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stepR-package Multiscale Change-Point Inference
Description

Allows fitting of step-functions to univariate serial data where neither the number of jumps nor
their positions is known by implementing the multiscale regression estimators SMUCE (Frick et
al., 2014) and HSMUCE (Pein et al., 2017). In addition, confidence intervals for the change-point
locations and bands for the unknown signal can be obtained. This is implemented in the function
stepFit. Moreover, technical quantities like the statistics itself, bounds or critical values can be
computed by other functions of the package. More details can be found in the vignette.

Details

New in version 2.0-0:
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stepFit Piecewise constant multiscale inference
critval Critical values
computeBounds Computation of the bounds
computeStat Computation of the multiscale statistic
monteCarloSimulation Monte Carlo simulation
parametricFamily Parametric families
intervalSystem Interval systems
penalty Penalties

From version 1.0-0:

compareBlocks Compare fit blockwise with ground truth

neighbours Neighbouring integers

sdrobnorm Robust standard deviation estimate
stepblock Step function

stepcand Forward selection of candidate jumps
stepfit Fitted step function

steppath Solution path of step-functions

stepsel Automatic selection of number of jumps

Mainly used for patchclamp recordings and may be transferred to a specialised package:

BesselPolynomial Bessel Polynomials

contMC Continuous time Markov chain

dfilter Digital filters

jsmurf Reconstruct filtered piecewise constant functions with noise
transit TRANSIT algorithm for detecting jumps

Deprecated (please read the documentation of them theirself for more details):

MRC Compute Multiresolution Criterion

MRC. 1000 Values of the MRC statistic for 1,000 observations (all intervals)
MRC.asymptotic "Asymptotic" values of the MRC statistic (all intervals)
MRC.asymptotic.dyadic "Asymptotic" values of the MRC statistic(dyadic intervals)
bounds Bounds based on MRC

family Family of distributions

smuceR Piecewise constant regression with SMUCE

Storing of Monte-Carlo simulations

If g==NULL in critVal, stepFit or computeBounds a Monte-Carlo simulation is required for
computing critical values. Since a Monte-Carlo simulation lasts potentially much longer (up to
several hours or days if the number of observations is in the millions) than the main calcula-
tions, this package offers multiple possibilities for saving and loading the simulations. Simula-
tions can either be saved in the workspace in the variable critValStepRTab or persistently on
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the file system for which the package R.cache is used. Moreover, storing in and loading from
variables and RDS files is supported. Finally, a pre-simulated collection of simulations can be
accessed by installing the package stepRdata available from http://www.stochastik.math.
uni-goettingen.de/stepRdata_1.0-0.tar.gz. By default simulations will be saved in the
workspace and on the file system. For more details and for how simulation can be removed see
Section Simulating, saving and loading of Monte-Carlo simulations in critVal.

References

Frick, K., Munk, A., Sieling, H. (2014) Multiscale change-point inference. With discussion and
rejoinder by the authors. Journal of the Royal Statistical Society, Series B 76(3), 495-580.

Pein, F, Sieling, H., Munk, A. (2017) Heterogeneous change point inference. Journal of the Royal
Statistical Society, Series B, 79(4), 1207-1227.

Pein, F., Tecuapetla-Gémez, 1., Schiitte, O., Steinem, C., Munk, A. (2017) Fully-automatic multires-
olution idealization for filtered ion channel recordings: flickering event detection. arXiv:1706.03671.

Hotz, T., Schiitte, O., Sieling, H., Polupanow, T., Diederichsen, U., Steinem, C., and Munk, A.
(2013) Idealizing ion channel recordings by a jump segmentation multiresolution filter. IEEE Trans-
actions on NanoBioscience 12(4), 376-386.

VanDongen, A. M. J. (1996) A new algorithm for idealizing single ion channel data containing
multiple unknown conductance levels. Biophysical Journal 70(3), 1303-1315.

Futschik, A., Hotz, T., Munk, A., Sieling, H. (2014) Multiresolution DNA partitioning: statistical
evidence for segments. Bioinformatics, 30(16), 2255-2262.

Boysen, L., Kempe, A., Liebscher, V., Munk, A., Wittich, O. (2009) Consistencies and rates of
convergence of jump-penalized least squares estimators. The Annals of Statistics 37(1), 157-183.

Davies, P. L., Kovac, A. (2001) Local extremes, runs, strings and multiresolution. The Annals of
Statistics 29, 1-65.

Friedrich, F., Kempe, A., Liebscher, V., Winkler, G. (2008) Complexity penalized M-estimation:
fast computation. Journal of Computational and Graphical Statistics 17(1), 201-224.

See Also

stepFit, critVal, computeStat, computeBounds, jsmurf, transit, sdrobnorm, compareBlocks,
parametricFamily, intervalSystem, penalty

Examples

# generate random observations

set.seed(1)

n <- 100L

x <-seq(1 / n, 1,1/ n)

mu <- stepfit(cost = @, family = "gauss”, value = c(0, 3, @, -2, @), param = NULL,
leftEnd = x[c(1, 21, 26, 71, 81)1],
rightend = x[c(20, 25, 70, 80, 100)], x0 = 0,
leftIndex = c(1, 21, 26, 71, 81),
rightIndex = c(20, 25, 70, 80, 100))

sigmad <- 0.5

epsilon <- rnorm(n, @, sigma@)


http://www.stochastik.math.uni-goettingen.de/stepRdata_1.0-0.tar.gz
http://www.stochastik.math.uni-goettingen.de/stepRdata_1.0-0.tar.gz
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y <~ fitted(mu) + epsilon
plot(x, y, pch = 16, col = "grey30", ylim = c(-3, 4))
lines(mu, 1lwd = 3)

# computation of SMUCE and its confidence statements
fit <- stepFit(y, x = x, alpha = 0.5, jumpint = TRUE, confband = TRUE)
lines(fit, 1lwd = 3, col = "red"”, lty = "22")

# confidence intervals for the change-point locations
points(jumpint(fit), col = "red", lwd = 3)

# confidence band
lines(confband(fit), 1ty

"22", col = "darkred”, lwd = 2)

# higher significance level for larger detection power, but less confidence
# suggested for screening purposes
stepFit(y, x = x, alpha = 0.9, jumpint = TRUE, confband = TRUE)

# smaller significance level for the small risk that the number of
# change-points is overestimated with probability not more than 5%,
# but smaller detection power

stepFit(y, x = x, alpha = .05, jumpint = TRUE, confband = TRUE)

# different interval system, lengths, penalty and given parameter sd
stepFit(y, x = x, alpha = 0.5, intervalSystem = "dyalLen”,

lengths = c(1L, 2L, 4L, 8L), penalty = "weights",

weights = c(0.4, 0.3, 0.2, 0.1), sd = sigma@,

jumpint = TRUE, confband = TRUE)

# the above calls saved and (attempted to) load Monte-Carlo simulations and

# simulated them for nq = 128 observations

# in the following call no saving, no loading and simulation for n = 100

# observations is required, progress of the simulation will be reported

stepFit(y, x = x, alpha = 0.5, jumpint = TRUE, confband = TRUE, messages = 1000L,
options = list(simulation = "vector"”, load = list(), save = list()))

# critVal was called in stepFit, can be called explicitly,

# for instance outside of a for loop to save computation time

gVector <- critVal(1eeL, alpha = 0.5)

identical(stepFit(y, x = x, q = qVector, jumpint = TRUE, confband = TRUE), fit)

gValue <- critVal(1eeL, alpha = 0.5, output = "value")
identical(stepFit(y, x = x, g = qValue, jumpint = TRUE, confband = TRUE), fit)

# computeBounds gives the multiscale contraint
computeBounds(y, alpha = 0.5)

# monteCarloSimulation will be called in critVal if required
# can be called explicitly
stat <- monteCarloSimulation(n = 100L)
identical(critVal(n = 100L, alpha = 0.5, stat = stat),
critVal(n = 100L, alpha = 0.5,
options = list(load = list(), simulation = "vector")))
identical(critVal(n = 100L, alpha = 0.5, stat = stat, output = "value"),



critval(n = 100L, alpha = 0.5, output = "value”,
options = list(load = list(), simulation = "vector")))

stat <- monteCarloSimulation(n = 100L, output = "maximum")
identical(critVal(n = 100L, alpha = 0.5, stat = stat),
critVal(n = 100L, alpha = 0.5,
options = list(load = list(), simulation = "vector")))
identical(critVal(n = 100L, alpha = 0.5, stat = stat, output = "value"),
critVal(n = 100L, alpha = 0.5, output = "value",
options = list(load = list(), simulation = "vector")))

# fit satisfies the multiscale contraint, i.e.
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# the computed penalized multiscale statistic is not larger than the global quantile

computeStat(y, signal = fit, output = "maximum”) <= gValue

# multiscale vector of statistics is componentwise not larger than
# the vector of critical values

all(computeStat(y, signal = fit, output = "vector”) <= gVector)

# family "hsmuce”

set.seed(1)

y <= c(rnorm(50, @, 1), rnorm(50, 1, 0.2))

plot(x, y, pch = 16, col = "grey30", ylim = c(-2.5, 2))

# computation of HSMUCE and its confidence statements
fit <- stepFit(y, x = x, alpha = 0.5, family = "hsmuce”,

jumpint = TRUE, confband = TRUE)
lines(fit, 1lwd = 3, col = "red"”, lty = "22")

# confidence intervals for the change-point locations
points(jumpint(fit), col = "red”, lwd = 3)

# confidence band

lines(confband(fit), 1ty = "22", col = "darkred”, 1lwd = 2)

# for comparison SMUCE, not recommend to use here
lines(stepFit(y, x = x, alpha = 0.5,
jumpint = TRUE, confband = TRUE),
lwd = 3, col = "blue”, 1ty = "22")

# family "mDependentPS”

# generate observations from a moving average process
set.seed(1)

y <- c(rep(@, 50), rep(2, 50)) +

as.numeric(arima.sim(n = 100, list(ar = c(), ma = c(0.8, 0.5, 0.3)), sd = sigma0d))
correlations <- as.numeric(ARMAacf(ar = c(), ma = c(0.8, 0.5, 0.3), lag.max = 3))

covariances <- sigma@”2 * correlations
plot(x, y, pch = 16, col = "grey30”, ylim = c(-2, 4))

# computation of SMUCE for dependent observations with given covariances
fit <- stepFit(y, x = x, alpha = 0.5, family = "mDependentPS",

covariances = covariances, jumpint = TRUE, confband = TRUE)
lines(fit, lwd = 3, col = "red”, 1ty = "22")
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# confidence intervals for the change-point locations
points(jumpint(fit), col = "red”, lwd = 3)

# confidence band

lines(confband(fit), 1ty = "22", col = "darkred”, lwd = 2)

# for comparison SMUCE for independent observations, not recommend to use here
lines(stepFit(y, x = x, alpha = 0.5,
jumpint = TRUE, confband = TRUE),
lwd = 3, col = "blue”, 1ty = "22")

# with given correlations, standard deviation will be estimated by sdrobnorm
stepFit(y, x = x, alpha = 0.5, family = "mDependentPS",
correlations = correlations, jumpint = TRUE, confband = TRUE)

# examples from version 1.0-0

# estimating step-functions with Gaussian white noise added

# simulate a Gaussian hidden Markov model of length 1000 with 2 states
# with identical transition rates 0.01, and signal-to-noise ratio 2
sim <- contMC(1e3, 0:1, matrix(c(0, 0.01, .01, @), 2), param=1/2)
plot(sim$data, cex = 0.1)

lines(sim$cont, col="red")

# maximum-likelihood estimation under multiresolution constraints
fit.MRC <- smuceR(sim$data$y, sim$data$x)

lines(fit.MRC, col="blue")

# choose number of jumps using BIC

path <- steppath(sim$datas$y, sim$data$x, max.blocks=1e2)

fit.BIC <- path[[stepsel.BIC(path)]]

lines(fit.BIC, col="green3", 1ty = 2)

# estimate after filtering

# simulate filtered ion channel recording with two states

set.seed(9)

# sampling rate 10 kHz

sampling <- le4

# tenfold oversampling

over <- 10

# 1 kHz 4-pole Bessel-filter, adjusted for oversampling

cutoff <- 1e3

df.over <- dfilter("bessel”, list(pole=4, cutoff=cutoff / sampling / over))

# two states, leaving state 1 at 10 Hz, state 2 at 20 Hz

rates <- rbind(c(@, 10), c(20, 0))

# simulate 0.5 s, level @ corresponds to state 1, level 1 to state 2

# noise level is 0.3 after filtering

Sim <- contMC(@.5 * sampling, @:1, rates, sampling=sampling, family="gaussKern"”,
param = list(df=df.over, over=over, sd=0.3))

plot(Sim$data, pch = ".")

lines(Sim$discr, col = "red")

# fit under multiresolution constraints using filter corresponding to sample rate

df <- dfilter("bessel”, list(pole=4, cutoff=cutoff / sampling))

Fit.MRC <- jsmurf(Sim$data$y, Sim$data$x, param=df, r=1e2)

lines(Fit.MRC, col = "blue")
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# fit using TRANSIT
Fit.trans <- transit(Sim$datas$y, Sim$data$x)
lines(Fit.trans, col = "green3", lty=2)

BesselPolynomial Bessel Polynomials

Description

Recursively compute coefficients of Bessel Polynomials.

