
R package stepR

Multiscale change-point inference

Florian Pein1 and Axel Munk1,2

1Institute for Mathematical Stochastics, Georg-August-University of Goettingen,
Goldschmidtstr. 7, 37077 Göttingen, Germany

2Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen,
Germany

October 18, 2024

1 Introduction

Multiple change-point detection (fitting a piecewise constant function to serial observations is relevant
to many applications, for instance to genetics or finance. Accordingly, this is a long standing task
in statistical research and related areas. In addition to estimation / regression, statistical inference
(obtaining confidence statements) for locations and size of segments is of high practical importance. The
stepR package provides both by implementing the multiscale regression estimators SMUCE from Frick
et al. (2014) and HSMUCE from Pein et al. (2017). See the introduction of these two papers for a
biblography, more details on the history, theory and applications of multiple change-point methods.
The regression model underlying the methodolodgy is described in Section 2. The multiscale regression
estimator, its confidence statements and technical quantities are introduced in Section 3. The functions
of this package together with small examples are listed in Section 4. Finally, Sections 5 and 6 give an
overview about the supported parametric families and interval systems, respectively.

2 Model

This package deals with the estimation of a piecewise constant (step) function

γ(t) =

K∑
k=0

γk1[τk,τk+1)(t), (2.1)

where the number of change-points K ∈ N0, the change-point locations τ1 < · · · < τK and the function
values γ0, . . . , γK ∈ R are all unknown and have to be estimated from the data. Start and end point τ0
and τK+1 are known. In other words, the set of all possible candidate functions is

Γ := {γ(t) =
K∑

k=0

γk1[τk,τk+1)(t), K ∈ N0, τ0 < · · · < τK+1, γ0, . . . , γK ∈ R}. (2.2)

To this end, it is assumed that a vector of length n ∈ N0 of noisy observations y = (y1, . . . , yn) from
a known parametric family P is given, where the function values of γ at known design points x =
(x1, . . . , xn) are (unknown) parameters of the family, i.e.

y = (y1, . . . , yn) ∼ P(γ) = P((γ(x1), . . . , γ(xn))). (2.3)

For instance, the (homogeneous) gaussian regression model with equidistant design points xi = i/n

yi = µ(i/n) + σ0ϵi, i = 1, . . . , n

1

is supported. For an overview about the supported parametric families see Section 5.

set.seed(1)

n <- 100L

x <- seq(1 / n, 1, 1 / n)

mu <- stepfit(cost = 0, family = "gauss", value = c(0, 3, 0, -2, 0), param = NULL,

leftEnd = x[c(1, 21, 26, 71, 81)],

rightEnd = x[c(20, 25, 70, 80, 100)], x0 = 0,

leftIndex = c(1, 21, 26, 71, 81),

rightIndex = c(20, 25, 70, 80, 100))

sigma0 <- 0.5

epsilon <- rnorm(n, 0, sigma0)

y <- fitted(mu) + epsilon

plot(x, y, pch = 16, col = "grey30", ylim = c(-3, 4))

lines(mu, lwd = 3)

3 Methodolodgy

The multiscale regression estimator γ̂ is defined as the restricted maximizer of a functional LP(Y) (for
most parametric families LP is the likelihood function, the exact functional for each parametric family is
given in Section 5), where the candidate set Γ is restricted to all solutions of the (non-convex) optimisation
problem to minimize the number of change-points under the constraint that the candidate function is
accepted by a multiscale test. In formulas, the multiscale regression estimator γ̂ is defined by

γ̂ := argmax
γ∈C(y,q)

LP(y, γ) (3.1)

with
C(y, q) := {argmin

γ∈Γ
|γ|0 s.t. Tn(y, γ, q) ≤ 0}, (3.2)

with |γ|0 the number of change-points of γ, q = (q1, . . . , qdn
) a vector of critical values (see Section 3.2),

and multiscale test
Tn(y, γ, q) := max

I∈I: γ|I≡γI

TP
I (y, γI)− q|I|0 . (3.3)

Here I is the interval set on which the candidate function is tested (to be defined in Section 3.1), γ|I
denotes the function γ restricted to the interval I, TP

