.list. If you are merging by
rownames, then you can only merge by rownames and not other columns as
well. This is because rownames, by definition, have all unique values. Note,
it is assumed that no data.frame in data.list has a colname of "0", otherwise
unexpected results are possible. If by is NULL, then all common columns will
be used for merging. This is not recommended as it can result in Join merging
different data.frames in data.list by different columns.

type character vector of length 1 specifying the type of merge. Options are the fol-
lowing: 1. "full" = all rows from any of the data.frames in data.list, 2. "left"
= only rows from the first data.frame in data.list: data.list[[1L]]), 3.
"right" = only rows from the last data.frame in data.list: data.list[[length(data.list)1],
4. "inner" = only rows present in each and every of the data.frames in data.list.
See join.

match character vector of length 1 specifying whether merged elements should be re-
peated in each row of the return object when duplicate values exist on the by
columns. If "all", the merged elements will only appear in every row of the re-
turn object with repeated values. If "first", only the merged elements will only
appear in the first row of the return object with subsequent rows containing NAs.
See join.

rownamesAsColumn
logical vector of length 1 specifying whether the original rownames in data.list
should be a column in the return object. If TRUE, the rownames are a column
and the returned data.frame has default row.names 1:nrow. If FALSE, the re-
turned data.frame has rownames from the merging.

rtn.rownames.nm
character vector of length 1 specifying what the names of the rownames column
should be in the return object. The rtn.rownames.nm argument is only used if
rownamesAsColumn = TRUE.

Details
Join is a polished rendition of Reduce(f = plyr::join, x =data.list). A future version of the
function might allow for the init and right arguments from Reduce.

Value

data.frame of all uniquely colnamed columns from data.list with the rows included specified by
type and rownames specified by rownamesAsColumn. Similar to plyr::join, Join returns the
rows in the same order as they appeared in data.list.

See Also

join_all join merge

46 Join

Examples

by column

mtcars1 <- mtcars

mtcars1$”id” <- row.names(mtcars)

mtcars2 <- data.frame("id" = mtcars1$"id”, "forward” = 1:32)

mtcars3 <- data.frame(”id” = mtcars1$”id”, "backward” = 32:1)

mtcars_list <- list(mtcarsl, mtcars2, mtcars3)

by_column <- Join(data.list = mtcars_list, by = "id")

by_column2 <- Join(data.list = mtcars_list, by = "id"”, rownamesAsColumn = TRUE)
by_column3 <- Join(data.list = mtcars_list, by = NULL)

by rownames
mtcars1 <- mtcars

mtcars2 <- data.frame("forward” = 1:32, row.names = row.names(mtcars))
mtcars3 <- data.frame("backward” = 32:1, row.names = row.names(mtcars))
by_rownm <- Join(data.list = list(mtcarsl, mtcars2, mtcars3), by = "0")

by_rownm2 <- Join(data.list = list(mtcarsl, mtcars2, mtcars3), by = "0",
rownamesAsColumn = TRUE)

identical(x = by_column[names(by_column) != "id"],
y = by_rownm) # same as converting rownames to a column in the data
identical(x = by_column2[names(by_column2) != "id"],

y = by_rownm2) # same as converting rownames to a column in the data

inserted NAs (by columns)
mtcars1 <- mtcars[1:4]
mtcars2 <- setNames(obj = as.data.frame(scale(x = mtcars1[-1],
center = TRUE, scale = FALSE)), nm = paste@(names(mtcarsi[-1]1), "_c"))
mtcars3 <- setNames(obj = as.data.frame(scale(x = mtcars1[-1],
center = FALSE, scale = TRUE)), nm = paste@(names(mtcarsi[-1]), "_s"))
tmp <- lapply(X = list(mtcars1, mtcars2, mtcars3), FUN = function(dat)
dat[sample(x = row.names(dat), size = 10), 1)
mtcars_list <- lapply(X = tmp, FUN = reshape: :namerows)
by_column_NA <- Join(data.list = mtcars_list, by = "id") # join by row.names
by_column_NA2 <- Join(data.list = mtcars_list, by = "id"”, rownamesAsColumn = TRUE)
identical(x = row.names(by_column_NA), # rownames from any data.frame are retained
y = Reduce(f = union, x = lapply(X = mtcars_list, FUN = row.names)))

inserted NAs (by rownames)
mtcarsl <- mtcars[1:4]
mtcars2 <- setNames(obj = as.data.frame(scale(x = mtcarsl1, center = TRUE, scale = FALSE)),

nm = paste@(names(mtcars1), "_c"))
mtcars3 <- setNames(obj = as.data.frame(scale(x = mtcarsl, center = FALSE, scale = TRUE)),
nm = paste@(names(mtcars1), "_s"))

mtcars_list <- lapply(X = list(mtcarsl, mtcars2, mtcars3), FUN = function(dat)
dat[sample(x = row.names(dat), size = 10), 1)

by_rownm_NA <- Join(data.list = mtcars_list, by = "0") # join by row.names

by_rownm_NA2 <- Join(data.list = mtcars_list, by = "0", rownamesAsColumn = TRUE)

identical(x = row.names(by_rownm_NA), # rownames from any data.frame are retained
y = Reduce(f = union, x = lapply(X = mtcars_list, FUN = row.names)))

types of joins

la2a 47

Join(data.list = mtcars_list, by = "0", type = "left"”) # only rows included in mtcars1
Join(data.list = mtcars_list, by = "0", type = "right") # only rows included in mtcars3
Join(data.list = mtcars_list, by = "0", type = "inner") # only rows included in

all 3 data.frames (might be empty due to random chance from sample() call)

errors returned
tmp <- str2str::try_expr(
Join(data.list = list(mtcars, as.matrix(mtcars), as.matrix(mtcars)))
)
print(tmp[["error”]]) # "The elements with the following positions in
‘data.list‘ are not data.frames: 2 , 3"
tmp <- str2str::try_expr(
Join(data.list = replicate(n = 3, mtcars, simplify = FALSE), by
)
print(tmp[["error”]]) # "Assertion on 'by' failed: Must be of type
'character' (or 'NULL'), not 'double'.”
tmp <- str2str::try_expr(
Join(data.list = replicate(n = 3, mtcars, simplify = FALSE), by = c("0","mpg"))
)
print(tmp[["error”]]) # "If '@' is a value in ‘by‘, then it must be the
only value and ‘by‘ must be length 1."
tmp <- str2str::try_expr(
Join(data.list = list(attitude, attitude, mtcars), by = "mpg")
)
print(tmp[["error”]]) # "The data.frames associated with the following positions in
‘data.list‘ do not contain the ‘by‘ columns: 1 , 2"

0)

la2a List of (3D+) Arrays to (3D+) Array

Description

la2a converts a list of (3D+) arrays to a one dimension larger (3D+) array where the list di-
mension becomes the additional dimension of the array. la2a is a simple wrapper function for
abind: :abind. If you have a list of matrices, then use 1m2a.

Usage
la2a(la, dim.order = 1:(ndim(1al[1]]1) + 1L), dimlab.list = NULL, check = TRUE)

Arguments
la list of 3D+ arrays which each have the same dimensions.
dim.order integer vector of length = ndim(1al[1]]) + 1L specifying the order of dimen-

sions for the returned array. The default is 1:(ndim(1al[1]]) +1L) which
means the arrays within 1a maintain their dimensions and the list dimension is
appended as the last dimension.

dimlab.list character vector of length 1 specifying the dimlabel for the list dimension.

48 laynames

check logical vector of length 1 specifying whether to check the structure of the input
arguments. For example, check whether la is a list of 3D+ arrays. This argu-
ment is available to allow flexibility in whether the user values informative error
messages (TRUE) vs. computational efficiency (FALSE).

Value

3D+ array where the list elements of 1a is now a dimension. The order of the dimensions is de-
termined by the argument dim.order. The dimnames of the returned array is determined by the
dimnames in 1a[[1]] and names(1la).

Examples

la <- list("one"” = HairEyeColor, "two" = HairEyeColor*2, "three” = HairEyeColorx3)
la2a(la) # default

la2a(la, dimlab.list = "Multiple”)

la2a(la, dim.order = c(4,3,1,2))

la2a(la, dim.order = c(4,3,1,2), dimlab.list = "Multiple”)

laynames Names of the Layers (the Third Dimension)

Description

laynames returns the names of the layers - the third dimension - of an array. If the object does not
have a third dimension (e.g., matrix), then the function will return NULL. If the object does not
have any dimensions (e.g., atomic vector), then the function will also return NULL.

Usage

laynames(x)

Arguments

X array.

Details

R does not have standard terminology for the third dimension. There are several common terms
people use including "height" and "page". I personally prefer "layer" as it makes sense whether the
user visualizes the third dimension as going into/ontop a desk or into/ontop a wall.

Value

Names of the layers (the third dimension) of x. The structure is a character vector with length =
nlay(x). See details for special cases.

Id2a 49

Examples

laynames(HairEyeColor)

a <- array(data = NA, dim = ¢(6,7,8,9))
laynames(a)

laynames(c(1,2,3))

1d2a List of Data-Frames to a 3D Array

Description

1d2a converts a list of data.frames to a 3D array. The data.frames must have the same dimensions.

Usage

1d2a(
1d,
dim.order = c(1, 2, 3),
dimlab.list = NULL,

fct = "chr”,
chr = "chr”,
lgl = "int",
order.1lvl = "alphanum”,

decreasing = FALSE,
na.lvl = FALSE,

check = TRUE
)
Arguments

1d list of data.frames that all have the same dimensions.

dim.order integer vector of length 3 specifying the order of dimensions for the returned
array. The defaultis c(1, 2, 3) which means the rows of the data.frames in 1d is
the first dimension (i.e., rows), the columns of the data.frames in 1d is the second
dimension (i.e., columns), and the list elements of 1d is the third dimension (i.e.,
layers).

dimlab.list character vector of length 1 specifying the dimlabel for the list dimension.

fct character vector of length 1 specifying what factors should be converted to.
There are three options: 1) "chr" for converting to character vectors (i.e., factor
labels), 2) "int" for converting to integer vectors (i.e., factor codes), or 3) "fct"
for keeping the factor as is without any changes.

chr character vector of length 1 specifying what character vectors should be con-

verted to. There are three options: 1) "fct" for converting to factors (i.e., ele-
ments will be factor labels), 2) "int" for converting to integer vectors (i.e., factor
codes after first converting to a factor), or 3) "chr" for keeping the character
vectors as is without any changes.

50 Id2d
1gl character vector of length 1 specifying what logical vectors should be converted
to. There are four options: 1) "fct" for converting to factors (i.e., "TRUE" and
"FALSE" will be factor labels), 2) "chr" for converting to character vectors (i.e.,
elements will be "TRUE" and "FALSE"), 3) "int" for converting to integer vec-
tors (i.e., TRUE = 1; FALSE = 0), and 4) "Igl" for keeping the logical vectors as
is without any changes.
order.1lvl character vector of length 1 specifying how you want to order the levels of the
factor. The options are "alphanum", which sorts the levels alphanumerically
(with NA last); "position", which sorts the levels by the position the level first
appears; "frequency", which sorts the levels by their frequency. If any frequen-
cies are tied, then the ties are sorted alphanumerically (with NA last).
decreasing logical vector of length 1 specifying whether the ordering of the levels should
be decreasing (TRUE) rather than increasing (FALSE).
na.lvl logical vector of length 1 specifying if NA should be considered a level.
check logical vector of length 1 specifying whether to check the structure of the input
arguments. For example, check whether 1d is a list of data.frames. This argu-
ment is available to allow flexibility in whether the user values informative error
messages (TRUE) vs. computational efficiency (FALSE).
Details
If the columns of the data.frames in 1d are not all the same typeof, then the return object is coerced
to the most complex type of any data.frame column (e.g., character > double > integer > logical).
See unlist for details about the hierarchy of object types.
Value
3D array with all the elements from 1d organized into dimensions specified by dim.order.
Examples
1d <- list("first” = BOD, "second” = BOD*2, "third"” = BOD=*3)
1d2a(ld)
1d <- list("cars"” = cars, "mtcars” = mtcars)
try_expr(ld2a(ld)) # error
1d2d List of Data-Frames to Data-Frame
Description

1d2d converts a list of data.frames to a data.frame. The function is primarily for rbinding a list
of data.frames (along = 1). An option to cbind the list of data.frames is included (along = 2),
but is just a call to data.frame(ld, stringsAsFactors = stringsAsFactors, check.names =

check.names).