Deprecation warning: This function is a help function for the Bessel filters in dfilter and may
be removed when dfilter will be removed.

Usage

BesselPolynomial(n, reverse = FALSE)

Arguments

n order

reverse whether to return the coefficients of a reverse Bessel Polynomial
Value

Returns the polynom’s coefficients ordered increasing with the exponent, i.e. starting with the
intercept, as for polyroot.

See Also

dfilter, bessel, polyroot

Examples

# 15 x*3 + 15 x*"2 + 6 x + 1
BesselPolynomial(3)
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bounds Bounds based on MRC

Description

Computes two-sided bounds for a set of intervals based on a multiresolution criterion (MRC).

Deprecation warning: This function is deprecated, but still working, however, may be defunct in
a future version. Please use instead the function computeBounds. An example how to reproduce
results (currently only family "gauss” is supported) is given below.

Usage

bounds(y, type = "MRC", ...)
bounds.MRC(y, q, alpha = 0.05, r = ceiling(5@ / min(alpha, 1 - alpha)),
lengths = if(family == "gaussKern")
2*(floor(log2(length(y))):ceiling(log2(length(param$kern)))) else
2*(floor(log2(length(y))):0), penalty = c("none”, "len", "var"”, "sqrt"),
name = if (family == "gaussKern”) ".MRC.ktable"” else ".MRC.table", pos = .MCstepR,
family = c("gauss”, "gaussvar”, "poisson”, "binomial”,"gaussKern"), param = NULL,
subset, max.iter = 1e2, eps = le-3)
## S3 method for class 'bounds'

x[subset]
Arguments
y a numeric vector containing the serial data
type so far only bounds of type "MRC" are implemented
further arguments to be passed on to bounds.MRC
q quantile of the MRC; if specified, alpha and r will be ignored
alpha level of significance
r number of simulations to use to obtain quantile of MRC for specified alpha
lengths vector of interval lengths to use, dyadic intervals by default
penalty penalty term in the multiresolution statistic: "none” for no penalty, "len"” for

penalizing the length of an interval, "var” for penalizing the variance over an
interval, and "sqrt" for penalizing the square root of the MRC

family, param specifies distribution of data, see family

subset a subset of indices of y for which bounds should be aggregated

name, pos under which name and where precomputed results are stored, or retrieved, see
assign

max.iter maximal iterations in Newton’s method to compute non-Gaussian MRC bounds

eps tolerance in Newton’s method

X an object of class bounds



10 compareBlocks

Value

Returns an object of class bounds, i.e. a list whose entry bounds contains two-sided bounds (Lower
and upper) of the considered intervals (with left index 1i and right index ri) in a data.frame,
along with a vector start specifying in which row of entry bounds intervals with corresponding
1i start (if any; specified as a C-style index), and a logical feasible telling whether a feasible
solution exists for these bounds (always TRUE for MRC bounds which are not restricted to a subset).

See Also

computeBounds, stepbound, family

Examples

y <= rnorm(100, c(rep(@, 50), rep(1, 50)), 0.5)

b <- computeBounds(y, q = 4, intervalSystem = "dyalLen"”, penalty = "none")
b <- b[order(b$li, b$ri), 1

attr(b, "row.names") <- seq(along = b$li)

# entries in bounds are recovered by computeBounds
all.equal(bounds(y, g = 4)$bounds, b) # TRUE

# simulate signal of 100 data points

Y <- rpois(100, 1:100 / 10)

# compute bounds for intervals of dyadic lengths

b <- bounds(Y, penalty="len", family="poisson”, g=4)

# compute bounds for all intervals

b <- bounds(Y, penalty="len", family="poisson”, g=4, lengths=1:100)

compareBlocks Compare fit blockwise with ground truth

Description

Blockwise comparison of a fitted step function with a known ground truth using different criteria.

Usage

compareBlocks(truth, estimate, dist = 5e3)

Arguments
truth an object of class stepblock giving the ground truth, or a list of such objects
estimate corresponding estimated object(s) of class stepblock
dist a single numeric specifying the distance for at which jumps will be considered

as having matched in the qualitative criterion



compareBlocks 11

Value

A data. frame, containing just one row if two single stepblock were given, with columns

true.num, est.num
the true / estimated number of blocks

true.pos, false.pos, false.neg, sens.rate, prec.rate
the number of true / false positive, false negatives, as well as the corresponding
sensitivity and precision rates, where an estimated block is considered a true
positive if it there is a corresponding block in the ground truth with both end-
points within dist of each other

fpsle false positive sensitive localization error: for each estimated block’s midpoint
find into which true block it falls, and sum distances of the respective borders
fnsle false negative sensitive localization error: for each true block’s mid-point find
into which estimated block it falls, and sum distances of the respective borders
total.le total localization error: sum of fpsle and fnsle
Note

No differences between true and fitted parameter values are taking into account, only the precision
of the detected blocks is considered; also, differing from the criteria in Elhaik et al.~(2010), no
blocks are merged in the ground truth if its parameter values are close, as this may punish sensitive
estimators.

Beware that these criteria compare blockwise, i.e. they do not compare the precision of single jumps
but for each block both endpoints have to match well at the same time.

References

Elhaik, E., Graur, D., Josi¢, K. (2010) Comparative testing of DNA segmentation algorithms using
benchmark simulations. Molecular Biology and Evolution 27(5), 1015-24.

Futschik, A., Hotz, T., Munk, A. Sieling, H. (2014) Multiresolution DNA partitioning: statistical
evidence for segments. Bioinformatics, 30(16), 2255-2262.

See Also

stepblock, stepfit, contMC

Examples

# simulate two Gaussian hidden Markov models of length 1000 with 2 states each
# with identical transition rates being 0.01 and 0.05, resp, signal-to-noise ratio is 5
sim <- lapply(c(@.01, 0.05), function(rate)
contMC(1e3, @:1, matrix(c(@, rate, rate, 0), 2), param=1/5))
plot(sim[[1]]$data)
lines(sim[[1]]$cont, col="red")
# use smuceR to estimate fit
fit <- lapply(sim, function(s) smuceR(s$datas$y, s$data$x))
lines(fit[[1]], col="blue")
# compare fit with (discretised) ground truth
compareBlocks(lapply(sim, function(s) s$discr), fit)
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computeBounds Computation of the bounds

Description

Computes the multiscale contraint given by the multiscale test, (3.12) in the vignette. In more detail,
returns the bounds of the interval of parameters for which the test statistic is smaller than or equal
to the critical value for the corresponding length, i.e. the two solutions resulting from equating the
test statistic to the critical value.

If g == NULL a Monte-Carlo simulation is required for computing critical values. Since a Monte-
Carlo simulation lasts potentially much longer (up to several hours or days if the number of ob-
servations is in the millions) than the main calculations, this package saves them by default in the
workspace and on the file system such that a second call requiring the same Monte-Carlo simulation
will be much faster. For more details, in particular to which arguments the Monte-Carlo simulations
are specific, see Section Storing of Monte-Carlo simulations below. Progress of a Monte-Carlo sim-
ulation can be reported by the argument messages and the saving can be controlled by the argument

option, both can be specified in ... and are explained in monteCarloSimulation and critVal,
respectively.
Usage
computeBounds(y, g = NULL, alpha = NULL, family = NULL,
intervalSystem = NULL, lengths = NULL, ...)
Arguments

y a numeric vector containing the observations

q either NULL, then the vector of critical values at level alpha will be computed
from a Monte-Carlo simulation, or a numeric giving the global quantile or a
numeric vector giving the vector of critical values. Either g or alpha must be
given. Otherwise, alpha == 0.5 is chosen with a warning. This argument will
be passed to critVal to obtain the needed critical values. Additional parame-
ters for the computation of g can be specified in ..., for more details see the
documentation of critVal. Please note that by default the Monte-Carlo simu-
lation will be saved in the workspace and on the file system, for more details see
Section Storing of Monte-Carlo simulations below

alpha a probability, i.e. a single numeric between 0 and 1, giving the significance
level. Its choice is a trade-off between data fit and parsimony of the estimator.
In other words, this argument balances the risks of missing change-points and
detecting additional artefacts. For more details on this choice see (Frick et al.,
2014, section 4) and (Pein et al., 2017, section 3.4). Either q or alpha must be
given. Otherwise, alpha == 0.5 is chosen with a warning

family a string specifying the assumed parametric family, for more details see paramet-

ricFamily, currently "gauss”, "hsmuce"” and "mDependentPS" are supported.
By default (NULL) "gauss” is assumed
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intervalSystem a string giving the used interval system, either "all” for all intervals, "dyalLen”
for all intervals of dyadic length or "dyaPar"” for the dyadic partition, for more
details see intervalSystem. By default (NULL) the default interval system of the
specified parametric family will be used, which one this will be is described in
parametricFamily

lengths an integer vector giving the set of lengths, i.e. only intervals of these lengths
will be considered. Note that not all lengths are possible for all interval sys-
tems and for all parametric families, see intervalSystem and parametricFamily,
respectively, to see which ones are allowed. By default (NULL) all lengths that
are possible for the specified intervalSystem and for the specified parametric
family will be used

there are two groups of further arguments:

1. further parameters of the parametric family. Depending on argument family
some might be required, but others might be optional, please see paramet-
ricFamily for more details,

2. further parameters that will be passed to critVal. critVal will be called
automatically with the number of observations n = length(y), the argu-
ments family, intervalSystem, lengths, q and output set. For these
arguments no user interaction is required and possible, all other arguments
of critVal can be passed additionally

Value

A data. frame containing two integer vectors 1i and ri and two numeric vectors lower and upper.
For each interval in the set of intervals specified by intervalSystem and lengths 1i and ri give
the left and right index of the interval and lower and upper give the lower and upper bounds for
the parameter on the given interval.

Storing of Monte-Carlo simulations

If g == NULL a Monte-Carlo simulation is required for computing critical values. Since a Monte-
Carlo simulation lasts potentially much longer (up to several hours or days if the number of observa-
tions is in the millions) than the main calculations, this package offers multiple possibilities for sav-
ing and loading the simulations. Progress of a simulation can be reported by the argument messages
which can be specified in . .. and is explained in the documentation of monteCarloSimulation.
Each Monte-Carlo simulation is specific to the number of observations, the parametric family (in-
cluding certain parameters, see parametricFamily) and the interval system, and for simulations of
class "MCSimulationMaximum”, additionally, to the set of lengths and the used penalty. Monte-
Carlo simulations can also be performed for a (slightly) larger number of observations n, given in
the argument nq in . .. and explained in the documentation of critVal, which avoids extensive
resimulations for only a little bit varying number of observations. Simulations can either be saved
in the workspace in the variable critValStepRTab or persistently on the file system for which the
package R.cache is used. Moreover, storing in and loading from variables and RDS files is sup-
ported. Finally, a pre-simulated collection of simulations can be accessed by installing the package
stepRdata available from http://www.stochastik.math.uni-goettingen.de/stepRdata_1.
0-0.tar.gz. The simulation, saving and loading can be controlled by the argument option which
can be specified in ... and is explained in the documentation of critVal. By default simulations
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will be saved in the workspace and on the file system. For more details and for how simulation can
be removed see Section Simulating, saving and loading of Monte-Carlo simulations in critVal.

Note

Depending on intervalSystem and lengths the intervals might be ordered differently to allow
fast computation. For most applications the order should not matter. Otherwise, the entries can be
reordered with order, an example is given below.

References

Frick, K., Munk, A., Sieling, H. (2014) Multiscale change-point inference. With discussion and
rejoinder by the authors. Journal of the Royal Statistical Society, Series B 76(3), 495-580.

Pein, F,, Sieling, H., Munk, A. (2017) Heterogeneous change point inference. Journal of the Royal
Statistical Society, Series B, 79(4), 1207-1227.