I is a local test statistic depending on the parametric
family (often the corresponding likelihood ratio test, the exact test statistic for each parametric family is
given in Section 5) and |I|0 is the number of observations on the interval I, i.e. |I|0 := |{i ∈ {1, . . . , n} :
xi ∈ I}|.
Minimizing the number of change-point in (3.2) aims to seek for the most persimonious solution, whereas
the multiscale constraint aims to detect all true changes of the underlying parameter by guaranteeing that
the estimate γ̂ describes the data everywhere locally well by testing on each interval (of the interval set
I) whether the function value corresponds to the parameter underlying the data. More precisely, on each
interval I ∈ I on which the candidate function γ is constant with value γI the hypothesis γ̃ = γI versus
the alternative γ̃ ̸= γI is tested assuming the observations {yi : xi ∈ I, i = 1, . . . , n} have parameter γ̃.
The set C(y, q) (3.2) is an asymptotic confidence set for γ at level 1−α if q satisfies (3.4), see (Frick et al.,
2014, corollary 2) and (Pein et al., 2017, theorem 3.8), but difficult to visualise. Therefore, simultaneous
confidence intervals [Lk, Rk] for the change-point locations τk and a confidence band B(q) for γ are
provided, see (Frick et al., 2014, section 3.2) and (Pein et al., 2017, supplement section A.1) as well
as (Frick et al., 2014, theorem 7 and corollary 3) and (Pein et al., 2017, theorem 3.9) for theoretical
verification, in particular it is shown that the union I(q) = {K̂,B(q), [Lk, Rk]k=1,...,K̂} is sequentially

honest with respect to certain subspaces Γn, see (Frick et al., 2014, corollary 3) for details.

2

0.0 0.2 0.4 0.6 0.8 1.0

−
3

−
2

−
1

0
1

2
3

4

x

y

Figure 1: Observations (grey points) and underlying function (black line).

3

fit <- stepFit(y, x = x, alpha = 0.5, jumpint = TRUE, confband = TRUE)

plot(x, y, pch = 16, col = "grey30", ylim = c(-3, 4))

lines(mu, lwd = 3)

lines(fit, lwd = 3, col = "red", lty = "22")

confidence intervals for the change-point locations

points(jumpint(fit), col = "red")

confidence band

lines(confband(fit), lty = "22", col = "darkred", lwd = 2)

3.1 Interval set

The user can choose the interval set I by specifying an interval system, see Section 6 for an overview
about the supported interval systems, and a set of lengths l = {l1, . . . , ldn} ⊆ {1, . . . , n}. Here, dn denotes
the number of scales, i.e. the number of different interval lengths on which will be tested. The interval
set will contain all intervals of the interval system with a length that is in the set of lengths. Note that
not all lengths are possible for each interval system (see Section 6 for which ones are possible for which
system) and also not for each parametric family (see Section 5 for which ones are possible for which
family).

3.2 Critical values, penalisation and Monte-Carlo simulations

The vector of critical values q = (q1, . . . , qdn
) is chosen such that the multiscale test is a test at significance

level α ∈ (0, 1), i.e. for γ0 ≡ 0 and z ∼ P(γ0)

P(Tn(z, γ0, q) < 0) ≤ α (3.4)

is required. (3.4) implies the overestimation control that the probability to overestimate the number of
change-points is uniformly over all candidate functions bounded by the significance level α, i.e.

sup
γ∈Γ

Pγ(K̂ > K) ≤ α. (3.5)

Here Pγ denotes that K̂ is estimated based on y ∼ P(γ), see (Frick et al., 2014, (17)) and (Pein et al.,
2017, theorem 3.3). Hence, if a strict overestimation control of the number of change-points K is desirable
α should be chosen small, e.g. 0.05 or 0.1. This might come at the expense of missing (smaller) change-
points but with large probability not detecting too many. If change-point screening is the primarily goal,
i.e. missing of change-points should be avoided, α should be increased, e.g. α = 0.5 or even higher,
since the error probability to underestimate the number of change-points decreases with increasing α,
see (Frick et al., 2014, theorem 2 and (23)) and (Pein et al., 2017, theorem 3). If model selection, i.e.
K̂ = K, is the major aim, an intermediate level that balances the over- and underestimation error should
be chosen, e.g. α between 0.1 and 0.5. For a detailed discussion of the choice of α see (Frick et al., 2014,
section 4) and (Pein et al., 2017, section 3.4). This package offers two approaches to satisfy (3.4) and to
balance different scales (statistics on intervals of different lengths): scale penalisation and balancing by
weights.