1d2d 51

Usage
ld2d(
1d,
along = 1,
fill = FALSE,
rtn.listnames.nm = "list_names”,
rtn.rownames.nm = "row_names",

stringsAsFactors = FALSE,
check.names = FALSE,

check = TRUE
)
Arguments
1d list of data.frames.
along integer vector of length 1 specifying which dimension the data.frames from 1d
should be binded along: 1 is for rows and 2 is for columns.
fill logical vector of length 1 specifying whether to fill in missing values for any

data.frames from 1d that do not have all the columns. At this time, fill is only
available for rbinding and only used if along = 1.
rtn.listnames.nm
character of length 1 specifying what the name of the column containing the
names/positions of 1d should be in the returned data.frame. If NULL, then no
column is created for the names/positions of 1d in the returned data.frame.
rtn.rownames.nm
character of length 1 specifying what the name of the column containing the
rownames of 1d’s data.frames should be in the returned data.frame. If NULL,
then no column is created for the rownames of 1d’s data.frames in the returned
data.frame.
stringsAsFactors
logical vector of length 1 specifying whether character columns from 1d should
be converted to factors. Only available and used if fill = FALSE.

check.names logical vector of length 1 specifying whether the colnames of the returned data.frame
should be checked for duplicates and made unique. Only used if for cbinding
with along = 2.

check logical vector of length 1 specifying whether to check the structure of the input
arguments. For example, check whether 1d is a list of data.frames. This argu-
ment is available to allow flexibility in whether the user values informative error
messages (TRUE) vs. computational efficiency (FALSE).

Value

data.frame with the rows (if along = 1) or columns (if along = 2) of 1d binded together.

Examples

without listnames and default rownames

52

1d2v

1d <- 1list(BOD*1, BOD*2, BOD*3)

1d2d(1d)

with listnames and default rownames

names(1d) <- LETTERS[1:3]

1d2d(1d)

without listnames and custom rownames

1d <- lapply(unname(ld), FUN = ‘row.names<-‘, letters[1:6])

1d2d(1d)

with listnames and custom rownames

1d <- setNames(1ld, LETTERS[1:3])

1d2d(1d)

can handle same named columns in different positions

1d <- 1list(BOD*1, rev(BODx2), rev(BOD*3))

1d2d(1d)

can handle some columns being absent with fill = TRUE

1d[[2]1$"demand” <- NULL

try_expr(1ld2d(1ld, fill = FALSE)) # error

1d2d(1d, fill = TRUE) # NAs added

along = 2 for cbinding

1d2d(1d, along = 2) # does not check/rename for double colnames

1d2d(1d, along = 2, check.names = TRUE) # makes unique colnames

ld2d(setNames(1ld, nm = c("One"”,"Two","Three")), along = 2,
check.names = TRUE) # does not add prefixes from list names

1ld2v List of Data-Frames to (Atomic) Vector

Description

1d2v converts a list of data.frames to a (atomic) vector. This function is a combination of d2v and
1v2v. This function can be useful in conjunction with the boot: :boot function when wanting to
generate a statistic function that returns an atomic vector.

Usage

1d2v(
1d,
along = 2,
use.listnames = TRUE,
use.dimnames = TRUE,

n on

sep = _,

fct = "chr”,

chr = "chr",

lgl = "int",

order.1lvl = "alphanum”,

decreasing = FALSE,
na.lvl = FALSE,
check = TRUE

Id2v

Arguments

1d

along

use.listnames

use.dimnames

sep

fct

chr

1gl

order.1lvl

decreasing

na.lvl

check

53

list of data.frames. They do NOT have to have the same dimensions.

numeric vector of length one that is equal to either 1 or 2. 1 means that each
data.frame in 1d is split along rows (i.e., dimension 1) and then concatenated. 2
means that each data.frame in 1d is split along columns (i.e., dimension 2) and
then concatenated.

logical vector of length 1 specifying whether the returned vector should have
names based on the list the element came from. If 1d does not have names,
use.listnames = TRUE will have the list positions serve as the list names
(e.g.,"1","2", "3", etc.)

logical vector of length 1 specifying whether the returned vector should have
names based on the dimnames of the data.frame the element came from. If
a data.frame within 1d does not have dimnames, use.dimnames = TRUE will
have the dimension positions serve as the dimnames (e.g., "1", "2", "3", etc.)

character vector of length 1 specifying the string used to separate the listnames
and dimnames from each other when creating the names of the returned vector.

character vector of length 1 specifying what factors should be converted to.
There are three options: 1) "chr" for converting to character vectors (i.e., factor
labels), 2) "int" for converting to integer vectors (i.e., factor codes), or 3) "fct"
for keeping the factor as is without any changes.

character vector of length 1 specifying what character vectors should be con-
verted to. There are three options: 1) "fct" for converting to factors (i.e., ele-
ments will be factor labels), 2) "int" for converting to integer vectors (i.e., factor
codes after first converting to a factor), or 3) "chr" for keeping the character
vectors as is without any changes.

character vector of length 1 specifying what logical vectors should be converted
to. There are four options: 1) "fct" for converting to factors (i.e., "TRUE" and
"FALSE" will be factor labels), 2) "chr" for converting to character vectors (i.e.,
elements will be "TRUE" and "FALSE"), 3) "int" for converting to integer vec-
tors (i.e., TRUE = 1; FALSE = 0), and 4) "Igl" for keeping the logical vectors as
is without any changes.

character vector of length 1 specifying how you want to order the levels of the
factor. The options are "alphanum", which sorts the levels alphanumerically
(with NA last); "position", which sorts the levels by the position the level first
appears; "frequency", which sorts the levels by their frequency. If any frequen-
cies are tied, then the ties are sorted alphanumerically (with NA last).

logical vector of length 1 specifying whether the ordering of the levels should
be decreasing (TRUE) rather than increasing (FALSE).

logical vector of length 1 specifying if NA should be considered a level.

logical vector of length 1 specifying whether to check the structure of the input
arguments. For example, check whether 1d is a list of data.frames. This argu-
ment is available to allow flexibility in whether the user values informative error
messages (TRUE) vs. computational efficiency (FALSE).

54 Im2a

Details

When use.listnames and use.dimnames are both TRUE (default), the returned vector elements
the following naming scheme: "[listname][sep][rowname][sep][colname]".

If the columns of the data.frames in 1d are not all the same typeof, then the return object is coerced
to the most complex type of any data.frame column (e.g., character > double > integer > logical).
See unlist for details about the hierarchy of object types.

Value

(atomic) vector with an element for each element from 1d.

Examples

1d <- list("cars” = cars, "mtcars” = mtcars)
use.listnames = TRUE & use.dimnames = TRUE
1d2v(1d) # the first part of the name is the list names followed by the dimnames
use.listnames = FALSE & use.dimnames = TRUE
1d2v(1ld, use.listnames = FALSE) # only dimnames used,
which can result in repeat names
use.listnames = TRUE & use.dimnames = FALSE
1d2v(1ld, use.dimnames = FALSE) # listnames and vector position without any
reference to matrix dimensions
use.listnames = FALSE & use.dimnames = FALSE
1d2v(1ld, use.listnames = FALSE, use.dimnames = FALSE) # no names at all
when list does not have names
1d <- replicate(n = 3, expr = attitude, simplify = FALSE)
1d2v(1ld) # the first digit of the names is the list position and
the subsequent digits are the matrix dimnames
1d2v(1ld, use.listnames = FALSE) # only dimnames used,
which can result in repeat names

1m2a List of Matrices to 3D Array

Description

1m2a converts a list of matrices to a 3D array where the list dimension becomes the third dimension
of the array (layers). 1m2a is a simple wrapper function for abind: : abind.

Usage

Im2a(lm, dim.order = c(1, 2, 3), dimlab.list = NULL, check = TRUE)

Im2d 55

Arguments
1m list of matrices which each have the same dimensions.
dim.order integer vector of length 3 specifying the order of dimensions for the returned
array. The default is c(1,2,3) which means the rows of the matrices in 1m is
the first dimension (i.e., rows), the columns of the matrices in 1m is the second
dimension (i.e., columns), and the list elements of 1m is the third dimension (i.e.,
layers).
dimlab.list character vector of length 1 specifying the dimlabel for the list dimension.
check logical vector of length 1 specifying whether to check the structure of the input
arguments. For example, check whether 1m is a list of matrices. This argu-
ment is available to allow flexibility in whether the user values informative error
messages (TRUE) vs. computational efficiency (FALSE).
Value

3D array where the list elements of 1m is now a dimension. The order of the dimensions is deter-
mined by the argument dim. order with dimnames specified by names(1m). The dimnames of the
returned array is determined by the dimnames in Im[[1]] and names(1m).

Examples

Im <- asplit(HairEyeColor, MARGIN = 3L)

Im2a(1m) # default

Im2a(1m, dimlab.list = "Sex")

Im2a(1m, dim.order = c(3,1,2))

Im2a(1m, dim.order = c(3,1,2), dimlab.list = "Sex")

1m2d List of Matrices to Data-Frame

Description

1m2d converts a list of matrices to a data.frame. The function is primarily for rbinding a list of
matrices (along = 1). An option to cbind the list of matrices is included (along = 2), but is just a
call to data.frame(lapply(1m, m2d), stringsAsFactors = stringsAsFactors, check.names
= check.names).

Usage
1m2d(
Im,
along = 1,
fill = FALSE,
rtn.listnames.nm = "list_names”,
rtn.rownames.nm = "row_names",

stringsAsFactors = FALSE,

56 Im2d

check.names = FALSE,

check = TRUE
)
Arguments
1m list of matrices.
along numeric vector of length 1 specifying which dimension the matrices from 1m
should be binded along: 1 is for rows and 2 is for columns.
fill logical vector of length 1 specifying whether to fill in missing values for any

matrices from 1m that do not have all the columns. At this time, fill is only
available for rbinding and only used if along = 1.

rtn.listnames.nm
character of length 1 specifying what the name of the column containing the
names/positions of 1m should be in the returned data.frame. If NULL, then no
column is created for the names/positions of 1m in the returned data.frame.

rtn.rownames.nm
character of length 1 specifying what the name of the column containing the
names/positions of the rows within 1m’s matrices should be in the returned
data.frame. If NULL, then no column is created for the rownames of 1m’s ma-
trices in the returned data.frame.

stringsAsFactors
logical vector of length 1 specifying whether character columns from 1m should
be converted to factors. Note, that is a matrix is character, then stringsAsFactors
would apply to all columns.

check.names logical vector of length 1 specifying whether the colnames of the returned data.frame
should be checked for duplicates and made unique. Only used if for cbinding
with along = 2.

check logical vector of length 1 specifying whether to check the structure of the input
arguments. For example, check whether 1m is a list of matrices. This argu-
ment is available to allow flexibility in whether the user values informative error
messages (TRUE) vs. computational efficiency (FALSE).

Details

Another way to convert a list of matrices to a data.frame is to convert the list dimension, row
dimension, and column dimension in the list of matrices all to variable dimensions in the data.frame.
If this is desired, call a2d(1m2a(1m)) instead of 1m2d.

Value

data.frame with the rows (if along = 1) or columns (if along = 2) of 1m binded together.