See Also

critVal, penalty, parametricFamily, intervalSystem, stepFit, computeStat, monteCarloSimulation

Examples

y <= c(rnorm(50), rnorm(50, 1))

# the multiscale contraint
bounds <- computeBounds(y, alpha = 0.5)

# the order of the bounds depends on intervalSystem and lengths

# to allow fast computation

# if a specific order is required it can be reordered by order

# b is ordered with increasing left indices and increasing right indices
b <- bounds[order(bounds$li, bounds$ri), 1]

attr(b, "row.names") <- seq(along = b$li)

# higher significance level for larger detection power, but less confidence
computeBounds(y, alpha = 0.99)

# smaller significance level for stronger confidence statements, but at
# the risk of missing change-points
computeBounds(y, alpha = 0.05)

# different interval system, lengths, penalty and given parameter sd
computeBounds(y, alpha = 0.5, intervalSystem = "dyalLen”,
lengths = c(1L, 2L, 4L, 8L), penalty = "weights",
weights = c(0.4, 0.3, 0.2, 0.1), sd = 0.5)

# with given g

identical (computeBounds(y, q = critVal(10eL, alpha = 0.5)), bounds)

identical (computeBounds(y, q = critVal(100L, alpha = 0.5, output = "value")),
bounds)
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# the above calls saved and (attempted to) load Monte-Carlo simulations and
# simulated them for nq = 128 observations
# in the following call no saving, no loading and simulation for n = 100
# observations is required, progress of the simulation will be reported
computeBounds(y, alpha = 0.5, messages = 1000L,
options = list(simulation = "vector”,
load = list(), save = list()))

# with given stat to compute q
stat <- monteCarloSimulation(n = 128L)
identical (computeBounds(y, alpha = 0.5, stat = stat),
computeBounds(y, alpha = 0.5, options = list(load = list())))

computeStat Computation of the multiscale statistic

Description

Computes the multiscale vector of penalised statistics, (3.7) in the vignette, or the penalised multi-
scale statistic, (3.6) in the vignette, for given signal.

Usage

computeStat(y, signal = @, family = NULL, intervalSystem = NULL, lengths = NULL,
penalty = NULL, nq = length(y),

output = c("list”, "vector”, "maximum"), ...)
Arguments

y a numeric vector containing the observations

signal the given signal, either a single numeric for a constant function equal to the
given value or an object of class stepfit. More precisely, a 1ist containing an
integer vector leftIndex, an integer vector rightIndex and a numeric vector
value, all of the same length, e.g. a data. frame, specifying a step function is
enough

family a string specifying the assumed parametric family, for more details see paramet-

ricFamily, currently "gauss”, "hsmuce” and "mDependentPS" are supported.
By default (NULL) "gauss” is assumed

intervalSystem a string giving the used interval system, either "all” for all intervals, "dyalLen”
for all intervals of dyadic length or "dyaPar"” for the dyadic partition, for more
details see intervalSystem. By default (NULL) the default interval system of the
specified parametric family will be used, which one this will be is described in
parametricFamily



16

lengths

penalty

nq

output

Value

computeStat

an integer vector giving the set of lengths, i.e. only intervals of these lengths
will be considered. Note that not all lengths are possible for all interval sys-
tems and for all parametric families, see intervalSystem and parametricFamily,
respectively, to see which ones are allowed. By default (NULL) all lengths that
are possible for the specified intervalSystem and for the specified parametric
family will be used

a string specifying how the statistics will be penalised, either "sqrt”, "log" or
"none”, see penalty and section 3.2 in the vignette for more details. By default
(NULL) the default penalty of the specified parametric family will be used, which
one this will be is described in parametricFamily

a single integer larger than or equal to length(y) giving the number of obser-
vations used in the penalty term, see penalty for more details. The possibility to
use a number larger than length(y) is given for comparisons, since a (slightly)
larger number can be chosen in critVal and monteCarloSimulation to avoid
extensive recomputations for (slightly) varying number of observations. For
more details see also the Section Simulating, saving and loading of Monte-Carlo
simulations in critVal

a string specifying the output, see Value

further parameters of the parametric family. Depending on argument family
some might be required, but others might be optional, please see parametric-
Family for more details

If output == 1ist a list containing in maximum the penalised multiscale statistic, i.e. the maximum
over all test statistics, in stat the multiscale vector of penalised statistics, i.e. a vector of length
lengths giving the maximum over all tests of that length, and in lengths the vector of lengths. If
output == vector a numeric vector giving the multiscale vector of penalised statistics. If output
== maximum a single numeric giving the penalised multiscale statistic. -Inf is returned for lengths
for which on all intervals of that length contained in the set of intervals the signal is not constant
and, hence, no test statistic can be computed. This behaves similar to max (numeric(@)).

References

Frick, K., Munk, A., Sieling, H. (2014) Multiscale change-point inference. With discussion and
rejoinder by the authors. Journal of the Royal Statistical Society, Series B 76(3), 495-580.

Pein, F,, Sieling, H., Munk, A. (2017) Heterogeneous change point inference. Journal of the Royal
Statistical Society, Series B, 79(4), 1207-1227.

See Also

parametricFamily, intervalSystem, penalty, monteCarloSimulation, stepFit, computeBounds

Examples

y <= rnorm(100)

# for the default signal = @ a signal constant @ is assumed



contMC 17

identical (computeStat(y), computeStat(y,
signal = list(leftIndex = 1L, rightIndex = 100L, value = 0)))

# different constant value

ret <- computeStat(y, signal = 1)

# penalised multiscale statistic

identical(ret$maximum, computeStat(y, signal = 1, output = "maximum"))
# multiscale vector of penalised statistics

identical(ret$stat, computeStat(y, signal = 1, output = "vector”))

y <= c(rnorm(50), rnorm(50, 1))

# true signal

computeStat(y, signal = list(leftIndex = c(1L, 51L), rightIndex = c(50L, 100L),
value = c(0, 1)))

# fit satisfies the multiscale contraint, i.e.
# the penalised multiscale statistic is not larger than the used global quantile 1
computeStat(y, signal = stepFit(y, g = 1), output = "maximum"”) <= 1

# different interval system, lengths, penalty, given parameter sd
# and computed for an increased number of observations nq
computeStat(y, signal = list(leftIndex = c(1L, 51L), rightIndex = c(50L, 100L),
value = c(0, 1)), nqg = 128, sd = 0.5,
intervalSystem = "dyalLen”, lengths = c(1L, 2L, 4L, 8L), penalty = "none”)

# family "hsmuce”
computeStat(y, signal = mean(y), family = "hsmuce")

# family "mDependentPS”
signal <- list(leftIndex = c(1L, 13L), rightIndex = c(12L, 17L), value = c(@, -1))
y <- c(rep(@, 13), rep(-1, 4)) +

as.numeric(arima.sim(n = 17, list(ar = c(), ma = c(0.8, 0.5, 0.3)), sd = 1))
covariances <- as.numeric(ARMAacf(ar = c(), ma = c(0.8, 0.5, 0.3), lag.max = 3))

computeStat(y, signal = signal, family = "mDependentPS", covariances = covariances)
contMC Continuous time Markov chain
Description

Simulate a continuous time Markov chain.

Deprecation warning: This function is mainly used for patchlamp recordings and may be trans-
ferred to a specialised package.
Usage

contMC(n, values, rates, start =1, sampling =1, family = c("gauss"”, "gaussKern"),
param = NULL)



18

Arguments

n
values

rates

start
sampling

family

param

Value

contMC

number of data points to simulate
a numeric vector specifying signal amplitudes for different states

a square matrix matching the dimension of values each with rates[i, j]
specifying the transition rate from state i to state j; the diagonal entries are
ignored

the state in which the Markov chain is started
the sampling rate

whether Gaussian white ("gauss”) or coloured ("gaussKern"), i.e. filtered,
noise should be added; cf. family

for family="gauss", a single non-negative numeric specifying the standard
deviation of the noise; for family="gaussKern", param must be a list with entry
df giving the dfilter object used for filtering, an integer entry over which
specifies the oversampling factor of the filter, i.e. param$df has to be created
for a sampling rate of sampling times over, and an additional non-negative
numeric entry sd specifying the noise’s standard deviation after filtering; cf.
family

A list with components

cont

discr

data

Note

an object of class stepblock containing the simulated true values in continuous
time, with an additional column state specifying the corresponding state

an object of class stepblock containing the simulated true values reduced to
discrete time, i.e. containing only the observable blocks

a data.frame with columns x and y containing the times and values of the
simulated observations, respectively

This follows the description for simulating ion channels given by VanDongen (1996).

References

VanDongen, A. M. J. (1996) A new algorithm for idealizing single ion channel data containing
multiple unknown conductance levels. Biophysical Journal 70(3), 1303-1315.

See Also

stepblock, jsmurf, stepbound, steppath, family, dfilter
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Examples

# Simulate filtered ion channel recording with two states

set.seed(9)

# sampling rate 10 kHz

sampling <- 1e4

# tenfold oversampling

over <- 10

# 1 kHz 4-pole Bessel-filter, adjusted for oversampling

cutoff <- 1e3

df <- dfilter("bessel”, list(pole=4, cutoff=cutoff / sampling / over))

# two states, leaving state 1 at 1 Hz, state 2 at 10 Hz

rates <- rbind(c(@, 1e0), c(lel, @))

# simulate 5 s, level @ corresponds to state 1, level 1 to state 2

# noise level is 0.1 after filtering

sim <- contMC(5 * sampling, 0:1, rates, sampling=sampling, family="gaussKern”,
param = list(df=df, over=over, sd=0.1))

sim$cont
plot(sim$data, pch = ".")
lines(sim$discr, col = "red")

# noise level after filtering, estimated from first block
sd(sim$data$y[1:sim$discr$rightIndex[1]1])

# show autocovariance in first block

acf(ts(sim$datasy[1:sim$discr$rightIndex[1]1], freqg=sampling), type = "cov")

# power spectrum in first block

s <- spec.pgram(ts(sim$data$y[1:sim$discr$rightIndex[1]1], freg=sampling), spans=c(200,90))
# cutoff frequency is where power spectrum is halved

abline(v=cutoff, h=s$spec[1] / 2, 1ty = 2)

critVal Critical values

Description

Computes the vector of critical values or the global quantile. This function offers two ways of com-
putation, either at significance level alpha from a Monte-Carlo simulation, see also section 3.2 in
the vignette for more details, or from the global quantile / critical values given in the argument q.
For more details on these two options see Section Computation of critical values / global quantile.
Since a Monte-Carlo simulation lasts potentially much longer (up to several hours or days if the
number of observations is in the millions) than the main calculations, this package saves them
by default in the workspace and on the file system such that a second call requiring the same
Monte-Carlo simulation will be much faster. For more details, in particular to which arguments
the Monte-Carlo simulations are specific, see Section Storing of Monte-Carlo simulations below.
Progress of a Monte-Carlo simulation can be reported by the argument messages in . . ., explained
in monteCarloSimulation, and the saving can be controlled by the argument option.

Usage

critvVal(n, q = NULL, alpha = NULL, ng = 2L*(as.integer(log2(n) + 1e-12) + 1L) - 1L,
family = NULL, intervalSystem = NULL, lengths = NULL, penalty = NULL,



20 critVal

weights = NULL, stat = NULL, r = 1e4, output = c("vector”, "value"),
options = NULL, ...)

Arguments

n a positive integer giving the number of observations

q either NULL, then the vector of critical values at level alpha will be computed
from a Monte-Carlo simulation, or a numeric giving the global quantile or a nu-
meric vector giving the vector of critical values. For more detailed information,
in particular of which length the numeric vector should be, see Section Com-
putation of critical values / global quantile. Either q or alpha must be given.
Otherwise, alpha == 0.5 is chosen with a warning. Please note that by default
the Monte-Carlo simulation will be saved in the workspace and on the file sys-
tem, for more details see Section Simulating, saving and loading of Monte-Carlo
simulations below

alpha a probability, i.e. a single numeric between 0 and 1, giving the significance
level. Its choice is a trade-off between data fit and parsimony of the estimator.
In other words, this argument balances the risks of missing change-points and
detecting additional artefacts. For more details on this choice see (Frick et al.,
2014, section 4) and (Pein et al., 2017, section 3.4). Either q or alpha must be
given. Otherwise, alpha == 0.5 is chosen with a warning

ng a positive integer larger than or equal to n giving the (increased) number of
observations for the Monte-Carlo simulation. See Section Simulating, saving
and loading of Monte-Carlo simulations for more details

family a string specifying the assumed parametric family, for more details see paramet-
ricFamily, currently "gauss”, "hsmuce” and "mDependentPS" are supported.
By default (NULL) "gauss” is assumed

intervalSystem a string giving the used interval system, either "all” for all intervals, "dyalLen”
for all intervals of dyadic length or "dyaPar” for the dyadic partition, for more
details see intervalSystem. By default (NULL) the default interval system of the
specified parametric family will be used, which one this will be is described in
parametricFamily

lengths an integer vector giving the set of lengths, i.e. only intervals of these lengths
will be considered. Note that not all lengths are possible for all interval sys-
tems and for all parametric families, see intervalSystem and parametricFamily,
respectively, to see which ones are allowed. By default (NULL) all lengths that
are possible for the specified intervalSystem and for the specified parametric
family will be used

non

penalty a string specifying how different scales will be balanced, either "sqrt”, "weights”,
"log" or "none”, see penalty and section 3.2 in the vignette for more details.
By default (NULL) the default penalty of the specified parametric family will be
used, which one this will be is described in parametricFamily

weights a numeric vector of length length(lengths) with only positive entries giving
the weights that will be used for penalty "weights”, see penalty and section
3.2.2 in the vignette for more details. By default (NULL) equal weights will be
used, i.e.



critVal

stat

output

options

Value
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weights == rep(1 / length(lengths), length(lengths))

an object of class "MCSimulationVector” or "MCSimulationMaximum” giving
a Monte-Carlo simulations, usually computed by monteCarloSimulation. If
penalty == "weights"” only "MCSimulationVector” is allowed. Has to be
simulated for at least the given number of observations n and for the given
family, intervalSystemand if "MCSimulationMaximum” for the given lengths
and penalty. By default (NULL) the required simulation will be made available
automatically accordingly to the given options. For more details see Section
Simulating, saving and loading of Monte-Carlo simulations and section 3.4 in
the vignette

a positive integer giving the required number of Monte-Carlo simulations if they
will be simulated or loaded from the workspace or the file system

a string specifying the return value, if output == "vector” the vector of critical
values will be computed and if output == "value” the global quantile will be
computed. For penalty == "weights"” the output must be "vector”, since no
global quantile can be determined for this penalty

a list specifying how Monte-Carlo simulations will be simulated, saved and
loaded. For more details see Section Simulating, saving and loading of Monte-
Carlo simulations and section 3.4 in the vignette

there are two groups of further arguments:

o further parameters of the parametric family. Depending on the argument
family some might be required, but others might be optional, please see
parametricFamily for more details

* further arguments (seed, rand.gen and messages) that will be passed to
monteCarloSimulation. monteCarloSimulation will be called automat-
ically and most of the arguments will be set accordingly to the arguments of
critVal, no user interaction is required and possible for these parameters.
In addition, seed, rand. gen and messages can be passed by the user

If output == "vector” a numeric vector giving the vector of critical values, i.e. a vector of length
length(lengths), giving for each length the corresponding critical value. If output == "value”
a single numeric giving the global quantile. In both cases, additionally, an attribute "n" gives the
number of observations for which the Monte-Carlo simulation was performed.