3.2.1 Scale penalisation

This approach, proposed in Frick et al. (2014), balances different scales by a penalty function p|I|0,n(·)
leading to the penalised multiscale statistic

T
p|I|0,n
n (y, γ) := max

I∈I: γ|I≡γI

p|I|0,n(T
P
I (y, γI)) (3.6)

4

0.0 0.2 0.4 0.6 0.8 1.0

−
3

−
2

−
1

0
1

2
3

4

x

y

((((]]]]

Figure 2: Observations (grey points), underlying function (black line), fit by the multiscale estimator
(red line), its confidence intervals for the change-point locations (red brackets) and its confidence band
for the underlying function (darkred lines).

5

and the multiscale vector of penalised statistics

T
l,p|I|0,n
n (y, γ) :=

 max
I∈I: |I|0=l1,

γ|I≡γI

p|I|0,n(T
P
I (y, γI)), . . . , max

I∈I: |I|0=ldn
,

γ|I≡γI

p|I|0,n(T
P
I (y, γI))

 . (3.7)

Then, the global quantile qα at significance level α is defined as the (1−α) quantile of T
p|I|0,n
n (z, γ0) and

the critical values are determined by qi = p−1
i,n(qα). The most common penalisation p|I|0,n(t) =

√
2t −√

2 log(exp(1)n/|I|0), called ”sqrt” in this package, implies for the families ”gauss” and ”mDependentPS”
that

T
p|I|0,n
n (y, γ)

D→ M, (3.8)

where M is a functional of the standard Brownian motion and finite almost surely. For a precise definition
and more details see (Frick et al., 2014, section 2.2). See also its minimax optimality in (Frick et al.,
2014, theorems 5 and 6). Consequently, this penalty guarantees appropriate scale balancing and, hence,
is the default penalty for these families. Note, that this does not apply to inhomogeneous Gaussian
observations underlying the parametric family ”hsmuce”, hence, this penalty is not recommended here.
This package also supports the penalties p|I|0,n(t) = t− log(exp(1)n/|I|0), called ”log” and p|I|0,n(t) = t,
called ”none”, where the statistics are not penalized and, hence, the multiscale test is dominated by
smaller scales. For a discussion how these penalties influence the final outcome, see (Frick et al., 2014,
section 6.2).

3.2.2 Balancing by weights

For this approach, proposed in (Pein et al., 2017, section 2) and chosen by penalty = ”weights” (although
this approach does not correspond to a penalty in a literal sense), the multiscale vector of statistics is
defined as

T l
n(y, γ) :=

 max
I∈I: |I|0=l1,

γ|I≡γI

TP
I (y, γ), . . . , max

I∈I: |I|0=ldn
,

γ|I≡γI

TP
I (y, γ)

 . (3.9)

Moreover, for given weights

β1, . . . , βdn
> 0, with

dn∑
k=1

βk = 1, (3.10)

in addition to (3.4),
1− F1 (q1)

β1
= · · · = 1− Fdn (qdn)

βdn

, (3.11)

with Fi the cumulative distribution function of the i-th entry of T l
n(z, γ0), is required. The weights

determine the fractions between the probabilities that a test on a certain scale rejects, and hence regulate
the allocation of the level α among the single scales. Then, for any α ∈ (0, 1) and for any weights
β1, . . . , βdn , s.t. (3.10) holds, there exits a unique vector of critical values q = (q1, . . . , qdn) ∈ Rdn

+ which
fulfils the equations (3.4) and (3.11), see (Pein et al., 2017, lemma 2.1). This vector can be computed by
(Pein et al., 2017, algorithm 1 in supplement A.2) based on Monte-Carlo simulations. This penalty is the
default and only meaningful penalty for the parametric family ”hsmuce”, but can also be used for other
families. As default uniform weights β1 = · · · = βn = 1/n are proposed, but other choices can be used to
incorporate prior knowledge on the scales, see also (Pein et al., 2017, section 3.4) for more details on the
choice of the weights.