Examples

list names and rownames
Im <- asplit(HairEyeColor, MARGIN = 3L)
Im2d(1m) # default

Im2v

Im2d(1m, rtn.listnames.nm = "Sex", rtn.rownames.nm = "Hair")

no list names

Im2 <- ‘“names<-‘(1m, value = NULL)

1m2d(1m2)

Im2d(1m2, rtn.listnames.nm = NULL)
no rownames too
1Im3 <- lapply(1m2, ‘rownames<-‘, value = NULL)

Im2d(1m3)

Im2d(1m3, rtn.rownames.nm = NULL)

Im2d(1m3, rtn.listnames.nm = NULL, rtn.rownames.nm = NULL)
cbinding as columns

Im2d(1m3, along = 2)

1m2d(1m3, along = 2, check.names = TRUE)

57

Im2v

List of Matrices to (Atomic) Vector

Description

1Im2v converts a list of matrices to a (atomic) vector. This function is a combination of m2v and
1v2v. This function can be useful in conjunction with the boot: :boot function when wanting to
generate a statistic function that returns an atomic vector.

Usage

Im2v(
1m,
along = 2,
use.listnames
use.dimnames
sep = "_",
check = TRUE

Arguments

Im

along

use.listnames

= TRUE,
= TRUE,

list of matrices. They do NOT have to be the same typeof or have the same

dimensions.

numeric vector of length one that is equal to either 1 or 2. 1 means that each
matrix in 1m is split along rows (i.e., dimension 1) and then concatenated. 2
means that each matrix in 1m is split along columns (i.e., dimension 2) and then

concatenated.

logical vector of length 1 specifying whether the returned vector should have
names based on the list the element came from. If 1m does not have names,
use.listnames = TRUE will have the list positions serve as the list names

(e'g., ”l", nzu’ n3n’ etC.)

58 Im2v

use.dimnames logical vector of length 1 specifying whether the returned vector should have
named based on the dimnames of the matrix the element came from. If a ma-
trix within 1m does not have dimnames, use.dimnames = TRUE will have the
dimension positions serve as the dimnames (e.g., "1", "2", "3", etc.)

sep character vector of length 1 specifying the string used to separate the listnames
and dimnames from each other when creating the names of the returned vector.

check logical vector of length 1 specifying whether to check the structure of the input
arguments. For example, check whether 1m is a list of matrices. This argu-
ment is available to allow flexibility in whether the user values informative error
messages (TRUE) vs. computational efficiency (FALSE).

Details

When list.names and use.dimnames are both TRUE (default), the returned vector elements the
following naming scheme: "[listname][sep][rowname][sep][colname]".

If the matrices in 1m are not all the same typeof, then the return object is coerced to the most complex
type of any matrix (e.g., character > double > integer > logical). See unlist for details about the
hierarchy of object types.

Value

(atomic) vector with an element for each element from ‘Im°*.

Examples

Im <- list("numeric” = data.matrix(npk), "character” = as.matrix(npk))
use.listnames = TRUE & use.dimnames = TRUE
Im2v(1m) # the first part of the name is the list names followed by the dimnames
use.listnames = FALSE & use.dimnames = TRUE
Im2v(1m, use.listnames = FALSE) # only dimnames used,
which can result in repeat names
use.listnames = TRUE & use.dimnames = FALSE
Im2v(1m, use.dimnames = FALSE) # listnames and vector position without any
reference to matrix dimensions
use.listnames = FALSE & use.dimnames = FALSE
Im2v(1m, use.listnames = FALSE, use.dimnames = FALSE) # no names at all
when list does not have names
Im <- replicate(n = 3, expr = as.matrix(attitude, rownames.force = TRUE), simplify = FALSE)
Im2v(1m) # the first digit of the names is the list position and
the subsequent digits are the matrix dimnames
Im2v(1m, use.listnames = FALSE) # no listnames; only dimnames used,
which can result in repeat names

Iv2d 59

lvad List of (atomic) vectors to Data-Frame

Description

1v2d converts a list of (atomic) vectors to a data.frame. This function is similar to as.data.frame.list,
but allows for more flexibility in how the data.frame will be structured (e.g., rowwise), while sim-
plifying the dimension naming process.

Usage

lv2d(
lv,
along,
fill = FALSE,
risky = FALSE,
stringsAsFactors = FALSE,

check = TRUE
)
Arguments

1lv list of (atomic) vectors.

along numeric vector of length 1 specifying either 1 for binding along rows (i.e., each
list element is a row) or 2 for binding along columns (i.e., each list element in a
column).

fill logical vector of length 1 specifying whether 1) to allow the vectors in 1v to
have different lengths, names, or both, 2) to bind by the names of the vectors
within 1v rather than by their positions (unless no names are present in which
case positions are used), and 3) fill in any missing values in the return object
with NA.

risky logical vector of length 1 specifying whether to use 1ist2DF rather than data. frame
when along = 2 and fill = TRUE. If either along = 1 or fill = FALSE, this
argument is not used.

stringsAsFactors
logical vector of length 1 specifying whether character vectors should be coerced
to factors. See default.stringsAsFactors.

check logical vector of length 1 specifying whether to check the structure of the input

arguments. For example, check whether 1v is a list of atomic vectors. This
argument is available to allow flexibility in whether the user values informative
error messages (TRUE) vs. computational efficiency (FALSE).

60 Iv2d

Details

If fill = FALSE, 1v2d uses a combination of do.call and rbindif along =1 ordo.call and cbind
if along = 2. rownames and colnames of the returned data.frame are determined by the names of
1v and the names of the first vector within 1v. If either are NULL, then the positions are used as the
dimension names. If fill = FALSE, then an error is returned ff the vectors in 1v do not all have the
same length. If fill = FALSE, there is no check to ensure the elements within each 1v vector have
the same names in the same order. The names are taken from the first vector in 1v, and it is assumed
those names and their order apply to each vector in lv. Essentially, if fill = FALSE, 1v binds the
vectors by positions and not names.

If fill = TRUE, 1v2d uses plyr: :rbind.fill ifalong =1 or plyr: : join_all by the vector names
if along = 2. If fill = TRUE, 1v2d binds the vectors by by names (and by positions if no names
are present). Depending on what the user wants, fill = FALSE or TRUE could be safer. If the user
wants an error returned when any vectors within 1v have different lengths, then fill = FALSE should
be used. If the user wants to bind by names rather than position, then fill = TRUE should be used.

Value

data.frame with the elements of ‘Iv* either as rows or columns and dimnames determined along the
names of ‘Iv‘ and ‘Iv‘[[1]].

Examples

1) “1lv' has names; vectors have names

lv <- setNames(object = lapply(X = letters, FUN = setNames, nm = "alphabet”), nm = LETTERS)
lv2d(lv, along = 1)

lv2d(lv, along = 2)

lv2d(lv, along = 2, stringsAsFactors = TRUE)

2) ‘lv' has names; no vector names

lv <- setNames(object = as.list(letters), nm = LETTERS)
lv2d(lv, along = 1)

lv2d(lv, along = 2)

3) no ‘1lv' names; vector have names

lv <- lapply(X = letters, FUN = setNames, nm = "alphabet")
lv2d(lv, along = 1)

lv2d(lv, along = 2)

4) no ‘lv' names; no vector names
lv <- as.list.default(letters)
lv2d(lv, along = 1)

lv2d(1lv, along = 2)

we want vectors combined along rows

lv <- lapply(X = unclass(mtcars), FUN = ‘names<-‘, value = row.names(mtcars))
rbind(lv) # not what we want (array list)

rbind.data.frame(lv) # also not what we want (combined along cols)
do.call(what = rbind.data.frame, args = 1lv) # doesn't have useful dimnames
lv2d(lv, along = 1) # finally what we want

Iv2m 61

fill = TRUE

tmp <- lapply(X = unclass(mtcars), FUN = “names<-‘, value = row.names(mtcars))

lv <~ lapply(X = tmp, FUN = function(v) v[-(sample(x = seq_along(v), size = 9))1)
lv2d(lv, along = 1L, fill = TRUE) # NA for missing values in any given row

tmp <- lapply(X = unclass(as.data.frame(t(mtcars))), FUN = *names<-*, value = names(mtcars))
lv <~ lapply(X = tmp, FUN = function(v) v[-(sample(x = seq_along(v), size = 3))1)
lv2d(lv, along = 2L, fill = TRUE) # NA for missing values in any given column

actual use case

1v <- lapply(X = sn(1:30), FUN = function(i)
coef(Im(v2frm(names(attitude)), data = attitude[-i, 1)))

1v2d(1lv, along = 2) # coefs in a data.frame

when vectors have named elements in different positions use fill = TRUE

lv <= list("row_1" = c("col_A" = "col_A1", "col_B" = "col_B1", "col_C" = "col_C1"),
"row_2" = c("col_B" = "col_B2", "col_C" = "col_C2", "col_A" = "col_A2"),
"row_3" = c("col_C" = "col_C3", "col_A" = "col_A3", "col_B" = "col_B3"))

lv2d(1lv, along
lv2d(lv, along

1, fill = FALSE) # probably not what you want (See details)
1, fill = TRUE) # what we want

when you have a list with only one vector

lv <- list("A" = c("one" =1, "two" = 2, "three" = 3))
x <- lv2m(lv, along = 1, fill = FALSE)

y <= 1lv2m(lv, along = 1, fill = TRUE)

identical(x, y)

lv2m List of (atomic) Vectors to Matrix

Description

1v2m converts a list of (atomic) vectors to a matrix. This function is similar to a hypothetical
as.matrix.list method if it existed. Note, if the vectors are not all the same typeof, then the
matrix will have the most complex typeof any vector in 1v.

Usage

lv2m(lv, along, fill = FALSE, check = TRUE)

Arguments
1lv list of (atomic) vectors.
along numeric vector of length 1 specifying either 1 for binding along rows (i.e., each

list element is a row) and 2 for binding along columns (i.e., each list element in
a column).

62 Iv2m

fill logical vector of length 1 specifying whether 1) to allow the vectors in 1v to
have different lengths, names, or both, 2) to bind by the names of the vectors
within 1v rather than by their positions (unless no names are present in which
case positions are used), and 3) fill in any missing values in the return object
with NA.

check logical vector of length 1 specifying whether to check the structure of the input
arguments. For example, check whether 1v is a list of atomic vectors. This
argument is available to allow flexibility in whether the user values informative
error messages (TRUE) vs. computational efficiency (FALSE).

Details

If fill = FALSE, 1v2muses a combination of do.call and rbindif along =1 ordo.call and cbind
if along = 2. rownames and colnames of the returned data.frame are determined by the names of
1v and the names of the first vector within 1v. If either are NULL, then the positions are used as the
dimension names. If fill = FALSE, then an error is returned ff the vectors in 1v do not all have the
same length. If fill = FALSE, there is no check to ensure the elements within each 1v vector have
the same names in the same order. The names are taken from the first vector in 1v, and it is assumed
those names and their order apply to each vector in 1v. Essentially, if fill = FALSE, 1v binds the
vectors by positions and not names.

If fill = TRUE, 1v2muses plyr::rbind.fill.matrix ifalong=1orplyr::rbind.fill.matrix
and t.default if along = 2. If fill = TRUE, 1v2d binds the vectors by by names (and by positions
if no names are present). Depending on what the user wants, fill = FALSE or TRUE could be safer.
If the user wants an error returned when any vectors within 1v have different lengths, then fill =
FALSE should be used. If the user wants to bind by names rather than position, then fill = TRUE
should be used.

Value

matrix with the elements of 1v either as rows or columns and dimnames determined by the names of
lv and 1v[[1]1]. The typeof is determined by the highest typeof in the elements of 1v (i.e., highest
to lowest: character > double > integer > logical).