Computation of critical values / global quantile

This function offers two ways to compute the resulting value:

* If g ==NULL it will be computed at significance level alpha from a Monte-Carlo simulation.
For penalties "sqrt”, "log" and "none” the global quantile will be the (1-alpha)-quantile of
the penalised multiscale statistic, see section 3.2.1 in the vignette. And if required the vector of
critical values will be derived from it. For penalty "weights" the vector of critical values will
be calculated accordingly to the given weights. The Monte-Carlo simulation can either be
given in stat or will be attempted to load or will be simulated. How Monte-Carlo simulations
are simulated, saved and loaded can be controlled by the argument option, for more details
see the Section Simulating, saving and loading of Monte-Carlo simulations.
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e If g is given it will be derived from it. For the argument q either a single finite numeric
giving the global quantile or a vector of finite numerics giving the vector of critical values (not
allowed for output == "value") is possible:

— A single numeric giving the global quantile. If output == "vector” the vector of critical
values will be computed from it for the given lengths and penalty (penalty "weights”
is not allowed). Note that the global quantile is specific to the arguments family, intervalSystem,
lengths and penalty.
— A vector of length length(lengths), giving for each length the corresponding critical
value. This vector is identical to the vector of critical values.

— A vector of length n giving for each length 1:n the corresponding critical value.

— A vector of length equal to the number of all possible lengths for the given interval system
and the given parametric family giving for each possible length the corresponding critical
value.

Additionally, an attribute "n" giving the number of observations for which q was computed
is allowed. This attribute must be a single integer and equal to or larger than the argument
n which means that q must have been computed for at least n observations. This allows
additionally:

— A vector of length attr(q, "n") giving for each length 1:attr(qg, "n") the correspond-
ing critical value.

— A vector of length equal to the number of all possible lengths for the given interval system
and the given parametric family if the number of observations is attr(q, "n") giving for
each possible length the corresponding critical value.

The attribute "n" will be kept or set to n if missing.

Simulating, saving and loading of Monte-Carlo simulations

Since a Monte-Carlo simulation lasts potentially much longer (up to several hours or days if the
number of observations is in the millions) than the main calculations, this function offers multiple
possibilities for saving and loading the simulations. The simulation, saving and loading can be con-
trolled by the argument option. This argument has to be a 1ist or NULL and the following named
entries are allowed: "simulation”, "save”, "load”, "envir"” and "dirs”. All missing entries
will be set to their default option.

Objects of class "MCSimulationVector”, containing simulations of the multiscale vector of statis-
tics, and objects of class "MCSimulationMaximum”, containing simulations of the penalised multi-
scale statistic (for penalties "sqrt”, "log"” and "none"”), can be simulated, saved and loaded. Each
Monte-Carlo simulation is specific to the number of observations, the parametric family and the in-
terval system, for "MCSimulationMaximum” additionally to the set of lengths and the used penalty.
Both types will lead to the same result, however, an object of class "MCSimulationVector" is more
flexible, since critical values for all penalties and all set of lengths can be derived from it, but re-
quires much more storage space and has slightly larger saving and loading times. Note that Monte-
Carlo simulations can only be saved and loaded if they are generated with the default function for
generating random observations, i.e. when rand.gen (in .. .) is NULL. For a given simulation this
is signalled by the attribute "save” which is TRUE if a simulation can be saved and FALSE other-
wise.

Monte-Carlo simulations can also be performed for a (slightly) larger number of observations n,
given in the argument nq, which avoids extensive resimulations for only a little bit varying number
of observations. The overestimation control is still satisfied but the detection power is (slightly)
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smaller. But note that the default lengths might change when the number of observations is in-
creased and, hence, for type "vectorIncreased” still a different simulation might be required.
We refer to the different types as follow:

* "vector"”: an object of class "MCSimulationMaximum”, i.e. simulations of the penalized
multiscale statistic, for n observations

* "vectorIncreased”: an object of class "MCSimulationMaximum”, i.e. simulations of the
penalized multiscale statistic, for nq observations

* "matrix”: an object of class "MCSimulationVector”, i.e. simulations of the multiscale vec-
tor of statistics, for n observations

* "matrixIncreased”: an object of class "MCSimulationVector"”,i.e. simulations of the mul-
tiscale vector of statistics, for nq observations

The simulations can either be saved in the workspace in the variable critValStepRTab or persis-
tently on the file system for which the package R.cache is used. Loading from the workspace is
faster, but either the user has to store the workspace manually or in a new session simulations have
to be performed again. Moreover, storing in and loading from variables and RDS files is supported.
Finally, a pre-computed collection of simulations of type "matrixIncreased” for parametric fam-
ilies "gauss” and "hsmuce"” can be accessed by installing the package stepRdata available from
http://www.stochastik.math.uni-goettingen.de/stepRdata_1.0-0.tar.gz.

options$envir and options$dirs: For loading from / saving in the workspace the variable
critValStepRTab in the environment options$envir will be looked for and if missing in case
of saving also created there. Moreover, the variable(s) specified in options$save$variable (ex-
plained in the Subsection Saving: options$save) will be assigned to this environment. options$envir
will be passed to the arguments pos and where in the functions assign, get, and exists, respec-
tively. By default, a local enviroment in the package is used.

For loading from / saving on the file system loadCache(key = keyList, dirs = options$dirs)
and saveCache(stat, key = attr(stat, "keyList"), dirs = options$dirs) are called, re-
spectively. In other words, options$dirs has to be a character vector constituting the path to
the cache subdirectory relative to the cache root directory as returned by getCacheRootPath(). If
options$dirs == "" the path will be the cache root path. By default the subdirectory "stepR" is
used, i.e. options$dirs == "stepR". Missing directories will be created.

Simulation: options$simulation: Whenever Monte-Carlo simulations have to be performed,
i.e. when stat == NULL and the required Monte-Carlo simulation could not be loaded, the type
specified in options$simulation will be simulated by monteCarloSimulation. In other words,
options$simulation must be a single string of the following: "vector"”, "vectorIncreased”,
"matrix” or "matrixIncreased”. By default (options$simulation == NULL), an object of
class "MCSimulationVector” for nq observations will be simulated, i.e. options$simulation
== "matrixIncreased”. For this choice please recall the explanations regarding computation
time and flexibility at the beginning of this section.

Loading: options$load: Loading of the simulations can be controlled by the entry options$load
which itself has to be a 1ist with possible entries: "RDSfile”, "workspace”, "package” and
"fileSystem”. Missing entries disable the loading from this option. Whenever a Monte-Carlo
simulation is required, i.e. when the variable q is not given, it will be searched for at the following
places in the given order until found:


http://www.stochastik.math.uni-goettingen.de/stepRdata_1.0-0.tar.gz
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1. in the variable stat,
2. inoptions$load$RDSfile as an RDS file, i.e. the simulation will be loaded by
readRDS(options$load$RDSfile).

In other words, options$load$RDSfile has to be a connection or the name of the file
where the R object is read from,

non non

3. in the workspace or on the file system in the following order: "vector”, "matrix”, "vectorIncreased”
and finally of "matrixIncreased”. For penalty == "weights" it will only be looked for
"matrix” and "matrixIncreased”. For each options it will first be looked in the workspace
and then on the file system. All searches can be disabled by not specifying the correspond-
ing string in options$load$workspace and options$load$fileSystem. In other words,
options$load$workspace and options$load$fileSystem have to be vectors of strings

non non

containing none, some or all of "vector”, "matrix”, "vectorIncreased” and "matrixIncreased”,

4. in the package stepRdata (if installed) and if options$load$package == TRUE. In other
words, options$load$package must be a single logical or NULL,

5. if all other options fail a Monte-Carlo simulation will be performed.

By default (if options$load is missing / NULL) no RDS file is specified and all other options are
enabled, i.e.

options$load <- list(workspace = c("vector”, "vectorIncreased”,
"matrix”, "matrixIncreased"),

fileSystem = c("vector”, "vectorIncreased”,
"matrix"”, "matrixIncreased”),

package = TRUE, RDSfile = NULL).

Saving: options$save: Saving of the simulations can be controlled by the entry options$save
which itself has to be a 1ist with possible entries: "workspace”, "fileSystem”, "RDSfile"” and
"variable”. Missing entries disable the saving in this option.

All available simulations, no matter whether they are given by stat, loaded, simulated or in
case of "vector” and "vectorIncreased” computed from "matrix” and "matrixIncreased”,
respectively, will be saved in all options for which the corresponding type is specified. Here we
say a simulation is of type "vectorIncreased” or "matrixIncreased” if the simulation is not
performed for n observations. More specifically, a simulation will be saved:

1. in the workspace or on the file system if the corresponding string is contained in options$save$workspace

and options$save$fileSystem, respectively. In other words, options$save$workspace
and options$save$fileSystem have to be vectors of strings containing none, some or all

non n on

of "vector”, "matrix”, "vectorIncreased” and "matrixIncreased”,

2. in an RDS file specified by options$save$RDSfile which has to be a vector of one or two
connections or names of files where the R object is saved to. If options$save$RDSfile is
of length two a simulation of type "vector” or "vectorIncreased” (only one can occur at
one function call) will be saved in options$save$RDSfile[1] by

saveRDS(stat, file = options$save$RDSFile[1])

and "matrix"” or "matrixIncreased” (only one can occur at one function call) will be
saved in options$save$RDSfile[2]. If options$save$RDSfile is of length one both
will be saved in options$save$RDSfile which means if both occur at the same call only
"vector” or "vectorIncreased” will be saved. Each saving can be disabled by not spec-
ifying options$save$RDSfile or by passing an empty string to the corresponding entry of
options$save$RDSfile.
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3. inavariable named by options$save$variable inthe environment options$envir. Hence,
options$save$variable has to be a vector of one or two containing variable names (char-
acter vectors). If options$save$variable is of length two a simulation of type "vector” or

"vectorIncreased” (only one can occur at one function call) will be saved in options$save$variable[1]

and "matrix” or "matrixIncreased” (only one can occur at one function call) will be
saved in options$save$variable[2]. If options$save$variable is of length one both
will be saved in options$save$variable which means if both occur at the same call only
"vector” or "vectorIncreased” will be saved. Each saving can be disabled by not specify-
ing options$save$variable or by passing "" to the corresponding entry of options$save$variable.

By default (if options$save is missing) "vector"” and "vectorIncreased” will be saved in the
workspace and "matrix” and "matrixIncreased” on the file system, i.e.

options$save <- list(workspace = c("vector"”, "vectorIncreased"),
fileSystem = c("matrix”, "matrixIncreased”),
RDSfile = NULL, variable = NULL).

Simulations can be removed from the workspace by removing the variable critValStepRTab, i.e.
by calling remove(critValStepRTab, envir = envir), with envir the used environment, and
from the file system by deleting the corresponding subfolder, i.e. by calling

unlink(file.path(R.cache: :getCacheRootPath(), dirs), recursive = TRUE),

with dirs the corresponding subdirectory.

References

Frick, K., Munk, A., Sieling, H. (2014) Multiscale change-point inference. With discussion and
rejoinder by the authors. Journal of the Royal Statistical Society, Series B 76(3), 495-580.