3.2.3 Monte-Carlo simulations

Calculating the critical values analytically appears to be a very hard task, therefore for y = z ∈ P(γ0)
and γ = γ0 the distribution of either the penalised multiscale statistic (3.6) or of the multiscale vector
of statistics (3.9), where l is the set of all lengths allowed by the interval system and by the parametric
family, is simulated by Monte-Carlo simulations. This means to generate r, the number of repetitions,
independent samples of z ∼ P(γ0) and to compute for each the corresponding statistic. Resulting in a dn

6

times r matrix, containing r independent simulations of the multiscale vector of statistics (3.9), an object
of class ”MCSimulationVector”, or in an r dimensional vector, containing r independent simulations of
the penalised multiscale statistic (3.6), an object of class ”MCSimulationMaximum”. Since Monte-Carlo
simulations can last very long, this package offers several possibilities to store them, see Section 3.4 for
more details.

3.3 Dynamic program

The multiscale regression estimator γ̂ can be computed efficiently by a pruned dynamic program. The
acceptance region of each local test is an interval with lower bound lI and upper bound uI , i.e.

[lI , uI] := {γI ∈ R : TP
I (y, γI) ≤ q|I|0}. (3.12)

Hence, to be accepted by the multiscale test a candidate function has to satisfy these constraints on
all intervals of the interval set I on which it is constant. For more details on the computation of the
estimator and its confidence statements based on these bounds see (Pein et al., 2017, supplement section
A.1) and (Frick et al., 2014, section 3).

3.4 Storing of the Monte-Carlo simulations

Since a Monte-Carlo simulation lasts potentially much longer than the main calculations of the estimator,
this package offers multiple possibilities for saving and loading the simulations. Both, an object of
the class ”MCSimulationVector”, i.e. a dn times r matrix, containing r independent simulations of
the multiscale vector of statistics (3.9), and an object of the class ”MCSimulationMaximum”, i.e. an
r dimensional vector, containing r independent simulations of the penalised multiscale statistic (3.6)
(for penalties ”sqrt”, ”log” and ”none”), can be simulated, saved and loaded. An object of the class
”MCSimulationVector” is more flexible, since critical values for all penalties and all set of lengths can be
derived from it, but requires much more storage space and slightly larger storing and loading times. The
Monte-Carlo simulations depend on the number of observations, the parametric family and the interval
system, for ”MCSimulationMaximum” additionally the set of lengths and the used penalty matters. Note
that Monte-Carlo simulations can only be saved and loaded if they are generated with the default function
for generating the observations.
Monte-Carlo simulations can also be performed for a (slightly) larger number of observations nq, this

means to calculate T
p|I|0,nq
nq (z, γ0) or T l

nq
(z, γ0) with z = (z1, . . . , znq

) ∼ P(γ0), which avoids extensive
resimulations for only a little bit varying number of observations. The overestimation control (3.5) is still
satisfied but the detection power is (slightly) smaller. The number nq can be specified by the variable
nq, as default, the next larger dyadic number minus one, i.e. nq = 2⌈log2(n)⌉ − 1, is used. Additionally,
the user can decide whether simulations (if required) will be performed with n or with nq, see below.
The simulations can either be stored persistently on the file system for which the package R.cache is
used or in the workspace in the global variable critValStepRTab. Loading from the workspace is faster,
but either the user has to store the workspace manually or in a new session simulations have to be
performed again. Moreover, storing in and loading from variables and rds files is supported. Finally,
an initial collection of simulations can be accessed by installing the package stepRdata available from
http://www.stochastik.math.uni-goettingen.de/stepRdata_1.0-0.tar.gz.
Whenever computation of the critical values / the global quantile will be required, i.e. when the variable
q is not given, it will be looked for avaiable outcomes of the required Monte-Carlo simulations in the
following order: They can explicitly be given in the variable stat, they can be given as an rds file in the
variable RDSfile, they can be loaded from the workspace, they can be loaded from the file system, they
can be accessed from the stepRdata package (if installed) and if no other option was available they will
be simulated by the function monteCarloSimulation. For the workspace and the file system it will first
be looked for a vector of the penalised multiscale statistic in the workspace and then on the file system,
afterwards in both for a matrix of the multiscale vector of statistics for n observations, afterwards in
both for a vector of the penalised multiscale statistic with nq observations and then for a matrix of the
multiscale vector of statistics with nq observations. All searches can be disabled by specifying the variable
options accordingly, please see the documentation of the function critVal for technical details.
The user can decide by the variable options, too, whether a vector of the penalised multiscale statistic or