Examples

1) “1v® has names; vectors have names

lv <- setNames(object = lapply(X = letters, FUN = setNames, nm = "alphabet”), nm = LETTERS)
lv2m(lv, along = 1)

lv2m(lv, along = 2)

2) “1lv® has names; no vector names

lv <- setNames(object = as.list(letters), nm = LETTERS)
lv2m(lv, along = 1)

lv2m(lv, along = 2)

3) no ‘1lv' names; vector have names

lv <- lapply(X = letters, FUN = setNames, nm = "alphabet")
lv2m(lv, along = 1)

lv2m(lv, along = 2)

Iv2v 63

4) no ‘1v' names; no vector names
lv <- as.list.default(letters)
lv2m(lv, along = 1)

1lv2m(lv, along = 2)

actual use case (sort of)

lv <- lapply(X = asplit(x = as.matrix(attitude), MARGIN = 1),
FUN = undim) # need undim since asplit returns 1D arrays

cbind(lv) # not what we want

do.call(what = cbind, args = 1lv) # doesn't have useful dimnames

lv2m(lv, along = 2) # finally what we want

when vectors have named elements in different positions

lv <- list("row_1" = c("col_A" = "col_A1", "col_B" = "col_B1", "col_C" = "col_C1"),
"row_2" = c("col_B" = "col_B2", "col_C" = "col_C2", "col_A" = "col_A2"),
"row_3" = c("col_C" = "col_C3", "col_A" = "col_A3", "col_B" = "col_B3"))

lv2m(lv, along = 1, fill = FALSE) # probably not what you want
lv2m(lv, along = 1, fill = TRUE) # what you want (See details)

when you have a list with only one vector

lv <= list("A" = c("one” =1, "two" = 2, "three" = 3))
x <= 1lv2m(lv, along = 1, fill = FALSE)

y <= 1lv2m(lv, along = 1, fill = TRUE)

identical(x, y)

lv2v List of (atomic) Vectors to (atomic) Vector

Description

1v2v converts a list of (atomic) vectors to an (atomic) vector. 1v2v is simply a wrapper function for
unlist that allows for more control over the names of the returned (atomic) vector.

Usage

1v2v(lv, use.listnames = TRUE, use.vecnames = TRUE, sep = "_", check = TRUE)
Arguments

1lv list of (atomic) vectors.

use.listnames logical vector of length 1 specifying whether the names of 1v should be used
to construct names for the returned vector. If 1v does not have names and
use.listnames = TRUE, then the list positions will be used as names (i.e.,
"2t 3 etc.).

use.vecnames logical vector of length 1 specifying whether the names of each vector within 1v
should be used to construct names for the returned vector. If any vectors within
1v do not have names and use.vecnames = TRUE, then the vector positions
will be used as names (i.e., "1","2","3", etc.).

64

Iv2v

sep character vector of length 1 specifying what string to use to separate list names
from vector element names. Only used if use.listnames = TRUE.

check logical vector of length 1 specifying whether to check the structure of the input

arguments. For example, check whether 1v is a list of atomic vectors. This
argument is available to allow flexibility in whether the user values informative
error messages (TRUE) vs. computational efficiency (FALSE).

Details

There are four different scenarios. Each scenario is given as well as the structure of the returned
object when both use.listnames and use.vecnames are TRUE (default): 1) if both 1v and its
vectors have names, then the names of the return object will be a pasted combination of the 1v
element’s name and the vector element’s name separated by sep; 2) if only 1v has names and
its vectors do not, then the names of the returned vector will be a pasted combination of the 1v
element’s name and the vector element’s position separated by sep; 3) if the vectors have names
and 1lv does not, then the names of the returned vector will be a pasted combination of the 1v
positions and vector names separated by sep; 4) if both 1v and its vectors do not have names, then
the names of the returned vector will be the pasted combination of the 1v positions and vector
element’s positions separated by sep.

If you want to convert a list of vectors where each vector has length = 1 and the list has names,
then you probably want to specify use.vecnames = FALSE. This will replicate the functionality of
unlist(1lv). See the last example.

If you want have a list of vectors where each vector has length > 1 and you want to convert it to a list
vector (i.e., all vectors with length = 1), then you can combine 1v2v with v21v via v21v(1lv2v(v)).

Value

atomic vector with length = sum of the lengths of the atomic vectors in 1v and typeof = the highest
typeof present in the atomic vectors in 1v (i.e., from high to low: character > double > integer >
logical). See the argument use.listnames for how names are created.

Examples

1) both “1v' and its atomic vectors have names

lv <- setNames(object = Map(object = 1:26, nm = letters, f = setNames), nm = LETTERS)
lv2v(lv, use.listnames = TRUE, use.vecnames = TRUE)

lv2v(lv, use.listnames = FALSE, use.vecnames = TRUE)

1v2v(lv, use.listnames = TRUE, use.vecnames = FALSE)

lv2v(lv, use.listnames = FALSE, use.vecnames = FALSE)

2) only ‘1lv' has names

lv <- list("lower” = letters, "upper"” = LETTERS)

lv2v(lv, use.listnames = TRUE, use.vecnames = TRUE)

1v2v(lv, use.listnames = FALSE, use.vecnames = TRUE)

1v2v(lv, use.listnames = TRUE, use.vecnames = FALSE) # FYI - results in repeat names
lv2v(lv, use.listnames = FALSE, use.vecnames = FALSE)

3) only the atomic vectors have names

lv <- list(setNames(object = 1:26, nm = letters), setNames(object = 1:26, nm = LETTERS))
lv2v(lv, use.listnames = TRUE, use.vecnames = TRUE)

1v2v(lv, use.listnames = FALSE, use.vecnames = TRUE)

1v2v(lv, use.listnames = TRUE, use.vecnames = FALSE)

m2d 65

lv2v(lv, use.listnames = FALSE, use.vecnames = FALSE)

4) neither ‘1v® nor its atomic vectors have names

lv <- as.list(1:26)

lv2v(lv, use.listnames = TRUE, use.vecnames = TRUE)

1v2v(lv, use.listnames = FALSE, use.vecnames = TRUE) # FYI - results in repeat names
1v2v(lv, use.listnames = TRUE, use.vecnames = FALSE)

lv2v(lv, use.listnames = FALSE, use.vecnames = FALSE)

common use case for when vectors are all length 1 and list has names

lv <- setNames(as.list(letters), nm = LETTERS)

lv2v(lv, use.listnames = TRUE, use.vecnames = TRUE)

1v2v(lv, use.listnames = FALSE, use.vecnames = TRUE)

lv2v(lv, use.listnames = TRUE, use.vecnames = FALSE) # FYI - probably what you want
lv2v(lv, use.listnames = FALSE, use.vecnames = FALSE)

identical(unlist(lv), 1lv2v(lv, use.vecnames = FALSE)) # identical to unlist()

m2d Matrix to Data-Frame

Description

m2d converts a matrix to a data.frame. The benefit of m2d over as.data.frame.matrix is that it
provides the col argument, which allows the columns of the data.frame to be the columns of the
matrix (i.e., col = 2), the rows of the matrix (i.e., col = 1), or the expanded matrix (i.e., col =).

Usage

m2d(m, col = 2, stringsAsFactors = FALSE, check = TRUE)

Arguments

m matrix

col numeric vector of length 1 that is equal to either O, 1, or 2. col specifies what
dimension from m should be the columns of the returned data.frame. If col =
2, then the columns of m (i.e., dimension 2) are the columns of the returned
data.frame. If col = 1, then the rows of m (i.e., dimension 1) are the columns of
the returned data.frame. If col = @, neither of the m dimensions are the columns
and instead the matrix is expanded by reshape: :melt.array such that in the
returned data.frame the first column is rownames(m), the second column is
colnames(m, and the third column is the elements of m. If any dimnames(m)
are NULL, then they are replaced with the positions of the dimensions.

stringsAsFactors
logical vector of length 1 specifying whether any resulting character columns in
the return object should be factors. If mis a character matrix and stringsAsFactors
= TRUE, then all columns in the returned data.frame will be factors. If col =
0 and stringsAsFactors = TRUE, then the first two columns in the returned
data.frame specifying dimnames(m) will be factors.

66 m2lv

check logical vector of length 1 specifying whether to check the structure of the input
arguments. For example, check whether m is a matrix. This argument is avail-
able to allow flexibility in whether the user values informative error messages
(TRUE) vs. computational efficiency (FALSE).

Value

data.frame with rownames and colnames specified by dimnames(m) and col. If col = @, then the
rownames are default (i.e., "1","2","3", etc.) and the colnames are the following: the first two
columns are names(dimnames(m)) (if NULL they are "rownames" and "colnames", respectively)
and the third is "element".

Examples

mtcars2 <- as.matrix(mtcars, rownames.force = TRUE) # to make sure dimnames stay in the example
m2d(mtcars2) # default

m2d(m = mtcars2, col = 1) # data.frame columns are matrix rownames

m2d(m = mtcars2, col = @) # data.frame columns are the entire matrix

mat <- cbind(lower = letters, upper = LETTERS)

m2d(mat)

m2d(mat, stringsAsFactors = TRUE)

m2d(mat, col = @)

m2d(mat, col = @, stringsAsFactors = TRUE)

m21lv Matrix to List of (Atomic) Vectors

Description

m21v converts a matrix to a list of (atomic) vectors. This is useful since there is no as.list.matrix
method. When rownames and/or colnames are NULL, they are replaced by their position numerals
so that the dimension information is retained.

Usage
m2lv(m, along, check = TRUE)

Arguments
m matrix (i.e., array with 2 dimensions).
along numeric vector of length 1 specifying which dimension to slice the matrix along.
If 1, then the matrix is sliced by rows. If 2, then the matrix is sliced by columns.
check logical vector of length 1 specifying whether to check the structure of the input

arguments. For example, check whether m is a matrix. This argument is avail-
able to allow flexibility in whether the user values informative error messages
(TRUE) vs. computational efficiency (FALSE).

m2v 67

Value

list of (atomic) vectors. If along = 1, then the names are the rownames of m and the vectors are
rows from m. If along = 2, then the names are the colnames of m and the vector are columns from
m. Note, the vectors always have the same length as nrow(m).

Examples

m21lv(VADeaths, along = 1)

m2lv(VADeaths, along = 2)

m2lv(m = as.matrix(x = attitude, rownames.force = TRUE), along = 1)

m2lv(m = as.matrix(x = attitude, rownames.force = TRUE), along = 2)

m2lv(m = as.matrix(x = unname(attitude), rownames.force = FALSE),
along = 1) # dimnames created as position numerals

m2lv(m = as.matrix(x = unname(attitude), rownames.force = FALSE),
along = 2) # dimnames created as position numerals

check = FALSE

try_expr(m2lv(VADeaths, along = 3, check

try_expr(m2lv(VADeaths, along = 3, check

FALSE)) # less informative error message
TRUE)) # more informative error message

m2v Matrix to (Atomic) Vector

Description

m2v converts a matrix to a (atomic) vector. The benefit of m2v over as.vector or c is that 1) the
vector can be formed along rows as well as columns and 2) the dimnames from m can be used for
the names of the returned vector.

Usage
m2v(m, along = 2, use.dimnames = TRUE, sep = "_", check = TRUE)
Arguments
m matrix
along numeric vector of length one that is equal to either 1 or 2. 1 means that m is split

along rows (i.e., dimension 1) and then concatenated. 2 means that m is split
along columns (i.e., dimension 2) and then concatenated.

use.dimnames logical vector of length 1 that specifies whether the dimnames of m should be
used to create the names for the returned vector. If FALSE, the returned vector
will have NULL names. If TRUE, see details.

sep character vector of length 1 specifying the string that will separate the rownames
and colnames in the naming scheme of the return object. Note, sep is not used
if use.dimnames = FALSE.

check logical vector of length 1 specifying whether to check the structure of the input
arguments. For example, check whether m is a matrix. This argument is avail-
able to allow flexibility in whether the user values informative error messages
(TRUE) vs. computational efficiency (FALSE).

68 ndim

Details

If use.dimnames = TRUE, then each element’s name will be analogous to paste (rownames(m)[i],
colnames(m)[j], sep = sep). If m does not have rownames and/or colnames, then they will be re-
placed by dimension positions. This is also true when m has only one row *and* one column. The
exception is when m has either a single row *or* single column. In these cases, only the non-single
dimension’s names will be used. If m has one row, then the names of the returned vector will be
colnames(m). If m has one column, then the names of the returned vector will be rownames(m).
Again, if m does not have rownames and/or colnames, then they will be replaced by dimension
positions.

Value

(atomic) vector of length = length(m) where the order of elements from m has been determined
by along and the names determined by the use.dimnames, dimnames(m), and sep. See details for
when use.dimnames = TRUE.