Pein, F,, Sieling, H., Munk, A. (2017) Heterogeneous change point inference. Journal of the Royal
Statistical Society, Series B, 79(4), 1207-1227.

See Also

monteCarloSimulation, penalty, parametricFamily, intervalSystem, stepFit, computeBounds

Examples

# vector of critical values

gVector <- critVal(1eeoL, alpha = 0.5)

# global quantile

gValue <- critVal(1eeL, alpha = 0.5, output = "value")

# vector can be computed from the global quantile
identical(critVal(1eoL, g = qValue), qVector)

# for a conservative significance level, stronger confidence statements
critVal(1eoL, alpha = 0.05)
critVal(1eoL, alpha = .05, output = "value")

# higher significance level for larger detection power, but less confidence
critVal(1eoL, alpha = 0.99)
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critval(1eeL, alpha = .99, output = "value")

# different parametric family, different intervalSystem, a subset of lengths,
# different penalty and given weights
g <- critVal(1eeL, alpha = .05, family = "hsmuce”, intervalSystem = "dyalLen”,
lengths = c(2L, 4L, 16L, 32L), penalty = "weights",
weights = c(0.4, 0.3, 0.2, 0.1))

# vector of critical values can be given by a vector of length n

vec <- 1:100

vec[c(2L, 4L, 16L, 32L)] <- q

attr(vec, "n") <- 128L

identical(critVval(leoL, q
lengths

vec, family = "hsmuce”, intervalSystem = "dyalLen",
c(2L, 4L, 16L, 32L)), @)

# with a given monte-Carlo simulation for nq = 128 observations
stat <- monteCarloSimulation(128)
critVal(n = 100L, alpha = 0.05, stat = stat)

# the above calls saved and (attempted to) load Monte-Carlo simulations and
# simulated them for nq = 128 observations
# in the following call no saving, no loading and simulation for n = 100
# observations is required, progress of the simulation will be reported
critVal(n = 100L, alpha = 0.05, messages = 1000L,

options = list(simulation = "vector"”, load = list(), save = list()))

# only type "vector” will be saved and loaded in the workspace
critvVal(n = 100L, alpha = 0.05, messages = 1000L,
options = list(simulation = "vector”, load = list(workspace = "vector"),
save = list(workspace = "vector"”)))

# simulation of type "matrix"” will be saved in a RDS file
# saving of type "vector” is disabled by passing "",
# different seed is set and number of simulations is reduced to r = 1e3

# to allow faster computation at the price of a less precise result

file <- tempfile(pattern = "file", tmpdir = tempdir(), fileext = ".RDS")
critVal(n = 100L, alpha = 0.05, seed = 1, r = 1e3,
options = list(simulation = "matrix", load = list(),

save = list(RDSfile = c("", file))))
identical (readRDS(file), monteCarloSimulation(100L, seed = 1, r = 1e3))

dfilter Digital filters

Description

Create digital filters.
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Deprecation warning: This function is mainly used for patchlamp recordings and may be trans-
ferred to a specialised package.

Usage

dfilter(type = c("bessel”, "gauss"”, "custom”), param = list(pole = 4, cutoff =1/ 10),
len = ceiling(3/param$cutoff))
## S3 method for class 'dfilter’

print(x, ...)
Arguments
type allows to choose Bessel, Gauss or custom filters
param for a "bessel” filter a 1ist with entries pole and cutoff giving the filter’s
number of poles (order) and cut-off frequency, resp.; for a "gauss” filter the
filter’s bandwidth (standard deviation) as a single numeric; for a custom filter
either a numeric vector specifying the filter’s kernel or a list with items kern
and step of the same length giving the filter’s kernel and step-response, resp.
len filter length (unnecessary for "custom” filters
X the object
for generic methods only
Value

Returns a list of class dfilter that contains elements kern and step, the (digitised) filter ker-
nel and step-response, resp., as well as an element param containing the argument param, for a
"bessel” filter alongside the corresponding analogue kernel, step response, power spectrum, and
autocorrelation function depending on time or frequency as elements kernfun, stepfun, spectrum,
and acfun, resp.

See Also

filter, convolve, BesselPolynomial, Normal, family

Examples

# 6-pole Bessel filter with cut-off frequency 1 / 100, with length 100 (too short!)
dfilter("bessel”, list(pole = 6, cutoff =1 / 100), 100)

# custom filter: running mean of length 3

dfilter("custom”, rep(1, 3))

dfilter("custom”, rep(1, 3))$kern # normalised!

dfilter("custom”, rep(1, 3))$step

# Gaussian filter with bandwidth 3 and length 11 (from -5 to 5)

dfilter("gauss”, 3, 11)
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family Family of distributions

Description

Families of distributions supported by package stepR.

Deprecation warning: This overviw is deprecated, but still given and up to date for some older,
deprecated functions, however, may be removed in a future version. For an overview about the
parametric families supported by the new functions see parametricFamily.

Details

Package stepR supports several families of distributions (mainly exponential) to model the data,
some of which require additional (fixed) parameters. In particular, the following families are avail-
able:

"gauss” normal distribution with unknown mean but known, fixed standard deviation given as a
single numeric (will be estimated using sdrobnorm if omitted); cf. dnorm.

"gaussvar" normal distribution with unknown variance but known, fixed mean assumed to be
zero; cf. dnorm.

"poisson” Poisson distribution with unknown intensity (no additional parameter); cf. dpois.

"binomial” binomial distribution with unknown success probability but known, fixed size given
as a single integer; cf. dbinom.

"gaussKern"” normal distribution with unknown mean and unknown, fixed standard deviation (be-
ing estimated using sdrobnorm), after filtering with a fixed filter which needs to be given as
the additional parameter (a dfilter object); cf. dfilter.

The family is selected via the family argument, providing the corresponding string, while the param
argument contains the parameters if any.

Note

Beware that not all families can be chosen for all functions.

See Also

Distributions, parametricFamily, dnorm, dpois, dbinom, dfilter, sdrobnorm

Examples

# illustrating different families fitted to the same binomial data set
size <- 200

n <- 200

# truth

p <- 10%seq(-3, -0.1, length = n)
# data

y <- rbinom(n, size, p)



intervalSystem 29

plot(y)

lines(size * p, col = "red")

# fit 4 jumps, binomial family
jumps <- 4

bfit <- steppath(y, family = "binomial”, param = size, max.blocks = jumps)
lines(bfit[[jumps]], col = "orange")

# Gaussian approximation with estimated variance

gfit <- steppath(y, family = "gauss"”, max.blocks = jumps)
lines(gfit[[jumps]], col = "green3"”, 1ty = 2)

# Poisson approximation

pfit <- steppath(y, family = "poisson”, max.blocks = jumps)
lines(pfit[[jumps]], col = "blue"”, 1ty = 2)

legend("topleft”, legend = c("binomial”, "gauss"”, "poisson”), lwd = 2,
col = c("orange"”, "green3”, "blue"))
intervalSystem Interval systems
Description

Overview about the supported interval systems. More details are given in section 6 of the vignette.

Details
The following interval systems (set of intervals on which tests will be performed) are available.
Intervals are given as indices of observations / sample points.
"all"” all intervals. More precisely, the set {[¢, j],1 < i < j < n}. This system allows all lengths
1:n.

"dyaLen” all intervals of dyadic length. More precisely, the set {[7,j],1 <i<j<ms.t.j—i+

1=2F ke Np}. This system allows all lengths of dyadic length 2% (0: as. integer (floor(log2(n))

+1e-6)).

"dyaPar” the dyadic partition, i.e. all disjoint intervals of dyadic length. More precisely, the set
{[(G—1)x2F+1,i%2%i=1,...,|n/2%], k=0,..., |logy(n)]}. This system allows all
lengths of dyadic length 2* (@:as.integer(floor(log2(n)) + 1e-6)).

The interval system is selected via the intervalSystem argument, providing the corresponding
string. By default (NULL) the default interval system of the specified parametric family will be used,
which one this will be is described in parametricFamily. With the additional argument lengths
it is possible to specify a set of lengths such that only tests on intervals with a length contained in
this set will be performed. The set of lengths has to be a subset of all lengths that are allowed by
the interval system and the parametric family. By default (NULL) all lengths allowed by the interval
system and the parametric family are used.

See Also

parametricFamily
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Examples

y <= c(rnorm(50), rnorm(50, 2))

# interval system of all intervals and all lengths
fit <- stepFit(y, alpha = 0.5, intervalSystem = "all"”, lengths = 1:100,
jumpint = TRUE, confband = TRUE)

# default for family "gauss” if number of observations is 1000 or less
identical(stepFit(y, alpha = 0.5, jumpint = TRUE, confband = TRUE), fit)

# intervalSystem "dyaLen" and a subset of lengths
lidentical(stepFit(y, alpha = @.5, intervalSystem = "dyalLen"”, lengths = c(2, 4, 16),
jumpint = TRUE, confband = TRUE), fit)

# default for lengths are all possible lengths of the interval system
# and the parametric family
identical(stepFit(y, alpha = 0.5, intervalSystem = "dyaPar”,
jumpint = TRUE, confband = TRUE),
stepFit(y, alpha = 0.5, intervalSystem = "dyaPar”, lengths = 27(0:6),
jumpint = TRUE, confband = TRUE))

# interval system "dyaPar"” is default for parametric family "hsmuce”
# length 1 is not possible for this parametric family
identical(stepFit(y, alpha = 0.5, family = "hsmuce”,
jumpint = TRUE, confband = TRUE),
stepFit(y, alpha = 0.5, family = "hsmuce”, intervalSystem = "dyaPar”,
lengths = 2*(1:6), jumpint = TRUE, confband = TRUE))

# interval system "dyalLen"” is default for parametric family "mDependentPS”
identical(stepFit(y, alpha = 0.5, family = "mDependentPS", covariances = c(1, 0.5),
jumpint = TRUE, confband = TRUE),
stepFit(y, alpha = 0.5, family = "mDependentPS", covariances = c(1, 0.5),
intervalSystem = "dyalLen"”, lengths = 2%(0:6),
jumpint = TRUE, confband = TRUE))

jsmurf Reconstruct filtered piecewise constant functions with noise

Description

Reconstructs a piecewise constant function to which white noise was added and the sum filtered
afterwards.

Deprecation warning: This function is mainly used for patchlamp recordings and may be trans-
ferred to a specialised package.
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Usage

jsmurf(y, x = 1:1length(y), x0 = 2 x x[1] - x[2], q, alpha = 0.05, r = 4e3,
lengths = 2*(floor(log2(length(y))):floor(log2(max(length(param$kern) + 1,
1 / param$param$cutoff)))), param, rm.out = FALSE,
jumpint = confband, confband = FALSE)

Arguments

y a numeric vector containing the serial data

X a numeric vector of the same length as y containing the corresponding sample
points

X0 a single numeric giving the last unobserved sample point directly before sam-
pling started

q threshold value, by default chosen automatically

alpha significance level; if set to a value in (0,1), g is chosen as the corresponding
quantile of the asymptotic (if r is not given) null distribution (and any value
specified for q is silently ignored)

r numer of simulations; if specified along alpha, q is chosen as the corresponding
quantile of the simulated null distribution

lengths length of intervals considered; by default up to a sample size of 1000 all lengths,
otherwise only dyadic lengths

param a dfilter object specifiying the filter

rm.out a logical specifying whether outliers should be removed prior to the analysis

jumpint logical (FALSE by default), indicates if confidence sets for jumps should be
computed

confband logical, indicates if a confidence band for the piecewise-continuous function
should be computed

Value

An object object of class stepfit that contains the fit; if jumpint == TRUE function jumpint allows
to extract the 1 - alpha confidence interval for the jumps, if confband == TRUE function confband
allows to extract the 1 - alpha confidence band.

References

Hotz, T., Schiitte, O., Sieling, H., Polupanow, T., Diederichsen, U., Steinem, C., and Munk, A.
(2013) Idealizing ion channel recordings by a jump segmentation multiresolution filter. IEEE Trans-
actions on NanoBioscience 12(4), 376-386.

See Also

stepbound, bounds, family, MRC. asymptotic, sdrobnorm, stepfit
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Examples

# simulate filtered ion channel recording with two states

set.seed(9)

# sampling rate 10 kHz

sampling <- 1e4

# tenfold oversampling

over <- 10

# 1 kHz 4-pole Bessel-filter, adjusted for oversampling

cutoff <- 1e3

df.over <- dfilter("bessel”, list(pole=4, cutoff=cutoff / sampling / over))

# two states, leaving state 1 at 10 Hz, state 2 at 20 Hz

rates <- rbind(c(@, 10), c(20, 0))

# simulate 0.5 s, level @ corresponds to state 1, level 1 to state 2

# noise level is 0.3 after filtering

sim <- contMC(@.5 * sampling, @:1, rates, sampling=sampling, family="gaussKern"”,
param = list(df=df.over, over=over, sd=0.3))

plot(sim$data, pch = ".")

lines(sim$discr, col = "red")

# fit using filter corresponding to sample rate

df <- dfilter("bessel”, list(pole=4, cutoff=cutoff / sampling))

fit <- jsmurf(sim$datas$y, sim$data$x, param=df, r=1e2)

lines(fit, col = "blue")

# fitted values take filter into account

lines(sim$datas$x, fitted(fit), col = "green3”, 1ty = 2)

jumpint Confidence intervals for jumps and confidence bands for step functions

Description

Extract and plot confidence intervals and bands from fits given by a stepfit object.