7

http://www.stochastik.math.uni-goettingen.de/stepRdata_1.0-0.tar.gz

matrix of the multiscale vector of statistics with n or with nq observations will be simulated if simulations
are required. Please take into account the explanations regarding computation time and flexibility from
the beginning of this section for this choice.
All available simulations (either simulated, loaded or computed in the case of a vector of the penalised
statistic) can be saved by all available options, please use again the variable options for a decision which
will be stored and see the documentation of the function critVal for technical details.
As default, the matrix of the multiscale vector of statistics with nq observations will be stored on the file
system and the penalised multiscale statistic in the work space. If required the matrix of the multiscale
vector of statistics with nq observations will be simulated and it will be attempted to load the required
simulations from any option in the previously described order.

4 Methods

This section gives a brief overview about the available functions in the package, for more detailed infor-
mation see the documentation of each function itself.

stepFit Computes the multiscale regression estimator γ̂ (3.1), confidence intervals for the change-point
locations and confidence bands for γ, see Section 3, by a pruned dynamic program, see Section 3.3.
The computation of the confidence intervals and the confidence band can be requested by the variables
jumpint and confband, respectively. An example was given in Section 3.

critVal Computes the vector of critical values q and the global quantile qα at significance level α for a
given penalisation, see Section 3.2.

was called in stepFit, can be called explicitly,

for instance outside of a for loop to save computation time

qVector <- critVal(length(y), alpha = 0.5)

identical(stepFit(y, x = x, q = qVector, jumpint = TRUE, confband = TRUE), fit)

[1] TRUE

qValue <- critVal(length(y), alpha = 0.5, output = "value")

identical(stepFit(y, x = x, q = qValue, jumpint = TRUE, confband = TRUE), fit)

[1] TRUE

computeStat Computes the multiscale vector of penalised statistics T
l,p|I|0,n
n (y, γ) (3.7) and the pe-

nalised multiscale statistic T
p|I|0,n
n (y, γ) (3.6) for given γ ∈ Γ.

fit satisfies the multiscale contraint, i.e.

the computed penalized multiscale statistic is not larger than the global quantile

computeStat(y, signal = fit, output = "maximum") < qValue

[1] TRUE

multiscale vector of statistics is componentwise not larger than

the vector of critical values

all(computeStat(y, signal = fit, output = "vector") < qVector)

[1] TRUE

8

computeBounds Computes the multiscale contraint, i.e. the bounds (3.12) for all intervals I in the
interval set I.

the multiscale contraint

bounds <- computeBounds(y, alpha = 0.5)

monteCarloSimulation Performs Monte-Carlo simulations of the multiscale vector of statistics (3.9)
and of the penalised multiscale statistic (3.6) for y = z ∼ P(γ0) and γ = γ0, see Section 3.2.3.

monteCarloSimulation will be called in critVal, can be called explicitly

object of class MCSimulationVector

stat <- monteCarloSimulation(n = length(y))

identical(critVal(n = length(y), alpha = 0.5, stat = stat),

critVal(n = length(y), alpha = 0.5,

options = list(load = list(), simulation = "matrix")))

[1] TRUE

object of class MCSimulationMaximum

stat <- monteCarloSimulation(n = length(y), output = "maximum")

identical(critVal(n = length(y), alpha = 0.5, stat = stat),

critVal(n = length(y), alpha = 0.5,

options = list(load = list(), simulation = "vector")))

[1] TRUE

Moreover, the functions compareBlocks, neighbours, sdrobnorm, stepcand, steppath, stepsel from version
1.0-0 are still available, please see the documentation of these functions for more details.