Examples

general matrix

mtcars2 <- as.matrix(mtcars, rownames.force = TRUE) # to make sure dimnames stay in the example
m2v(mtcars2) # default

m2v(m = mtcars2, along = 1) # concatenate along rows

m2v(m = mtcars2, sep = ".") # change the sep of the rownames(m) and colnames(m)

m2v(m = ‘dimnames<-‘(mtcars2, list(NULL, NULL))) # use dimension positions as dimnames
m2v(m = mtcars2, use.dimnames = FALSE) # return object has no names

one row/column matrix

one_row <- mtcars2[1,, drop = FALSE]

m2v(one_row)

one_col <- mtcars2[, 1, drop = FALSE]

m2v(one_col)

one_all <- mtcars2[1,1, drop = FALSE]

m2v(one_all)

m2v(one_all, use.dimnames = FALSE)

ndim Number of Object Dimensions

Description
ndim returns the number of dimensions an object has. This is most useful for arrays, which can
have anywhere from 1 to 1000+ dimensions.

Usage
ndim(x)

Arguments

X object that has dimensions (e.g., array).

nlay 69

Details

ndimis a very simple function that is simply length(dim(x)).

Value

integer vector of length 1 specifying the number of dimensions in x. If x does not have any dimen-
sions, then O is returned.

Examples

ndim(state.region)
ndim(attitude)
ndim(HairEyeColor)

nlay Number of Layers (the Third Dimension)

Description

nlay returns the number of layers - the third dimension - of an array. If the object does not have a
third dimension (e.g., matrix), then the function will return NA with typeof = integer. If the object
does not have any dimensions (e.g., atomic vector), then the function will return NULL.

Usage

nlay(x)

Arguments

X array.

Details

R does not have standard terminology for the third dimension. There are several common terms
people use including "height" and "page". I personally prefer "layer" as it makes sense whether the
user visualizes the third dimension as going into/ontop a desk or into/ontop a wall.

Value

The number of layers (the third dimension) of x. The structure is an integer vector with length = 1.
See details for special cases.

Examples

nlay(HairEyeColor)
a <- array(data = NA, dim = ¢(6,7,8,9))
nlay(a)

70 not.names

not.colnames Identify Elements That are Not Colnames

Description
not.colnames identifies which elements from nm are not colnames of x. If all elements are col-
names, then a character vector of length 0 is returned.

Usage

not.colnames(x, nm)

Arguments

X object with a colnames attribute

nm character vector specifying the elements to test as colnames of x.
Value

character vector containing the elements of nm that are not colnames of x.

Examples

not.colnames(x = as.matrix(mtcars), nm = c("MPG","mpg"))

not.names Identify Elements That are Not Names

Description
not.names identifies which elements from nm are not names of x. If all elements are names, then a
character vector of length 0 is returned.

Usage

not.names(x, nm)

Arguments

X object with a names attribute

nm character vector specifying the elements to test as names of x.
Value

character vector containing the elements of nm that are not names of x.

not.row.names 71

Examples

v <- setNames(object = letters, nm = LETTERS)

not.names(x = v, nm = c("A","a"))

data("mtcars")

not.names(x = mtcars, nm = c("MPG","mpg"))

not.names(x = mtcars, names(mtcars)) # returns a character vector of length 0

not.row.names Identify Elements That are Not Row.names

Description
not.row.names identifies which elements from nm are not row.names of x. If all elements are
row.names, then a character vector of length 0 is returned.

Usage

not.row.names(x, nm)

Arguments

X object with a row.names attribute

nm character vector specifying the elements to test as row.names of x.
Value

character vector containing the elements of nm that are not row.names of x.

Examples

not.row.names(x = mtcars, nm = c("Mazda RX4","mazda RX4"))

not.rownames Identify Elements That are Not Rownames

Description
not.rownames identifies which elements from nm are not rownames of x. If all elements are row-
names, then a character vector of length 0 is returned.

Usage

not.rownames(x, nm)

72 order.custom

Arguments

X object with a rownames attribute

nm character vector specifying the elements to test as rownames of Xx.
Value

character vector containing the elements of nm that are not rownames of x.

Examples

not.rownames(x = as.matrix(mtcars), nm = c(”"Mazda RX4","mazda RX4"))

order.custom Custom Order Permutation

Description

order.custom creates the order of the positions in the atomic vectors from X that would cause the
atomic vectors from X to be sorted according to the atomic vectors from ORD. This is analogus to
the order function, but instead of doing default sorting (e.g., 1, 2, 3, etc. or "A", "B", "C", etc.),
the sorting is customized by ORD. order.custom does custom ordering by converting each atomic
vector from X to an ordered factor and then default sorting the ordered factors.

Usage

order.custom(X, ORD, na.last = FALSE, decreasing = FALSE)

Arguments

X list of atomic vectors parellel matched with the atomic vectors in X specifying the
elements to be ordered. Can also be a single atomic vector, which will internally
be converted to a list with one element.

ORD list of atomic vectors that do NOT have to be the same length specifying the
order of the unique values for sorting. Can also be a single atomic vector, which
will internally be converted to a list with one element.

na.last logical vector of length 1 specifying whether missing values should be put last
(TRUE), first (FALSE), or removed (NA).

decreasing logical vector of length 1 specifying whether the sorting should start with the
first element of the atomic vectors within ORD and proceed forward (FALSE)
or the last element of the atomic vectors within ORD and proceed backwards
(TRUE).

Details

Note, that the atomic vectors within X are always forward sequenced; if backward sequence is
desired, then the user should call rev on both the input to X and ORD. This is analogous to reversing
the order of the atomic vectors given to . .. within order.

pick 73

Value

integer vector of length = X[[1]] (after converting X to a list with one element is need be) providing
the revised order of the atomic vectors within X that sorts them according to ORD.

Examples

character vector

x <- esoph[["tobgp"]1]

order.custom(X = x, ORD = c("20-29","10-19","30+","0-9g/day"))

x[order.custom(X = x, ORD = c("20-29","10-19","30+","0-9g/day"))] # returns character

esoph[order.custom(X = x, ORD = c("20-29","10-19","30+","0-9g/day")), 1

order by position

sort(state.region)

x <- as.character(state.region)

order.custom(X = x, ORD = unique(x))

x[order.custom(X = x, ORD = unique(x))]

numeric vector

y <- esoph[["ncases"]]

order.custom(X =y, ORD = c(6,5,4,3,2,1,0,17,8,9))

y[order.custom(X =y, ORD = ¢(6,5,4,3,2,1,0,17,8,9))] # returns numeric

esoph[order.custom(X =y, ORD = c(6,5,4,3,2,1,0,17,8,9)), 1]
some unique values not provided in ‘ORD‘ (appended at the end and sorted by
where they appear in the dataset)

y <- esoph[["ncases"]]

order.custom(X =y, ORD = c¢(6,5,4,3,2,1,0))
y[order.custom(X =y, ORD = c¢(6,5,4,3,2,1,0))] # returns numeric
esoph[order.custom(X =y, ORD = c(6,5,4,3,2,1,0)), 1]

multiple vectors

z <- esoph[c("agegp"”, "alcgp”, "tobgp")]

ord <- order.custom(X = z, ORD = list(
"agegp” = c("45-54" "55-64" "35-44" "65-74" "25-34" "75+"),
"alcgp" = c("40-79","80-119","0-39g/day","120+"),
"tobgp"” = c("10-19","20-29","0-9g/day", "30+")))

esophlord, 1]

pick Extract Elements From a (Atomic) Vector

Description

pick extracts the elements from a (atomic) vector that meet certain criteria: 1) using exact values
or regular expressions (pat), 2) inclusion vs. exclusion of the value/expression (not), 3) based on
elements or names (nm). Primarily for character vectors, but can be used with other typeof.

Usage

pick(x, val, pat = FALSE, not = FALSE, nm = FALSE, fixed = FALSE)

74 pick

Arguments

X atomic vector or an object with names (e.g., data.frame) if nm = TRUE.

val atomic vector specifying which elements of x will be extracted. If pat = FALSE
(default), then val should be an atomic vector of the same typeof as x, can
have length > 1, and exact matching will be done via is.element (essentially
match). If pat = TRUE, then val has to be a character vector of length 1 and
partial matching will be done via grepl with the option of regular expressions if
fixed = FALSE (default). Note, if nm = TRUE, then val should refer to names
of x to determine which elements of x should be extracted.

pat logical vector of length 1 specifying whether val should refer to exact match-
ing (FALSE) via is.element (essentially match) or partial matching (TRUE)
and/or use of regular expressions via grepl. See details for a brief description
of some common symbols and help(regex) for more.

not logical vector of length 1 specifying whether val indicates values that should be
retained (FALSE) or removed (TRUE).

nm logical vector of length 1 specifying whether val refers to the names of x
(TRUE) rather than the elements of x themselves (FALSE).

fixed logical vector of length 1 specifying whether val refers to values as is (TRUE)
or a regular expression (FALSE). Only used if pat = TRUE.

Details

pick allows for 8 different ways to extract elements from a (atomic) vector created by the 2x2x2
combination of logical arguments pat, not, and nm. When pat = FALSE (default), pick uses
is.element (essentially match) and requires exact matching of val in x. When pat = TRUE, pick
uses grepl and allows for partial matching of val in x and/or regular expressions if fixed = FALSE
(default).

When dealing with regular expressions via pat = TRUE and fixed = FALSE, certain symbols
within val are not interpreted as literal characters and instead have special meanings. Some of the
most commonly used symbols are . = any character, " | " = logical or, "*" = starts with, "\n" = new
line, "\t" = tab.

Value

a subset of x that only includes the elements which meet the criteria specified by the function call.

Examples

pedagogical cases

chr <- setNames(object = c("one”,"two","three"”,"four","five"), nm = as.character(1:5))
1) pat = FALSE, not = FALSE, nm = FALSE

pick(x = chr, val = c("one"”,"five"), pat = FALSE, not = FALSE, nm
2) pat = FALSE, not = FALSE, nm = TRUE

pick(x = chr, val = c("1","5"), pat = FALSE, not = FALSE, nm = TRUE)

3) pat = FALSE, not = TRUE, nm = FALSE

pick(x = chr, val = c("two","three”,"four"), pat = FALSE, not = TRUE, nm = FALSE)
4) pat = FALSE, not = TRUE, nm = TRUE

pick(x = chr, val = c("2","3","4"), pat = FALSE, not = TRUE, nm = TRUE)

FALSE)

rbind<- 75

5) pat = TRUE, not = FALSE, nm = FALSE
pick(x = chr, val = "n|v", pat = TRUE, not = FALSE, nm = FALSE)
6) pat = TRUE, not = FALSE, nm = TRUE
pick(x = chr, val = "1|5", pat = TRUE, not = FALSE, nm = TRUE)
7) pat = TRUE, not = TRUE, nm = FALSE
pick(x = chr, val = "t|r", pat = TRUE, not
8) pat = TRUE, not = TRUE, nm = TRUE
pick(x = chr, val = c("2|3]|4"), pat = TRUE, not = TRUE, nm = TRUE)
datasets <- data()[["results”]1]1[, "Item"]
actual use cases
pick(x = datasets, val = c("attitude”,"mtcars”,"airquality”),
not = TRUE) # all but the three most common datasets used in ‘str2str‘ package examples
pick(x = datasets, val = "state"”, pat = TRUE) # only datasets that contain "state"
pick(x = datasets, val = "state.*state”, pat = TRUE) # only datasets that have
"state” twice in their name
pick(x = datasets, val = "US|UK", pat = TRUE) # only datasets that contain
"US" or "UK"
pick(x = datasets, val
"US" or "UK"
pick(x = datasets, val
"k" and "o"

TRUE, nm = FALSE)

"AUS|*UK", pat = TRUE) # only datasets that start with

"k.xo|o.xk", pat = TRUE) # only datasets containing both

rbind<- Add Rows to Data Objects

Description

‘rbind<-" adds rows to data objects as a side effect. The purpose of the function is to replace the
need to use dat2 <- rbind(datl1, add1); dat3 <- rbind(dat2, add2); dat4 <- rbind(dat3, add3), etc. For
data.frames, it functions similarly to *[<-.data.frame", but allows you to specify the location of
the rows similar to append (vs. c) and overwrite rows with the same rownames. For matrices, it
offers more novel functionality since *[<-.matrix" does not exist.