Usage
jumpint(sb, ...)
## S3 method for class 'stepfit'
jumpint(sb, ...)

## S3 method for class 'jumpint'

points(x, pch.left = NA, pch.right = NA, y.left = NA, y.right = NA, xpd = NA, ...)
confband(sb, ...)

## S3 method for class 'stepfit'

confband(sb, ...)

## S3 method for class 'confband'

lines(x, dataspace = TRUE, ...)

Arguments

sb the result of a fit by stepbound
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X the object
pch.left, pch.right

the plotting character to use for the left/right end of the interval with defaults
"(" and "]" (see parameter pch of par)

y.left,y.right at which height to plot the interval boundaries with default par () $usr[3]
xpd see par

dataspace logical determining whether the expected value should be plotted instead of
the fitted parameter value, useful e.g. for family = "binomial”, where it will
plot the fitted success probability times the number of trials per observation

arguments to be passed to generic methods

Value

For jumpint an object of class jumpint, i.e. a data.frame whose columns rightEndLeftBound

and rightEndRightBound specify the left and right end of the confidence interval for the block’s

right end, resp., given the number of blocks was estimated correctly, and similarly columns rightIndexLeftBound
and rightIndexRightBound specify the left and right indices of the confidence interval, resp.

Function points plots these intervals on the lower horizontal axis (by default).

For confband an object of class confband, i.e. a data.frame with columns lower and upper
specifying a confidence band computed at every point x; this is a simultaneous confidence band
assuming the true number of jumps has been determined. Function lines plots the confidence
band.

Note

Observe that jumps may occur immediately before or after an observed x; this lack of knowledge
is reflected in the visual impressions by the lower and upper envelopes jumping vertically early,
so that possible jumps between xs remain within the band, and by the confidence intervals starting
immediately after the last x for which there cannot be a jump, cf. the note in the help for stepblock.

See Also

stepbound, points, lines

Examples

# simulate Bernoulli data with four blocks

y <- rbinom(200, 1, rep(c(0.1, 0.7, 0.3, 0.9), each=50))
# fit step function

sb <- stepbound(y, family="binomial”, param=1, confband=TRUE)
plot(y, pch="[")

lines(sh)

# confidence intervals for jumps

jumpint(sb)

points(jumpint(sb), col="blue")

# confidence band

confband(sb)

lines(confband(sb), 1lty=2, col="blue")
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monteCarloSimulation  Monte Carlo simulation

Description

Performs Monte-Carlo simulations of the multiscale vector of statistics, (3.9) in the vignette, and of
the penalised multiscale statistic, (3.6) in the vignette, when no signal is present, see also section
3.2.3 in the vignette.

Usage

monteCarloSimulation(n, r = 1e4lL, family = NULL, intervalSystem = NULL,

Arguments

n

r

family

intervalSystem

lengths

penalty

output

seed

lengths = NULL, penalty = NULL,
output = c("vector”, "maximum”), seed = n,
rand.gen = NULL, messages = NULL, ...)

a positive integer giving the number of observations for which the Monte-Carlo
simulation will be performed

a positive integer giving the number of repititions

a string specifying the assumed parametric family, for more details see paramet-
ricFamily, currently "gauss"”, "hsmuce"” and "mDependentPS" are supported.
By default (NULL) "gauss” is assumed

a string giving the used interval system, either "all"” for all intervals, "dyalLen"
for all intervals of dyadic length or "dyaPar"” for the dyadic partition, for more
details see intervalSystem. By default (NULL) the default interval system of the
specified parametric family will be used, which one this will be is described in
parametricFamily

an integer vector giving the set of lengths, i.e. only intervals of these lengths will
be considered. Only required for output == "maximum”, otherwise ignored with
awarning. Note that not all lengths are possible for all interval systems and for
all parametric families, see intervalSystem and parametricFamily, respectively,
to see which ones are allowed. By default (NULL) all lengths that are possible
for the specified intervalSystem and for the specified parametric family will
be used

a string specifying how the statistics will be penalised, either "sqrt”, "log" or
"none”, see penalty and section 3.2 in the vignette for more details. Only re-
quired for output == "maximum”, otherwise ignored with a warning. By default
(NULL) the default penalty of the specified parametric family will be used, which
one this will be is described in parametricFamily

a string specifying the output, see Value

will be passed to set.seed to set a seed, set.seed will not be called if this
argument is set to "no”, i.e. a single value, interpreted as an integer, NULL or

n n

no
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rand.gen by default (NULL) this argument will be replaced by the default function to gen-
erate random observations of the given family. Note that a Monte-Carlo simu-
lation can only be saved if rand.gen == NULL. Alternatively, an own function
expecting a single argument named data and returning a numeric vector of
length n, this is given by data$n. Will be called with rand.gen(data = data),
with data a list containing the named entries n, the expected number of data

points, and parameters of the parametric family, e.g. sd for family == "gauss”
or covariances for family == "mDependentPS”
messages a positive integer or NULL, in each messages iteration a message will be printed

in order to show the progress of the simulation, if NULL no message will be given

further parameters of the parametric family. Depending on the argument family
some might be required, but others might be optional, please see parametricFam-
ily for more details

Value

If output == "vector" an object of class "MCSimulationVector”,i.e. a d,, times r matrix contain-
ing r independent samples of the multiscale vector of statistics, with d,, the number of scales, i.e.
the number of possible lengths for the given interval system and given parametric family. If output
== "maximum” an object of class "MCSimulationMaximum”, i.e. a vector of length r containing
r independent samples of the penalised multiscale statistic. For both, additionally, the following
attributes are set:

» "keyList": A list specifying for which number of observations n, which parametric family with
which parameters by a SHA- 1 hash, which interval system and in case of "MCSimulationMaximum”,
additionally, for which lengths and which penalisation the simulation was performed.

» "key": A key used internally for identification when the object will be saved and loaded.

* "n": The number of observations n for which the simulation was performed.

* "lengths": The lengths for which the simulation was performed.

* "save": A logical which is TRUE if the object can be saved which is the case for rand. gen
== NULL and FALSE otherwise.
References

Frick, K., Munk, A., Sieling, H. (2014) Multiscale change-point inference. With discussion and
rejoinder by the authors. Journal of the Royal Statistical Society, Series B 76(3), 495-580.

Pein, F,, Sieling, H., Munk, A. (2017) Heterogeneous change point inference. Journal of the Royal
Statistical Society, Series B, 79(4), 1207-1227.

See Also

critVal, computeStat, penalty, parametricFamily, intervalSystem

Examples

# monteCarloSimulation will be called in critVal, can be called explicitly
# object of class MCSimulationVector
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stat <- monteCarloSimulation(n = 100L)

identical(critVal(n = 100L, alpha = 0.5, stat = stat),
critval(n = 100L, alpha = 0.5,
options = list(load = list(), simulation = "matrix")))

# object of class MCSimulationMaximum
stat <- monteCarloSimulation(n = 100L, output = "maximum")
identical(critVal(n = 100L, alpha = 0.5, stat = stat),
critval(n = 100L, alpha = 0.5,
options = list(load = list(), simulation = "vector")))

# different interval system, lengths and penalty
monteCarloSimulation(n = 100L, output = "maximum”, intervalSystem = "dyalLen",
lengths = c(1L, 2L, 4L, 8L), penalty = "log")

# with a different number of iterations, different seed,

# reported progress and user written rand.gen function

stat <- monteCarloSimulation(n = 100L, r = 1e3, seed = 1, messages = 100,
rand.gen = function(data) {rnorm(100)3})

# the optional argument sd of parametric family "gauss” will be replaced by 1
identical (monteCarloSimulation(n = 100L, r = 1e3, sd = 5),
monteCarloSimulation(n = 100L, r = 1e3, sd = 1))

# simulation for family "hsmuce"”
monteCarloSimulation(n = 100L, family = "hsmuce")

# simulation for family "mDependentGauss”

# covariances must be given (can also be given by correlations or filter)

stat <- monteCarloSimulation(n = 100L, family = "mDependentPS",
covariances = c(1, 0.5, 0.3))

# variance will be standardized to 1

# output might be on some systems even identical

all.equal(monteCarloSimulation(n = 100L, family = "mDependentPS",
covariances = c(2, 1, 0.6)), stat)

MRC Compute Multiresolution Criterion

Description

Computes multiresolution coefficients, the corresponding criterion, simulates these for Gaussian
white or coloured noise, based on which p-values and quantiles are obtained.

Deprecation warning: The function MRC. simul is deprecated, but still working, however, may be
defunct in a future version. Please use instead the function monteCarloSimulation. An example
how to reproduce results is given below. Some other functions are help function and might be
removed, too.
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Usage

MRC(x, lengths = 2*(floor(log2(length(x))):0), norm = sqrt(lengths),
penalty = c("none”, "log", "sqrt"))

MRCoeff(x, lengths = 2*(floor(log2(length(x))):0), norm = sqrt(lengths), signed = FALSE)

MRC.simul(n, r, lengths = 2*(floor(log2(n)):0), penalty = c("none”, "log", "sqrt"))

MRC.pvalue(q, n, r, lengths = 2*(floor(log2(n)):0), penalty = c("none"”, "log", "sqrt"),
name = ".MRC.table", pos = .MCstepR, inherits = TRUE)

MRC.FFT(epsFFT, testFFT, K = matrix(TRUE, nrow(testFFT), ncol(testFFT)), lengths,
penalty = c("none”, "log", "sqrt"))

MRC.quant(p, n, r, lengths = 2*(floor(log2(n)):0), penalty = c("none”, "log", "sqrt"),
name = ".MRC.table", pos = .MCstepR, inherits = TRUE, ...)

kMRC.simul(n, r, kern, lengths = 2*(floor(log2(n)):ceiling(log2(length(kern)))))

kMRC.pvalue(q, n, r, kern, lengths = 2*(floor(log2(n)):ceiling(log2(length(kern)))),

name = " .MRC.ktable", pos = .MCstepR, inherits = TRUE)

kMRC.quant(p, n, r, kern, lengths = 2*(floor(log2(n)):ceiling(log2(length(kern)))),
name = ".MRC.ktable", pos = .MCstepR, inherits = TRUE, ...)

Arguments

X a vector of numerical observations

lengths vector of interval lengths to use, dyadic intervals by default

signed whether signed coefficients should be returned

q quantile

n length of data set

r number of simulations to use

name, pos, inherits
under which name and where precomputed results are stored, or retrieved, see

assign
K a logical matrix indicating the set of valid intervals
epsFFT a vector containg the FFT of the data set
testFFT a matrix containing the FFTs of the intervals
kern a filter kernel
penalty penalty term in the multiresolution statistic: "none” for no penalty, "log" for

penalizing the log-length of an interval, and "sqrt” for penalizing the square
root of the MRC; or a function taking two arguments, the first being the mul-
tiresolution coefficients, the second the interval lenghts

norm how the partial sums should be normalised, by default sqrt(lengths), so they
are normalised to equal variance across all interval lengths

p p-value

further arguments passed to function quantile
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Value
MRC a vector giving the maximum as well as the indices of the corresponding inter-
val’s start and length
MRCoeff a matrix giving the multiresolution coefficients for all test intervals

MRC.pvalue, MRC.quant, MRC.simul
the corresponding p-value / quantile / vector of simulated values under the as-
sumption of standard Gaussian white noise

kMRC.pvalue, kMRC.simul, kMRC.simul
the corresponding p-value / quantile / vector of simulated values under the as-
sumption of filtered Gaussian white noise

References

Davies, P. L., Kovac, A. (2001) Local extremes, runs, strings and multiresolution. The Annals of
Statistics 29, 1-65.

Diimbgen, L., Spokoiny, V. (2001) Multiscale testing of qualitative hypotheses. The Annals of
Statistics 29, 124-152.

Siegmund, D. O., Venkatraman, E. S. (1995) Using the generalized likelihood ratio statistic for
sequential detection of a change-point. The Annals of Statistics 23, 255-271.

Siegmund, D. O., Yakir, B. (2000) Tail probabilities for the null distribution of scanning statistics.
Bernoulli 6, 191-213.