4.1 Deprecated functions

The following functions are deprecated, but still working, however, they might be removed in a further
version. There are two groups of deprecated functions. First of all, the functions BesselPolynomial,
contMC, dfilter, jsmurf, transit are mainly used for patchclamp recordings and might be moved to a spe-
cialised package. Secondly, the functions MRC, bounds, smuceR, stepbound are deprecated and functions
of the new version should be used instead. Please see the documentation of the functions itself for more
information and how they can be replaced.

5 Parametric families

This package supports several parametric families (models and fitting methods). Please note that some
require additional parameters. For technical details see also the documentation parametricFamily. In
addition to these families the function smuceR supports ”gaussvar”, ”poisson”, ”binomial”, ”gaussKern”.
They will be added to the new functions in a further version, too.

”gauss” This family implements the Simulataneous MUltiscale Change-point Estimator (SMUCE)
Frick et al. (2014) for independent Gaussian observations. More precisely, independent normally dis-
tributed data y with unknown mean function γ := µ but known, constant standard deviation σ0 > 0 are
assumed, i.e.

yi = µ(xi) + σ0ϵi, i = 1, . . . , n, (5.1)

with ϵ1, . . . , ϵn independent standard normal distributed errors. The standard deviation σ0 has to be
either given by the user or will be estimated using the difference-based estimator

IQR(|y1 − y2|, . . . , |yn−1 − yn|)√
2 IQR(N)

(5.2)

9

with IQR(x) the interquartile range of the sample x, i.e. the 75%-quantile minus the 25%-quantile of
x, and IQR(N) the theoretical interquartile range of the standard normal distribution, i.e. the 75%-
quantile minus the 25%-quantile of the standard normal distribution. This estimator is rather robust
against changes of the underlying mean function and is implemented in the function sdrobnorm. For this
family the multiscale regression estimator γ̂ is defined as the restricted maximum likelihood estimator,
i.e.

LP(y, γ) :=

n∑
i=1

(
yi − γ(xi)

)2
. (5.3)

The local test statistics are the statistics of the likelihood ratio test

TP
I (y, γI) :=

|I|0 (yI − γI)
2

2σ2
, (5.4)

with yI :=
∑

i: xi∈I yi/|I|0, hence, the bounds are derived by

[lI , uI] :=

[
yI − σ

√
2q|I|0
|I|0

, yI + σ

√
2q|I|0
|I|0

]
. (5.5)

All lengths {1, . . . , n} are allowed for this family.

”hsmuce” This family implements theHeterogeneous SimulataneousMUltiscaleChange-pointEstimator
(HSMUCE) Pein et al. (2017). More precisely, independent normal distributed data y with unknown mean
function γ := µ and also unknown standard deviation function σ are assumed, i.e.

yi = µ(xi) + σ(xi)ϵi, i = 1, . . . , n, (5.6)

with ϵ1, . . . , ϵn independent standard normal distributed errors. Here, the unknown mean function is the
parameter of interest, whereas the standard deviation is considered as a nuisance parameter. Moreover,
the standard deviation is assumed to change only at the change-point locations of µ, i.e. function pairs
from the set{(

µ, σ
)
=

(
K∑

k=0

µk1[τk,τk+1),

K∑
k=0

σk1[τk,τk+1)

)
, K ∈ N0, τ0 < · · · < τK+1, µ0, . . . , µK ∈ R, σ0, . . . , σK > 0

}
,

(5.7)
with µi ̸= µi+1, but σi = σi+1 allowed, are assumed. For this family the multiscale regression estimator
γ̂ is defined as the restricted maximum likelihood estimator, i.e.