Usage

rbind(data, after = nrow(data), row.nm = NULL, overwrite = TRUE) <- value

Arguments
data data.frame or matrix of data.
after either an integer vector with length 1 or a character vector of length 1 specifying
where to add value. If an integer vector, it is the position of a row. If a character
vector it is the row with that name. Similar to append, use OL if you want the
added rows to be first.
row.nm character vector of length equal to NROW(value) that specifies the rownames of

value once added to data as columns. This is an optional argument that defaults
to NULL where the pre-existing rownames of value are used.

76 rbind<-

overwrite logical vector of length 1 specifying whether rows from value or row. nm should
overwrite rows in data with the same rownames. Note, if overwrite = FALSE,
R will prevent repeat rownames by adding "1" to the end of the repeat rownames
similar to rbind.

value data.frame, matrix, or atomic vector to be added as rows to data. If a data.frame
or matrix, it must have the same ncol as data. If an atomic vector, it must have
length equal to ncol of data.

Details

Some traditional R folks may find this function uncomfortable. R is famous for limiting side effects,
except for a few notable exceptions (e.g., *[<-" and ‘names<-"). Part of the reason is that side
effects can be computationally inefficient in R. The entire object often has to be re-constructed and
re-saved to memory. For example, a more computationally efficient alternative to rbind(dat) <-
addl; rbind(dat) <- add2; rbind(dat) <- add3 is datl <- do.call(what = rbind, args = list(dat, add1,
add2, add3)). However, ‘rbind<-* was not created for R programming use when computational
efficiency is valued; it is created for R interactive use when user convenience is valued.

Similar to ‘rbind", ‘rbind<-" works with both data.frames and matrices. This is because ‘rbind*
is a generic function with a default method that works with matrices and a data.frame method that
works with data.frames. Similar to *rbind*, if rownames of value are not given and row. nm is left
NULL, then the rownames of the return object are automatically created and can be dissatisfying.

Value

N

Like other similar functions (e.g., *names<-* and ‘[<-"), ‘rbind<-"* does not appear to have a
return object. However, it technically does as a side effect. The argument data will have been
changed such that value has been added as rows. If a traditional return object is desired, and no
side effects, then it can be called like a traditional function: dat2 <- ‘rbind<-‘(dat1, value = add1).

Examples

attitude2 <- attitude
rbind(attitude2) <- colMeans(attitude2) # defaults to rownames = as.character(nrow(‘data‘) + 1)
attitude2 <- attitude2[!(*%in%"(x = row.names(attitude2), table = "31")),] # logical subset
rbind(attitude2, row.nm = "mean”) <- colMeans(attitude2)
attitude2 <- attitude2[-1x(match(x = "mean”, table = row.names(attitude2))),] # position subset
rbind(attitude2, after = "10", row.nm = c("mean”,"sum")) <-
rbind(colMeans(attitude2), colSums(attitude2)) # ‘value‘ as a matrix
attitude2 <- attitude2[grep(pattern = "mean|sum”, x = row.names(attitude2),
invert = TRUE), 1 # rownames subset
attitude2 <- ‘rbind<-‘(data = attitude2, value = colMeans(attitude2)) # traditional call
attitude2 <- as.matrix(attitude, rownames.force = TRUE) # as.matrix.data.frame
rbind(attitude2, after = "10", row.nm = "mean”) <- colMeans(attitude2) # ‘data‘ as a matrix
using overwrite
mtcars2 <- mtcars
rownames(mtcars2)
add <- mtcars[c("Mazda RX4","Mazda RX4 Wag","Datsun 710"), 1*11
rbind(mtcars2, overwrite = TRUE) <- add
mtcars2 <- mtcars
rbind(mtcars2, overwrite = FALSE) <- add

sn 77

sn Set a Vector’s Names as its Elements

Description

sn sets a vector’s names as its elements. It is a simple utility function equal to setNames(x, nm =
as.character(x)). This is particularly useful when using lapply and you want the return object
to have X as its names.

Usage

sn(x)

Arguments

X atomic or list vector.

Value

x with the elements of x as its names.

Examples

sn(1:10)
sn(c("one”, "two","three"))

stack2 Stack one Set of Variables from Wide to Long

Description

stack2 converts one set of variables in a data.frame from wide to long format. (If you want to
convert *multiple* sets of variables from wide to long, see reshape.) It is a modified version of
stack that 1) adds a column for the rownames, 2) returns character vectors rather than factors, 3)
can return additional (repeated) columns, and 4) can order by rownames original positions rather
than the variable names being stacked call order.

Usage
stack2(
data,
select.nm,
keep.nm = pick(x = names(data), val = select.nm, not = TRUE),
rtn.el.nm = "el"”,
rtn.vrbnames.nm = "vrb_names",

rtn.rownames.nm = "row_names”,

78 stack2

order.by.rownames = TRUE,
stringsAsFactors = FALSE

)
Arguments

data data.frame of data.

select.nm character vector of colnames from data specifying the variables to be stacked.

keep.nm optional argument containing a character vector of colnames from data speci-
fying the additional columns to be included in the return object. These columns
are repeated down the data.frame as they are not stacked together. The default
is the inclusion of all other columns in data other than select.nm. If NULL,
then no other columns will be included.

rtn.el.nm character vector of length 1 specifying the name of the column in the return

object that corresponds to the elements of the stacked variables.
rtn.vrbnames.nm
character vector of length 1 specifying the name of the column in the return
object that corresponds to the names of the stacked variables.
rtn.rownames.nm
character vector of length 1 specifying the name of the column in the return
object that corresponds to the rownames.
order.by.rownames
logical vector of length 1 specifying whether the returned data.frame should be
ordered by the positions of the rownames (TRUE) or by the positions of the
names of the stacked variables (i.e., select.nm). Note, the ordering is by the
positions, not by alphabetical order. If that is desired, convert the rownames
to a (id) column and use reshape: :melt.data.frame.
stringsAsFactors
logical vector of length 1 specifying whether the rtn.vrbnames.nmand rtn. rownames.nm
columns should be converted to factors. Note, the factor levels are ordered by
positions and not alphabetically (see v2fct).

Details

stack2 is also very similar to reshape::melt.data.frame. The differences are that it 1) adds
a column for the rownames, 2) returns character vectors rather than factors, and 3) can order by
rownames original positions rather than the variable names being stacked call order.

Value

data.frame with nrow = nrow(data) * length(*select.nm") from stacking the elements of data[select.nm]
on top of one another. The first column is the rownames with name rtn. rownames.nm, the second
column is the names of the stacked variables with name rtn.vrbnames.nm, the third column is the
stacked elements with name rtn.el.nm, and the additional columns are those specified by keep.nm.

See Also

unstack?2 stack melt.data.frame

try_expr 79

Examples

general
stack2(data = mtcars, select.nm = c("disp”,"hp","drat”,"wt","qsec"),
keep.nm = c("vs","am"))
stack2(data = mtcars, select.nm = c("disp”,"hp","drat”,"wt","qsec"),
keep.nm = c("vs"”,"am"), rtn.el.nm = "rating”, rtn.vrbnames.nm = "item",
rtn.rownames.nm = "row_names") # change the return object colnames
stack2(data = mtcars, select.nm = c("disp”,"hp","drat”,"wt","qsec"),
keep.nm = pick(x = names(mtcars), val = c("disp”,"hp”,"drat”,"wt","gsec"),
not = TRUE)) # include all columns from ‘data‘ in the return object

keep options

stack2(data = mtcars, select.nm = c("mpg"”,"cyl”,"disp")
) # default = keep all other variables in ‘data‘

stack2(data = mtcars, select.nm = c("mpg"”,"cyl”,"disp"), keep = c("gear”,"carb")
) # character vector = keep only specified variables in ‘data‘

stack2(data = mtcars, select.nm = c("mpg"”,"cyl”,"disp"”), keep = NULL,
) # NULL = keep no other variables in ‘data‘

compare to utils:::stack.data.frame and reshape::melt.data.frame

ChickWeight2 <- as.data.frame(datasets::ChickWeight)

ChickWeight2$"Diet"” <- as.integer(ChickWeight2$"Diet")

x <- stack(x = ChickWeight2, select = c("weight"”,"Diet")) # does not allow
keeping additional columns

y <- reshape::melt(data = ChickWeight2, measure.vars = c("weight"”,"Diet"),
id.nm = c("Chick”,"Time"), variable_name = "vrb_names"”) # does not include
rownames and not ordered by rownames

z <- stack2(data = ChickWeight2, select.nm = c("weight”,"Diet"),
keep.nm = c("Chick"”,"Time"))

head(x); head(y); head(z)

try_expr Add Try to Expression

Description

try_expr evaluates an expression expr and returns a list with three elements: 1) return object, 2)
warning message, 3) error message. This can be useful when you want to evaluate an expression
and are not sure if it will result in a warning and/or error and don’t want R to stop if an error does
arise.

Usage

try_expr(expr, output.class = NULL)

80 try_fun

Arguments

expr expression

output.class character vector of length 1 specifying the class you want the returned object of
try_expr to be. The default is NULL for no class.

Details

This function is heavily based on the following StackOverflow post: https://stackoverflow.com/questions/4948361/how-
do-i-save-warnings-and-errors-as-output-from-a-function.

Value

list object with three elements: "result" = 1) return object of expr, "warning" = warning message,
"error" = error message. When an element is not relevant (e.g., no errors), then that element is
NULL.

Examples

apply to log()
try_expr(log(1))
try_expr(log(@))
try_expr(log(-1))
try_expr(log("a"))
return a list where NULL if an error or warning appears
lapply(X = list("positive” = 1, "zero"” = 0, "negative" = -1,"letter” = "a"),
FUN = function(x) {
log_try <- try_expr(log(x))
result <- log_try[["result”]]
warning <- log_try[["warning"]]
error <- log_try[["error"]1]
if (!(is.null(error))) return(NULL)
if (!(is.null(warning))) return(NULL)
return(result)

b

try_fun Add Try to Function

Description

try_fun creates a version of the function fun that evaluates the function and then returns a list with
three elements: 1) return object, 2) warning message, 3) error message. This can be useful when
you want to apply a function and are not sure if it will result in a warning and/or error and don’t
want R to stop if an error does arise.

Usage

try_fun(fun, output.class = paste@(deparse(substitute(fun)), ".try"))

t_list 81

Arguments

fun function

output.class character vector of length 1 specifying the class you want the result from a call
to the returned function to be. Note, if fun is an annonymous function, then the
default will probably not work due to the character limitations of deparsing a
function. You can always put down NULL for no class, which will always work
with annonymous functions.

Details

This function is heavily based on the following StackOverflow post: https://stackoverflow.com/questions/4948361/how-
do-i-save-warnings-and-errors-as-output-from-a-function.

Value

function that returns a list object with three elements: "result" = 1) return object of fun, "warning"

= warning message, "error" = error message. When an element is not relevant (e.g., no errors), then
that element is NULL.

Examples

apply to log()
log.try <- try_fun(log)
log.try(1)
log.try(0)
log.try(-1)
log.try("a")
return a list where NULL if an error or warning appears
lapply(X = list("positive” = 1, "zero" = 0, "negative" = -1,"letter” = "a"),
FUN = function(x) {
log_try <- log.try(x)
result <- log_try[["result”]]
warning <- log_try[["warning"]1]
error <- log_try[["error"”]]
if (!(is.null(error))) return(NULL)
if (!(is.null(warning))) return(NULL)
return(result)

b

t_list Transpose a List

Description

t_list transposes a list, similar to what t.default does for matrices. t_list assumes the struc-
ture of each x element is the same. Tests are done to ensure the lengths and names are the same for
each x element. The returned list has list elements in the same order as in x[[1]].

82 t list

Usage

t_list(x, rtn.atomic = FALSE)

Arguments
X list where each element has the same structure.
rtn.atomic logical vector of length 1 specifying whether the returned list should be a list of
atomic vectors (TRUE) rather than a list of lists (FALSE).
Details

If any element within x has no names (NULL), then the transposition is done based on positions. If
all element within x have the same names, then the transposition is done based on those names.