See Also

monteCarloSimulation, smuceR, jsmurf, stepbound, stepsel, quantile

Examples

set.seed(100)
all.equal(MRC.simul (100, r = 100),
sort(monteCarloSimulation(n = 100, r = 100, output = "maximum”,
penalty = "none”, intervalSystem = "dyalLen")),
check.attributes = FALSE)

# simulate signal of 100 data points
set.seed(100)

<- rep(c(0, 2, 0), c(60, 10, 30))
add gaussian noise

<- f + rnorm(100)

compute multiresolution criterion

<- MRC(x)

compute Monte-Carlo p-value based on 100 simulations
MRC.pvalue(m["max"], length(x), 100)

# compute multiresolution coefficients
M <- MRCoeff(x)

H 3 H X H

# plot multiresolution coefficients, colours show p-values below 5% in 1% steps
op <- par(mar = c(5, 4, 2, 4) +0.1)
image(1:1length(x), seq(min(x), max(x), length = ncol(M)), apply(M[,ncol(M):1], 1:2,
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MRC.pvalue, n = length(x), r = 100), breaks = (0:5) / 100,
col = rgh(1, seq(@, 1, length = 5), 0, 0.75),

xlab = "location / left end of interval”, ylab ="measurement”,
main = "Multiresolution Coefficients”,
sub = paste(”"MRC p-value =", signif(MRC.pvalue(m["max"], length(x), 100), 3)))

axis(4, min(x) + diff(range(x)) * ( pretty(l:ncol(M) - 1) ) / dim(M)[2],
2*pretty(1:ncol(M) - 1))

mtext("interval lengths”, 4, 3)

# plot signal and its mean

points(x)

lines(f, 1ty = 2)

abline(h = mean(x))

par(op)

MRC. 1000 Values of the MRC statistic for 1,000 observations (all intervals)

Description

Simulated values of the MRC statistic with penalty="sqrt" based on all interval lengths computed
from Gaussian white noise sequences of length 1,000.

Deprecation warning: This data set is needed for smuceR and may be removed when this function
will be removed.

Usage

MRC. 1000

Format

A numeric vector containing 10,000 sorted values.

Examples

# threshold value for 95% confidence
quantile(stepR::MRC.1000, .95)
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MRC.asymptotic "Asymptotic" values of the MRC statistic (all intervals)

Description

Simulated values of the MRC statistic with penalty="sqrt" based on all interval lengths computed
from Gaussian white noise sequences of ("almost infinite") length 5,000.

Deprecation warning: This data set is needed for smuceR and may be removed when this function
will be removed.

Usage
MRC.asymptotic

Format

A numeric vector containing 10,000 sorted values.

Examples

# "asymptotic” threshold value for 95% confidence
quantile(stepR::MRC.asymptotic, .95)

MRC.asymptotic.dyadic "Asymptotic" values of the MRC statistic (dyadic intervals)

Description

Simulated values of the MRC statistic with penalty="sqrt" based on dyadic interval lengths com-
puted from Gaussian white noise sequences of ("almost infinite") length 100,000.

Deprecation warning: This data set is needed for smuceR and may be removed when this function
will be removed.

Usage
MRC.asymptotic.dyadic

Format

A numeric vector containing 10,000 sorted values.

Examples

# "asymptotic” threshold value for 95% confidence
quantile(stepR::MRC.asymptotic.dyadic, .95)
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neighbours Neighbouring integers

Description

Find integers within some radius of the given ones.

Usage

neighbours(k, x = T1:max(k), r = @)

Arguments
k integers within whose neighbourhood to look
X allowed integers
r radius within which to look

Value

Returns those integers in x which are at most r from some integer in k, i.e. the intersection of x
with the union of the balls of radius r centred at the values of k. The return values are unique and

sorted.

See Also

is.element, match, findInterval, stepcand

Examples

neighbours(c(10, @, 5), r = 1)
neighbours(c(10, @, 5), 0:15, r = 1)

parametricFamily Parametric families

Description

Overview about the supported parametric families (models). More details are given in section 5 of

the vignette.
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Details

The following parametric families (models and fitting methods) are available. Some of them have
additional parameters that have to / can be specified in . . ..

"gauss” independent normal distributed variables with unknown mean but known, constant stan-
dard deviation given by the optional argument sd. Fits are obtained by the method SMUCE
(Frick et al., 2014) for independent normal distributed observations. Argument sd has to
be a single, positive, finite numeric. If omitted it will be estimated by sdrobnorm. For
monteCarloSimulation sd == 1 will be used always. The observations argument y has to be
a numeric vector with finite entries. The default interval system is "all” up to 1000 obser-
vations and "dyalLen” for more observations. Possible lengths are 1:1ength(y). The default
penalty is "sqrt"”. In monteCarloSimulation by default n random observations will be gen-
erated by rnorm.

"hsmuce” independent normal distributed variables with unknown mean and also unknown piece-
wise constant standard deviation as a nuisance parameter. Fits are obtained by the method
HSMUCE (Pein et al., 2017). No additional argument has to be given. The observations
argument y has to be a numeric vector with finite entries. The default interval system is
"dyaPar"” and possible lengths are 2:1length(y). The default penalty is "weights"” which
will automatically be converted to "none” in computeStat and monteCarloSimulation. In
monteCarloSimulation by default n random observations will be generated by rnorm.

"mDependentPS" normal distributed variables with unknown mean and m-dependent errors with
known covariance structure given either by the argument covariances, correlations or
filter. Fits are obtained by the method SMUCE (Frick et al., 2014) for m-dependent normal
distributed observations using partial sum tests and minimizing the least squares distance (Pein
et al., 2017, (7) and (8)). If correlations or filter is used to specify the covariances an
additional optional argument sd can be used to specify the constant standard deviation. If
covariances is specified the arguments correlations, filter and sd will be ignored and if
correlations is specified the argument filter will be ignored. The argument covariances
has to be a finite numeric vector, m will be defined by m = length(covariances) - 1, giving
the vector of covariances, i.e. the first element must be positive, the absolute value of every
other element must be smaller than or equal to the first one and the last element should not be
zero. The argument correlation has to be a finite numeric vector, m will be defined by m =
length(correlations) - 1, giving the vector of correlations, i.e. the first element must be
1, the absolute value of every other element must be smaller than or equal to the first one and
the last element should not be zero. Covariances will be calculated by correlations * sd*2.
The argument filter has to be an object of class lowpassFilter from which the correlation
vector will be obtained. The argument sd has to be a single, positive, finite numeric. If
omitted it will be estimated by sdrobnorm with lag =m+ 1. For monteCarloSimulation sd
== 1 will be used always. The observations argument y has to be a numeric vector with finite
entries. The default interval system is "dyaLen"” and possible lengths are 1:1ength(y). The
default penalty is "sqrt”. In monteCarloSimulation by default n random observations will
be generated by calculating the coefficients of the corresponding moving average process and
generating random observations from it.

The family is selected via the family argument, providing the corresponding string, while addi-
tional parameters have to / can be specified in . . . if any.
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References

Frick, K., Munk, A., Sieling, H. (2014) Multiscale change-point inference. With discussion and
rejoinder by the authors. Journal of the Royal Statistical Society, Series B 76(3), 495-580.

Pein, F., Sieling, H., Munk, A. (2017) Heterogeneous change point inference. Journal of the Royal
Statistical Society, Series B, 79(4), 1207-1227.

Pein, F., Tecuapetla-Gémez, 1., Schiitte, O., Steinem, C., Munk, A. (2017) Fully-automatic multires-
olution idealization for filtered ion channel recordings: flickering event detection. arXiv:1706.03671.

See Also

Distributions, sdrobnorm, rnorm

Examples

# parametric family "gauss"”: independent gaussian errors with constant variance
set.seed(1)

x <- seq(1 / 100, 1, 1 / 100)

y <= c(rnorm(50), rnorm(50, 2))

plot(x, y, pch = 16, col = "grey30"”, ylim = c(-3, 5))

# computation of SMUCE and its confidence statements
fit <- stepFit(y, x = x, alpha = 0.5, family = "gauss”,

jumpint = TRUE, confband = TRUE)
lines(fit, 1lwd = 3, col = "red"”, lty = "22")

# confidence intervals for the change-point locations
points(jumpint(fit), col = "red")

# confidence band

lines(confband(fit), 1ty = "22", col = "darkred”, 1lwd = 2)

# "gauss"” is default for family

identical(stepFit(y, x = x, alpha = 0.5, jumpint = TRUE, confband = TRUE), fit)

# missing sd is estimated by sdrobnorm

identical(stepFit(y, x = x, alpha = 0.5, family = "gauss"”, sd = sdrobnorm(y),
jumpint = TRUE, confband = TRUE), fit)

# parametric family "hsmuce”: independent gaussian errors with also
# piecewise constant variance

# estimaton that is robust against variance changes

set.seed(1)

y <= c(rnorm(50, @, 1), rnorm(50, 1, 0.2))

plot(x, y, pch = 16, col = "grey30", ylim = c(-2.5, 2))

# computation of HSMUCE and its confidence statements
fit <- stepFit(y, x = x, alpha = 0.5, family = "hsmuce”,

jumpint = TRUE, confband = TRUE)
lines(fit, lwd = 3, col = "red”, 1ty = "22")

# confidence intervals for the change-point locations
points(jumpint(fit), col = "red")
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# confidence band
lines(confband(fit), 1ty = "22", col = "darkred”, 1lwd = 2)

# for comparison SMUCE
lines(stepFit(y, x = x, alpha = .5, jumpint = TRUE, confband = TRUE),
lwd = 3, col = "blue”, 1ty = "22")

# parametric family "mDependentPS"”: m dependent observations with known covariances
# observations are generated from a moving average process
set.seed(1)
y <- c(rep(@, 50), rep(2, 50)) +

as.numeric(arima.sim(n = 100, list(ar = c(), ma = c(0.8, 0.5, 0.3)), sd = 0.5))
correlations <- as.numeric(ARMAacf(ar = c(), ma = c(0.8, 0.5, 0.3), lag.max = 3))
covariances <- @.5"2 % correlations
plot(x, y, pch = 16, col = "grey30"”, ylim = c(-2, 4))

# computation of SMUCE for dependent observations with given covariances
fit <- stepFit(y, x = x, alpha = 0.5, family = "mDependentPS",

covariances = covariances, jumpint = TRUE, confband = TRUE)
lines(fit, 1lwd = 3, col = "red"”, lty = "22")

# confidence intervals for the change-point locations
points(jumpint(fit), col = "red")

# confidence band

lines(confband(fit), 1ty = "22", col = "darkred”, 1lwd = 2)

# for comparison SMUCE for independent gaussian errors
lines(stepFit(y, x = x, alpha = 0.5, jumpint = TRUE, confband = TRUE),
lwd = 3, col = "blue”, 1ty = "22")

# covariance structure can also be given by correlations and sd
identical(stepFit(y, x = x, alpha = 0.5, family = "mDependentPS",
correlations = correlations, sd = 0.5,
jumpint = TRUE, confband = TRUE), fit)

# if sd is missing it will be estimated by sdrobnorm
identical(stepFit(y, x = x, alpha = 0.5,family = "mDependentPS",
correlations = correlations, jumpint = TRUE, confband = TRUE),
stepFit(y, x = x, alpha = 0.5, family = "mDependentPS",
correlations = correlations,
sd = sdrobnorm(y, lag = length(correlations)),
jumpint = TRUE, confband = TRUE))

penalty Penalties

Description

Overview about the supported penalties. More details are also given in section 3.2 of the vignette.
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Details

The penalties (ways to balance different scales) can be divided into two groups: scale penalisation
and balancing by weights. More precisely, the scale penalisations "sqrt”, "log" and "none” and
balancing by weights called "weights” are available.

Let T be the unpenalised test statistic of the specified parametric family on an interval of length 1
and nq the number of observations used for the penalisation, typically the number of observations
n but can also be chosen larger.

"sqrt"” penalised statistic is sqrt(2 * T) - sqrt(2 * log(exp(1) * nq / 1). This penalisation is
proposed in (Frick et al., 2014) and guarantees for most parametric families that the pe-
nalised multiscale statistic is asymptotically finite. This is not true for parametric family
"hsmuce”. Hence, this penalisation is recommended and the default one for the parametric
families "gauss"” and "mDependentPS", but not for "hsmuce"”.

"log" penalised statistic is T - log(exp(1) * nq / 1). This penalisation is outdated and only still
supported for comparisons.

"none” no penalisation, penalised statistic is equal to the unpenalised. Multiscale regression with-
out a penalisation is not recommend.

"weights"” critical values will be computed by weights, see section 3.2.2 in the vignette and (Pein
et al., 2017, section 2) for more details. This penalty is recommend and the default one for
the parametric family "hsmuce”, but can also be used for other families. Will be replaced by
"none" in computeStat and monteCarloSimulation.

The penalisation is selected via the penalty argument providing the corresponding string. If NULL
the default penalty of the specified parametric family will be used, see parametricFamily for
which one this will be.

References

Frick, K., Munk, A., Sieling, H. (2014) Multiscale change-point inference. With discussion and
rejoinder by the authors. Journal of the Royal Statistical Society, Series B 76(3), 495-580.