LP(y, γ) :=

n∑
i=1

(
yi − γ(xi)

)2
/σ̂2

i , (5.8)

with σ̂i =
∑

j∈Ii (yj − γ(xi))
2/|Ii|0, Ii = {j ∈ {1, . . . , n} : γ(xk) = γ(xi) ∀ k = j, . . . , i}. The local test

statistics are the statistics of the likelihood ratio test

TP
I (y, γI) :=

|I|0 (yI − γI)
2

2σ̂2
I

, (5.9)

with yI :=
∑

i: xi∈I yi/|I|0 and σ̂2
I :=

∑
i: xi∈I (yi − yI)

2/(|I|0 − 1), hence, the bounds are derived by

[lI , uI] :=

[
yI − σ̂I

√
2q|I|0
|I|0

, yI + σ̂I

√
2q|I|0
|I|0

]
. (5.10)

All lengths larger than 1, {2, . . . , n}, are allowed for this family.

10

”mDependentPS” This family implements the Simulataneous MUltiscale Change-point Estimator
(SMUCE) Frick et al. (2014) for m-dependent Gaussian observations with known covariance structure.
More precisely, m-dependent normal distributed data y with unknown mean function γ := µ but known
covariance matrix Σ ∈ Rn×n are assumed, i.e.

yi = µ(xi) + ϵi, i = 1, . . . , n, (5.11)

with centred errors E[ϵi] = 0 and known covariance Σi,j = Cov[ϵi, ϵj] = σ2
|j−i| > 0 if |j − i| ≤ m and

Σi,j = Cov[ϵi, ϵj] = 0 else. σ2 = (σ2
0 , . . . , σ

2
m) is called the vector of covariances. For this family the

multiscale regression estimator γ̂ is defined as the restricted least squares estimator, i.e.

LP(y, γ) :=

n∑
i=1

(
yi − γ(xi)

)2
. (5.12)

The local test statistics are the statistics of the partial sum test

TP
I (y, γI) :=

(∑
i: xi∈I yi − γI

)2
2Var

(∑
i: xi∈I yi

) , (5.13)

with Var
(∑

i: xi∈I yi
)
= |I|0σ2

0 + 2
∑m

k=1 (|I|0 − k)+σ
2
k, x+ = max(x, 0), hence, the bounds are derived

by

[lI , uI] :=

yI −
√

2Var
(∑

i: xi∈I yi
)
q|I|0

|I|0
, yI +

√
2Var

(∑
i: xi∈I yi

)
q|I|0

|I|0

 , (5.14)

with yI :=
∑

i:xi∈I yi/|I|0. All lengths {1, . . . , n} are allowed for this family.

6 Interval systems

This package supports the following interval systems.

”all” The system of all intervals (with start and end points at the observation grid). More precisely,
the set

{[xi, xj], 1 ≤ i ≤ j ≤ n}. (6.1)

This system allows all lengths 1, . . . , n.

”dyaLen” The system of all intervals of dyadic length. More precisely, the set

{[xi, xj], 1 ≤ i ≤ j ≤ n s.t. ∃ k ∈ N0 : j − i+ 1 = 2k}. (6.2)

This system allows all dyadic lengths 20, . . . , 2⌊log2(n)⌋.

”dyaPar” The system of the dyadic partition, i.e. all disjoint intervals of dyadic length. More precisely,
the set

{[x(i−1)2k+1, xi2k], i = 1, . . . , ⌊n/2k⌋, k = 0, . . . , ⌊log2(n)⌋}. (6.3)

This system allows all dyadic lengths 20, . . . , 2⌊log2(n)⌋.

References

Frick, K., Munk, A., and Sieling, H. (2014). Multiscale change-point inference. With discussion and
rejoinder by the authors. J. Roy. Statist. Soc. Ser. B, 76(3):495–580.

Pein, F., Sieling, H., and Munk, A. (2017). Heterogeneous change point inference. J. Roy. Statist. Soc.
Ser. B, 79(4):1207–1227.

11

	Introduction
	Model
	Methodolodgy
	Interval set
	Critical values, penalisation and Monte-Carlo simulations
	Scale penalisation
	Balancing by weights
	Monte-Carlo simulations

	Dynamic program
	Storing of the Monte-Carlo simulations

	Methods
	Deprecated functions

	Parametric families
	Interval systems