Value

list where each element is from those in x[[1]] and each element of the returned object has a
subelement for each element in x.

Examples

modeling example

iris_bySpecies <- split(x = iris, f = iris$"Species”)

1ImObj_bySpecies <- lapply(X = iris_bySpecies, FUN = function(dat) {
Im(Sepal.Length ~ Petal.Width, data = dat)})

ImE1_bySpecies <- t_list(1mObj_bySpecies)

summary (1mObj_bySpecies); summary(1lmEl_bySpecies)

summary.default(1mEl_bySpecies[[1]]); summary.default(1lmEl_bySpecies[[2]])

no names
1ImObj_bySpecies2 <- unname(lapply(X = 1mObj_bySpecies, FUN = unname))
ImE1_bySpecies2 <- t_list(ImObj_bySpecies2)
summary (1mObj_bySpecies2); summary(lmEl_bySpecies2)
summary.default(1lmEl_bySpecies2[[1]1]); summary.default(1mEl_bySpecies2[[2]])
all(unlist(Map(name = 1mEl_bySpecies, nameless = lmEl_bySpecies2,
f = function(name, nameless) all.equal(unname(name), nameless)))) # is everything
but the names the same?

atomic vector example

x <- list("A" = c("a"=1,"b"=2,"c"=3),"B" = c("a"=1,"b"=2,"c"=3),
"= c("a"=1,"b"=2,"c"=3))

t_list(x, rtn.atomic = TRUE)

names in different positions

X <_ list(HAll = C(Hall:1 ’Ilbll:2,11c11:3)’llBll = C("b”zz,"a”:‘l ,”C”:3),
"er = e("c"=3,"b"=2,"a"=1))

t_list(x, rtn.atomic = TRUE)

no names
x <- list(c(1,2,3), c(1,2,3), c(1,2,3))

undim 83

t_list(x, rtn.atomic = TRUE)

lists with a single element
X <_ list(HAll = C(Hall:1 ’Ilbll:2,11c11:3))
t_list(1mObj_bySpecies[1])

undim Undimension an Object

Description

undim removes all dimensions from an object. This is particularly useful for simplifying 1D arrays
where the dimnames from the array are used for the returned object. Although the function can also
be used when dimensions were temporarily (or erroneously) given to an object.

Usage

undim(x)

Arguments

X object with dimensions (usually an array of some kind)

Value

x without any dimensions. If x is an array, then the return object will be an atomic vector. If x is a
1D array, then the returned vector will have names = the 1D dimnames.

Examples

a <- array(NA, dim = 1, dimnames = list("A"))
v <- undim(a)
str(a); str(v)

undimlabel Undimlabel an Object

Description

undimname removes dimlabels from an object. This function is to allow for removing dimlabels
from only certain dimensions specified by dims.

Usage
undimlabel(x, dims = seqg_along(dim(x)))

84 undimname

Arguments
X object with dimlabels (usually an array of some kind)
dims integer vector of dimension positions or character vector of dimlabels specifying
the dimensions for which dimlabels should be removed. Defaults to all dimen-
sions.
Value

x without any dimlabels for the dimensions specified by dims. Consistent with how base R handles
removed dimlabels, the removed dimlabels are converted to NA. If all dimlabels are removed, then
the dimlabels are empty (aka NULL).

Examples

matrix
m <- array(rep.int(NA, times = 4), dim = c(2,2),
dimnames = list("lower” = c("a","b"),"UPPER" = c("A","B")))

dimlabels(m)

m2 <- undimlabel(m) # remove dimlabels from both dimensions

dimlabels(m2)

m3 <- undimlabel(m, dims = 1) # remove dimlabels from only the first dimenion
dimlabels(m3)

m4 <- undimlabel(m, dims = "lower")

dimlabels(m4)

all.equal(m3, m4) # same return object

array

a <- unclass(HairEyeColor)

dimlabels(a)

a2 <- undimlabel(a) # removes dimlabels from all dimensions

dimlabels(a2)

a3 <- undimlabel(a, dims = c(1,2)) # remove dimlabels from only the first and second dimenions
dimlabels(a3)

a4 <- undimlabel(a, dims = c("Hair"”,"Eye"))

dimlabels(a4)

all.equal(a3, a4)

undimname Undimname an Object

Description
undimname removes dimnames from an object. This function is to allow for removing dimnames
from only certain dimensions specified by dims.

Usage

undimname(x, dims = seq_along(dim(x)), rm.dim.lab = TRUE)

undimname

Arguments

X

dims

rm.dim. lab

Value

85

object with dimnames (usually an array of some kind)

integer vector of dimension positions or character vector of dimlabels specify-
ing the dimensions for which dimnames should be removed. Defaults to all
dimensions.

logical vector of length 1 specifying whether the dimlabels from the dims di-
mensions should be removed and converted to NA.

x without any dimnames for the dimensions specified by dims. If a dimlabel existed for the dims
dimensions, they will have been removed if rm.dim.1lab = TRUE.

Examples

matrix

m <- array(rep.int(NA, times = 4), dim = c(2,2),
dimnames = list("lower” = c("a","b"),"UPPER" = c("A","B")))

dimnames(m)

m1 <- undimname(m) # remove dimnames from both dimensions

dimnames(m1)

m2 <- undimname(m, rm.dim.lab = FALSE) # keep dimlabels

dimnames(m2)

m3 <- undimname(m, dims = 1) # remove dimnames from only the first dimenion
dimnames(m3)

m4 <- undimname(m, dims = "lower")

dimnames(m4)

all.equal(m3, m4)

same return object

m5 <- undimname(m, dims = 1, rm.dim.lab = FALSE) # keeps dimlabel

dimnames(m5)
array

a <- unclass(HairEyeColor)

dimnames(a)

al <- undimname(a) # removes dimnames from all dimensions

dimnames(al)

a2 <- undimname(a, rm.dim.lab = FALSE) # keep dimlabels

dimnames(a2)

a3 <- undimname(a,

dimnames(a3)

dims = c(1,2)) # remove dimnames from only the first and second dimenions

a4 <- undimname(a, dims = c("Hair"”,"Eye"))

dimnames(a4)
all.equal(a3, a4)

a5 <- undimname(a, dims = c(1,2), rm.dim.lab = FALSE) # keeps dimlabel

dimnames(a5)

86 unstack2

unstack2 Unstack one Set of Variables from Long to Wide

Description

unstack?2 converts one set of variables in a data.frame from long to wide format. (If you want
to convert multiple sets of variables from long to wide, see reshape.) It is a modified version of
unstack that 1) requires a column for the rownames of the data.frame (or equivalently an id column
with unique values for each row in the wide format) before it was stacked, 2) can retain additional
columns not being unstacked, and 3) can order by rownames original positions rather than their
alphanumerical order.

Usage
unstack2(
data,
rownames.nm = "row_names"”,
vrbnames.nm = "vrb_names”,
el.nm = "el”,

keep.nm = pick(x = names(data), val = c(rownames.nm, vrbnames.nm, el.nm), not = TRUE),
add.missing = TRUE,
rownamesAsColumn = FALSE

)
Arguments

data data.frame of data containing stacked variables.

rownames.nm character vector of length 1 specifying the colname in data for whom its unique
values correspond to the rows in the return object.

vrbnames.nm character vector of length 1 specifying the colname in “data" that contains the
names of the variables to be unstacked.

el.nm character vector of length 1 specifying the colname in data containing the ele-
ments from the variable to be unstacked.

keep.nm optional argument containing a character vector of colnames from data spec-
ifying the additional columns to be included in the return object. The default
is all the other columns in the data.frame besides rownames.nm, vrbnames.nm,
and el.nm. If NULL, then no additional columns are retained. The keep.nm
columns will be the last (aka most right) columns in the return object.

add.missing logical vector of length 1 specifying whether missing values should be added
when unstacking. This will occur if there are unequal number of rows for each
variable in the set. If FALSE, an error will be returned when there are an unequal
number of rows and missing values would need to be added to create the returned
data.frame.

rownamesAsColumn

logical vector of length 1 specifying whether the unique values in rownames. nm
column should be a column in the return object (TRUE) or the rownames of the
return object (FALSE).

unstack2 87

Details

unstack? is also very similar to reshape::cast.data.frame. The differences are that it 1) can
return the rownames as rownames of the returned data.frame rather than an id column, 2) can retain
additional columns not being unstacked, and 3) can order by rownames original positions rather
than the variable names being stacked call order.

Value

data.frame with nrow = length(unique(datal[rownames.nm]])) from unstacking the elements
of el.nm alongside one another. New columns are created for each unique value in vrbnames.nm as
well as columns for any colnames additional specified by keep. nm. If rownamesAsColumn = TRUE,
then the first column is the unique values in rownames . nm; otherwise, they are the rownames of the
return object (default).

See Also

stack2 unstack cast
Examples

ordered by rownames

stacked <- stack2(data = mtcars, select.nm = c("disp”,"hp”,"drat"”,"wt", "gsec"),
keep.nm = c("vs","am"), order.by.rownames = TRUE)

x <- unstack2(stacked)

ordered by vrbnames

stacked <- stack2(data = mtcars, select.nm = c("disp”,"hp”,"drat”,"wt", "gsec"),
keep.nm = c("vs","am"), order.by.rownames = FALSE)

y <- unstack2(stacked)

identical(x, y)

rownames as a column
z <- unstack2(data = stacked, rownamesAsColumn = TRUE)

compare to utils:::unstack.data.frame and reshape::cast
stacked <- stack2(data = mtcars, select.nm = c("disp”,"hp”,"drat”,"wt", "gsec"),
keep.nm = c("vs","am"))
x <- unstack(x = stacked, form = el ~ vrb_names) # automatically sorts the colnames alphabetically
y <- reshape::cast(data = stacked, formula = row_names ~ vrb_names,
value = "el") # automatically sorts the rownames alphabetically
z <- unstack2(stacked) # is able to keep additional variables
head(x); head(y); head(z)

unequal number of rows for each unique value in ‘data‘[[‘vrbnames.nm"]]
this can occur if you are using unstack2 without having called stack2 right before
row_keep <- sample(1:nrow(stacked), size = nrow(stacked) / 2)
stacked_rm <- stacked[row_keep,]
unstack2(data = stacked_rm, rownames.nm = "row_names", vrbnames.nm = "vrb_names”, el.nm = "el")
Not run: # error when ‘add.missing" = FALSE

unstack2(data = stacked_rm, rownames.nm = "row_names"”, vrbnames.nm = "vrb_names”,

el.nm = "el”, add.missing = FALSE)

88

End(Not run)

v2d

v2d

(Atomic) Vector to Data-Frame

Description

v2m converts an (atomic) vector to a single row or single column data.frame. The benefit of v2m
over as.data.frame.vector is that the dimension along which the vector is binded can be either
rows or columns, whereas in as.data.frame.vector it can only be binded along a column, and
that v2m will keep the names of v in the dimnames of the returned data.frame.

Usage

v2d(v, along =

Arguments

\

along

rtn.dim.nm

2, rtn.dim.nm = NULL, stringsAsFactors = FALSE, check = TRUE)

(atomic) vector.

numeric vector of length 1 that is equal to either 1 or 2 specifying which dimen-
sion to bind v along. 1 means that v is binded along rows (i.e., dimension 1) into
a one row data.frame. 2 means that v is binded along columns (i.e., dimension
2) into a one column data.frame.

character vector of length 1 specifying what dimname to use for the dimension
of length 1 in the returned data.frame. If along = 1, then rtn.dim.nm will
be the single rowname. If along = 2, then rtn.dim.nm will be the single col-
name. If NULL, then the dimension of length 1 will be created by default with
data. frame internally, which will have the rowname be "1" and the colname
"V1".

stringsAsFactors

check

Value

logical vector of length 1 specifying if v should be converted to a factor in the
case that typeof is character.

logical vector of length 1 specifying whether to check the structure of the input
arguments. For example, check whether v is an atomic vector. This argument is
available to allow flexibility in whether the user values informative error mes-
sages (TRUE) vs. computational efficiency (FALSE).

data.frame with typeof = typeof (v). If along = 1, then the dimensions = c(1L, length(v)) and
dimnames = list(rtn.dim.nm, names(v)). If along = 2, then the dimensions = c(length(v),
1L) and dimnames = list(names(v), rtn.dim.nm).

v2fct

Examples

89

x <- setNames(mtcars[, "mpg"], nm = row.names(mtcars))

v2d(x)

v2d(v = x, along = 1)
v2d(v = x, rtn.dim.nm = "mpg")

v2fct

Character Vector to (Unordered) Factor

Description

v2fct converts a character vector to a (unordered) factor. It goes beyond as.factor by allowing
you to specify how you want the levels ordered and whether you want NA treated as a level.

Usage

v2fct(
V7

order.1lvl = "position”,
decreasing = FALSE,
na.lvl = FALSE,

check = TRUE

Arguments

Vv

order.1lvl

decreasing

na.lvl

check

Details

character vector. If it is not a character vector (e.g., factor, numeric vector), then
it is coerced to a character vector within v2fct.

character vector of length 1 specifying how you want to order the levels of the
factor. The options are "alphanum", which sorts the levels alphanumerically
(with NA last); "position", which sorts the levels by the position the level first
appears; "frequency", which sorts the levels by their frequency. If any frequen-
cies are tied, then the ties are sorted alphanumerically (with NA last).

logical vector of length 1 specifying whether the ordering of the levels should
be decreasing (TRUE) rather than increasing (FALSE).

logical vector of length 1 specifying if NA should be considered a level.

logical vector of length 1 specifying whether to check the structure of the input
arguments. For example, check whether v is an atomic vector. This argument is
available to allow flexibility in whether the user values informative error mes-
sages (TRUE) vs. computational efficiency (FALSE).

When order.1vl = "alpanum" the levels are sorted alphabetically if letters or a combination of
letters and numbers/numerals are in present in v. If only numbers/numerals are present in v, then
levels are sorted numerically.

90 v2frm

Value

factor of length = length(x) and names = names(x).

Examples

no missing values
state_region <- as.character(state.region)
v2fct(state_region, order.lvl = "position”) # in position order
v2fct(v = state_region, order.lvl = "frequency”,
decreasing = TRUE) # most frequent to least frequent
v2fct(v = state_region, order.lvl = "alphanum”) # in alphanumerical order
v2fct(v = state_region, na.lvl = TRUE) # na.lvl is inert because no NAs in ‘v*
with missing values
state_region <- c(NA_character_, as.character(state.region), NA_character_)
v2fct(v = state_region, order.lvl = "position”, na.lvl = TRUE)
v2fct(v = state_region, order.lvl = "frequency”, decreasing = TRUE, na.lvl = TRUE)
v2fct(v = state_region, order.lvl = "alphanum”, na.lvl = TRUE)
identical(x = v2fct(v = state_region, order.lvl = "alphanum”),
y = as.factor(state_region)) # equal to as.factor()
numeric vectors
v2fct(v = round(faithful$”eruptions”), order.lvl = "position")
v2fct(v = round(faithful$"eruptions”), order.lvl = "frequency”, decreasing = TRUE)
v2fct(v = round(faithful$”eruptions”), order.lvl = "alphanum")
cnumeric vectors
cnum <- c¢(”100","99","10","9","1","0","100","99","10","9","1","0")
factor(cnum) # not in numerical order
v2fct(v = cnum, order.lvl = "alphanum”) # yes in numerical order
ties on frequency
v2fct(v = rev(npk$”block”), order.lvl = "alphanum”) # ties sorted alphanumerically
v2fct(v = rev(npk$"block”), order.lvl = "position”) # no possibility of ties

v2frm Character Vector to Formula

Description

v2frm converts a character vector to a formula. The formula has the simple structure of y ~ x1 + x2
+ x3 + ... + xn. This function is a simple wrapper for reformulate.

Usage
v2frm(v, y = 1L, intercept = TRUE)

Arguments

v character vector of term(s) and/or response to be included on either side of the
returned formula. If it is not a character vector (e.g., factor, numeric vector),
then it is coerced to a character vector within v2frm. Note, if the length of v is
1, then y.which must be NULL because at least one term on the right hand side
is required, otherwise an error is returned.

v2lv

intercept

Value

91

character vector of length 1 specifying the value of the element within v, or
integer of length 1 specifying the position of the element within v, that is the
response to be placed on the left hand side of the returned formula. If NULL,
then no elements of v are treated as response(s) and the left hand side is empty.

logical vector of length 1 specifying whether the intercept should be included
in the returned formula. The default is TRUE and no change is made to the
returned formula. If FALSE, then a -1 is added to the end of the right hand side.

formula with element v[y] on the left hand side and v[-y] elements on the right hand side (rhs)
separated by plus signs (+) with a -1 if intercept = FALSE.

Examples

v2frm(v = names(attitude))

v2frm(v = names(attitude), y = 7L)

v2frm(v = names(attitude), y = NULL)

v2frm(v = "rating”, y = NULL)

try_expr(v2frm(v = "rating”)) # error is returned

v2lv

(Atomic) Vector to List of (Atomic) Vectors

Description

v21v converts a (atomic) vector to a list of atomic vectors. The default is conversion to a list vector
where each element of the list has only one element. The n.break argument allows for the input
vector to be broken up into larger sections with each section being a list element in the return object.

Usage

v21lv(v, use.names = TRUE, n.break = 1L, warn.break = TRUE, check = TRUE)

Arguments

\

use.names

n.break

warn.break

(atomic) vector.

logical vector of length 1 specifying whether the names from v should be re-
tained in the return object.

integer vector of length 1 specifying how v should be broken up. Every n.break
elements while seq_along v, a new element of the list is created and subsequent
elements of v are stored there. If n.break is not a multiple of length(v), then
NAs are appended to the end of v to ensure that each list element has (atomic)
vectors of the same length. Note, the default is 1L resulting in a list vector.

logical vector of length one specifying whether a warning should be printed if
length(v) / n.break is not a whole number, which would then result in NAs
being appended to the end of the vector before converting to a list.

92

check

Details

v2m

logical vector of length 1 specifying whether to check the structure of the input
arguments. For example, check whether v is an atomic vector. This argument is
available to allow flexibility in whether the user values informative error mes-
sages (TRUE) vs. computational efficiency (FALSE).

Future versions of this function plan to allow for use similar to the utils::relist function to
allow reconstruction after flattening a matrix-like object to a single vector.

Value

list of (atomic) vectors that are the elements of v broken up according to n.break. The list only has
names if v has names and n.break = 1L.

Examples

vec <- setNames(object = mtcars[[1]], nm = row.names(mtcars))

v21lv(vec)

v21lv(vec, use.names = FALSE)

vec <- unlist(mtcars)

v21lv(vec, n.break = 32) # n.break > 1L and multiple of length(v)
v21lv(vec, n.break = 30) # n.break > 1L and NOT multiple of length(v)

vam

(Atomic) Vector to Matrix

Description

v2m converts an (atomic) vector to a single row or single column matrix. The matrix will be the same
typeof as the atomic vector. The benefit of v2m over as.matrix.default is that the dimension
along which the vector is binded can be either rows or columns, whereas in as.matrix.default it
can only be binded along a column.

Usage

va2m(v, along = 2, rtn.dim.nm = NULL, check = TRUE)

Arguments

\

along

rtn.dim.nm

(atomic) vector.

numeric vector of length 1 that is equal to either 1 or 2 specifying which dimen-
sion to bind v along. 1 means that v is binded along rows (i.e., dimension 1) into
a one row matrix. 2 means that v is binded along columns (i.e., dimension 2)
into a one column matrix.

character vector of length 1 specifying what dimname to use for the dimension
of length 1 in the returned matrix. If along = 1, then rtn.dim.nm will be the
single rowname. If along = 2, then rtn.dim.nm will be the single colname. If
NULL, then the dimension of length 1 has no dimname.

v2m 93

check logical vector of length 1 specifying whether to check the structure of the input
arguments. For example, check whether v is an atomic vector. This argument is
available to allow flexibility in whether the user values informative error mes-
sages (TRUE) vs. computational efficiency (FALSE).

Value

matrix with typeof = typeof(v). If along = 1, then the dimensions = c(1L, length(v)) and
dimnames = list(rtn.dim.nm, names(v)). If along = 2, then the dimensions = c(length(v),
1L) and dimnames = list(names(v), rtn.dim.nm).

Examples

mtcars2 <- as.matrix(mtcars, rownames.force = TRUE) # to make sure dimnames stay in the example
v2m(mtcars2[, "mpg"])
identical(x = v2m(mtcars2[, "mpg"]),
y = as.matrix(mtcars2[, "mpg"]1)) # default = as.matrix.default()
v2m(mtcars2[, "mpg"”], along = 1)
identical(x = v2m(mtcars2[, "mpg"”], along = 1),
y = t(as.matrix(mtcars2[, "mpg"”]))) # = t(as.matrix.default())
v2m(v = mtcars2[, "mpg"], rtn.dim.nm = "mpg")

Index

a2d, 4 is.POSIX1t, 42
a2la, 6 is.row.names, 42
a2ld, 7 is.rownames, 43
a2lm, 7 is.whole, 44
a2v, 8
abind<-, 9 Join, 44
all_diff, 11 join, 45
all_same, 12 join_all, 45
append<-, 13 La2a, 47
cast, 87 laynames, 48
cato, 14 1d2a, 49
cbind<-, 15 1d2d, 50
cbind_fill, 17, 19 1d2v, 52
cbind_fill_matrix, 17, 18 1m2a, 54
codes, 20 1Im2d, 55
1m2v, 57
d2a, 21 lv2d, 59
d2d, 23 1v2m, 61
d21d, 25 1v2v, 63
d2lv, 26
d2m, 27 m2d, 65
d2v, 28 m21lv, 66
dimlabels, 30 m2v, 67
dimlabels<-, 31 melt.data.frame, 78
merge, 45
e2l, 32
ndim, 68
fct2v, 33 nlay, 69
not.colnames, 70
grab, 34 not.names, 70
not.row.names, 71

inbtw, 35

is.avector, 36
is.cnumeric, 37
is.colnames, 38

not.rownames, 71

order.custom, 72

is.Date, 38 pick, 73

is.dummy, 39

is.empty, 40 rbind.fill, 17
is.names, 40 rbind.fill.matrix, /9
is.POSIXct, 41 rbind<-, 75

94

INDEX

reshape, 86

sn, 77

stack, 78

stack?2, 77, 87

str2str (str2str-package), 3
str2str-package, 3

t_list, 81
try_expr, 79
try_fun, 80

undim, 83
undimlabel, 83
undimname, 84
unstack, 87
unstack2, 78, 86

v2d, 88
v2fct, 89
v2frm, 90
v21lv, 91
v2m, 92

	str2str-package
	a2d
	a2la
	a2ld
	a2lm
	a2v
	abind<-
	all_diff
	all_same
	append<-
	cat0
	cbind<-
	cbind_fill
	cbind_fill_matrix
	codes
	d2a
	d2d
	d2ld
	d2lv
	d2m
	d2v
	dimlabels
	dimlabels<-
	e2l
	fct2v
	grab
	inbtw
	is.avector
	is.cnumeric
	is.colnames
	is.Date
	is.dummy
	is.empty
	is.names
	is.POSIXct
	is.POSIXlt
	is.row.names
	is.rownames
	is.whole
	Join
	la2a
	laynames
	ld2a
	ld2d
	ld2v
	lm2a
	lm2d
	lm2v
	lv2d
	lv2m
	lv2v
	m2d
	m2lv
	m2v
	ndim
	nlay
	not.colnames
	not.names
	not.row.names
	not.rownames
	order.custom
	pick
	rbind<-
	sn
	stack2
	try_expr
	try_fun
	t_list
	undim
	undimlabel
	undimname
	unstack2
	v2d
	v2fct
	v2frm
	v2lv
	v2m
	Index