Pein, F,, Sieling, H., Munk, A. (2017) Heterogeneous change point inference. Journal of the Royal
Statistical Society, Series B, 79(4), 1207-1227.

See Also

parametricFamily, critVal

Examples

set.seed(1)
y <= c(rnorm(50), rnorm(50, 2))

# penalty "sqrt”
fit <- stepFit(y, alpha = 0.5, penalty = "sqrt”, jumpint = TRUE, confband = TRUE)

# default for family "gauss”
identical(stepFit(y, alpha = 0.5, jumpint = TRUE, confband = TRUE), fit)
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# penalty "weights”
lidentical(stepFit(y, alpha = 0.5, penalty = "weights”,
jumpint = TRUE, confband = TRUE), fit)

# penalty "weights” is default for parametric family "hsmuce”
# by default equal weights are chosen
identical(stepFit(y, alpha = 0.5, family = "hsmuce”,
jumpint = TRUE, confband = TRUE),
stepFit(y, alpha = 0.5, family = "hsmuce”, penalty = "weights”,
weights = rep(1 / 6, 6), jumpint = TRUE, confband = TRUE))

# different weights
lidentical(stepFit(y, alpha = 0.5, family = "hsmuce", weights = 6:1 / sum(6:1),
jumpint = TRUE, confband = TRUE),
stepFit(y, alpha = 0.5, family = "hsmuce”, penalty = "weights"”,
weights = rep(1 / 6, 6), jumpint = TRUE, confband = TRUE))

# penalty "sqrt is default for parametric family "mDependentPS”
identical(stepFit(y, alpha = 0.5, family = "mDependentPS", covariances = c(1, 0.5),
jumpint = TRUE, confband = TRUE),
stepFit(y, alpha = 0.5, family = "mDependentPS", covariances = c(1, 0.5),
penalty = "sqgrt"”, jumpint = TRUE, confband = TRUE))

sdrobnorm Robust standard deviation estimate

Description

Robust estimation of the standard deviation of Gaussian data.

Usage

sdrobnorm(x, p = c(0.25, 0.75), lag = 1,
supressWarningNA = FALSE, supressWarningResultNA = FALSE)

Arguments
X a vector of numerical observations. NA entries will be removed with a warning.
The warning can be supressed by setting supressWarningNA to TRUE. Other non
finite values are not allowed
p vector of two distinct probabilities
lag a single integer giving the lag of the difference used, see diff, if a numeric

is passed a small tolerance will be added and the value will be converted by
as.integer

supressWarningNA
a single logical, if TRUE no warning will be given for NA entries in x
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supressWarningResul tNA
a single logical, if TRUE no warning will be given if the result is NA

Details

Compares the difference between the estimated sample quantile corresponding to p after taking
(lagged) differences) with the corresponding theoretical quantiles of Gaussian white noise to de-
termine the standard deviation under a Gaussian assumption. If the data contain (few) jumps, this
will (on average) be a slight overestimate of the true standard deviation.

This estimator has been inspired by (1.7) in (Davies and Kovac, 2001).

Value
Returns the estimate of the sample’s standard deviation, i.e. a single non-negative numeric, NA if
length(x) < lag + 2.

References
Davies, P. L., Kovac, A. (2001) Local extremes, runs, strings and multiresolution. The Annals of
Statistics 29, 1-65.

See Also

sd, diff, parametricFamily, family

Examples

# simulate data sample

y <= rnorm(100, c(rep(1, 50), rep(10, 50)), 2)
# estimate standard deviation

sdrobnorm(y)

smuceR Piecewise constant regression with SMUCE

Description

Computes the SMUCE estimator for one-dimensional data.

Deprecation warning: This function is deprecated, but still working, however, may be defunct
in a future version. Please use instead the function stepFit. At the moment some families are
supported by this function that are not supported by the current version of stepFit. They will be
added in a future version. An example how to reproduce results is given below.

Usage

smuceR(y, x = 1:1ength(y), x0 =2 * x[1] - x[2], q = thresh.smuceR(length(y)), alpha, r,
lengths, family = c("gauss”, "gaussvar”, "poisson”, "binomial"”), param,
jumpint = confband, confband = FALSE)

thresh.smuceR(v)
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Arguments

y

X0

alpha

lengths

family, param

jumpint

confband

Value

smuceR

a numeric vector containing the serial data

a numeric vector of the same length as y containing the corresponding sample
points

a single numeric giving the last unobserved sample point directly before sam-
pling started

threshold value, by default chosen automatically according to Frick et al.~(2013)

significance level; if set to a value in (0,1), g is chosen as the corresponding
quantile of the asymptotic (if r is not given) null distribution (and any value
specified for q is silently ignored)

numer of simulations; if specified along alpha, q is chosen as the corresponding
quantile of the simulated null distribution

length of intervals considered; by default up to a sample size of 1000 all lengths,
otherwise only dyadic lengths

specifies distribution of data, see family

logical (FALSE by default), indicates if confidence sets for change-points should
be computed

logical, indicates if a confidence band for the piecewise-continuous function
should be computed

number of data points

For smuceR, an object of class stepfit that contains the fit; if jumpint == TRUE function jumpint
allows to extract the 1 - alpha confidence interval for the jumps, if confband == TRUE function
confband allows to extract the 1 - alpha confidence band.

For thresh. smuceR, a precomputed threshhold value, see reference.

References

Frick, K., Munk, A., and Sieling, H. (2014) Multiscale change-point inference. With discussion and
rejoinder by the authors. Journal of the Royal Statistical Society, Series B 76(3), 495-580.

Futschik, A., Hotz, T., Munk, A. Sieling, H. (2014) Multiresolution DNA partitioning: statistical
evidence for segments. Bioinformatics, 30(16), 2255-2262.

See Also

stepFit, stepbound, bounds, family, MRC.asymptotic, sdrobnorm, stepfit

Examples

y <= rnorm(100, c(rep(@, 50), rep(1, 50)), 0.5)

# fitted function, confidence intervals, and confidence band by stepFit
all.equal(fitted(smuceR(y, q = 1)), fitted(stepFit(y, q = 1)))
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all.equal(fitted(smuceR(y, alpha = 0.5)),
fitted(stepFit(y, g = as.numeric(quantile(stepR::MRC.1000, 0.5)))))
all.equal(fitted(smuceR(y)), fitted(stepFit(y, g = thresh.smuceR(length(y)))))

all.equal(jumpint(smuceR(y, g = 1, jumpint = TRUE)),
jumpint(stepFit(y, g = 1, jumpint = TRUE)))

all.equal(confband(smuceR(y, q = 1, confband = TRUE)),
confband(stepFit(y, g = 1, confband = TRUE)),
check.attributes = FALSE)

# simulate poisson data with two levels

y <- rpois(100, c(rep(1, 50), rep(4, 50)))

# compute fit, q is chosen automatically

fit <- smuceR(y, family="poisson”, confband = TRUE)
# plot result

plot(y)

lines(fit)

# plot confidence intervals for jumps on axis
points(jumpint(fit), col="blue")

# confidence band

lines(confband(fit), 1lty=2, col="blue")

# simulate binomial data with two levels

y <- rbinom(200,3,rep(c(0.1,0.7),c(110,90)))

# compute fit, q is the 0.9-quantile of the (asymptotic) null distribution
fit <- smuceR(y, alpha=0.1, family="binomial”, param=3, confband = TRUE)
# plot result

plot(y)

lines(fit)

# plot confidence intervals for jumps on axis

points(jumpint(fit), col="blue")

# confidence band

lines(confband(fit), 1lty=2, col="blue")

stepblock Step function

Description

Constructs an object containing a step function sampled over finitely many values.

Usage

stepblock(value, leftEnd = c(1, rightEnd[-length(rightEnd)] + 1), rightEnd, x@ = 0)
## S3 method for class 'stepblock'

x[i, j, drop = if(missing(i)) TRUE else if(missing(j)) FALSE else length(j) ==1, ...
## S3 method for class 'stepblock'

print(x, ...)

## S3 method for class 'stepblock'
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stepblock

plot(x, type = "c", xlab = "x", ylab = "y", main = "Step function”, sub = NULL, ...)
## S3 method for class 'stepblock'

lines(x, type =

Arguments

value

leftEnd

rightEnd

X0

i, j, drop

type

”C“, ...)

a numeric vector containing the fitted values for each block; its length gives the
number of blocks

a numeric vector of the same length as value containing the left end of each
block

a numeric vector of the same length as value containing the right end of each
block

a single numeric giving the last unobserved sample point directly before sam-
pling started, i.e. before leftEnd[1]

the object
see [.data.frame

"c" to plot jumps in the middle between the end of the previous block (or x0)
and the beginning of the following block; "e" to jump at the end of the previous
block; "b" to jump at the beginning of the following block; capital letters also
plot points

xlab, ylab, main, sub

Value

see plot.default

for generic methods only

For stepblock an object of class stepblock, i.e. a data. frame with columns value, leftEnd and
rightEnd and attribute x@.

Note

For the purposes of this package step functions are taken to be left-continuous, i.e. the function
jumps after the rightEnd of a block.

However, step functions are usually sampled at a discrete set of points so that the exact position of
the jump is unknown, except that it has to occur before the next sampling point; this is expressed
in the implementation by the specification of a leftEnd within the block so that every rightEnd
and leftEnd is a sampling point (or the boundary of the observation window), there is no sampling
point between one block’s rightEnd and the following block’s 1eftEnd, while the step function is
constant at least on the closed interval with boundary leftEnd, rightEnd.

See Also

step, stepfit, family, [.data.frame, plot, lines
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Examples

# step function consisting of 3 blocks: 1 on (@, 31; 2 on (3, 6], @ on (6, 8]

# sampled on the integers 1:10

f <- stepblock(value = c(1, 2, 0), rightEnd = c(3, 6, 8))

f’

# show different plot types

plot(f, type = "C")

lines(f, type = "E", 1ty = 2, col = "red")

lines(f, type = "B"”, 1ty = 3, col = "blue”)

legend("bottomleft”, legend = c("C", "E", "B"), 1ty = 1:3, col = c("black”, "red”, "blue"))

stepbound Jump estimation under restrictions

Description

Computes piecewise constant maximum likelihood estimators with minimal number of jumps under
given restrictions on subintervals.

Deprecation warning: This function is a help function for smuceR and jsmurf and may be removed
when these function will be removed.

Usage

stepbound(y, bounds, ...)

## Default S3 method:

stepbound(y, bounds, x = 1:length(y), x0 = 2 x x[1] - x[2],
max.cand = NULL, family = c("gauss”, "gaussvar"”, "poisson”, "binomial”, "gaussKern"),
param = NULL, weights = rep(1, length(y)), refit =y,
jumpint = confband, confband = FALSE, ...)

## S3 method for class 'stepcand'

stepbound(y, bounds, refit = TRUE, ...)
Arguments
y a vector of numerical observations
bounds bounds on the value allowed on intervals; typically computed with bounds
X a numeric vector of the same length as y containing the corresponding sample
points
X0 a single numeric giving the last unobserved sample point directly before sam-

pling started
max.cand, weights
see stepcand
family, param specifies distribution of data, see family

refit logical, for family = "gaussKern”; determines whether a fit taken the filter
kernel into account will be computed at the end
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jumpint logical (FALSE by default), indicates if confidence sets for jumps should be
computed
confband logical, indicates if a confidence band for the piecewise-continuous function

should be computed

arguments to be passed to generic methods

Value

An object of class stepfit that contains the fit; if jumpint == TRUE function jumpint allows to
extract the confidence interval for the jumps, if confband == TRUE function confband allows to
extract the confidence band.

References

Frick, K., Munk, A., and Sieling, H. (2014) Multiscale change-point inference. With discussion and
rejoinder by the authors. Journal of the Royal Statistical Society, Series B 76(3), 495-580.

Hotz, T., Schiitte, O., Sieling, H., Polupanow, T., Diederichsen, U., Steinem, C., and Munk, A.
(2013) Idealizing ion channel recordings by a jump segmentation multiresolution filter. IEEE Trans-
actions on NanoBioscience 12(4), 376-386.

See Also

bounds, smuceR, jsmurf, stepsel, stepfit, jumpint, confband

Examples
# simulate poisson data with two levels
y <- rpois(100, c(rep(1, 50), rep(4, 50)))
# compute bounds
b <- bounds(y, penalty="len", family="poisson”, q=4)
# fit step function to bounds
sb <- stepbound(y, b, family="poisson"”, confband=TRUE)
plot(y)
lines(sb)

# plot confidence intervals for jumps on axis
points(jumpint(sb), col="blue")

# confidence band

lines(confband(sb), 1lty=2, col="blue")

stepcand Forward selection of candidate jumps

Description

Find candidates for jumps in serial data by forward selection.
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Usage

stepcand(y, x = 1:length(y), x0 = 2 x x[1] - x[2], max.cand = NULL,
family = c("gauss”, "gaussvar”, "poisson”, "binomial”, "gaussKern"), param = NULL,
weights = rep(1, length(y)), cand.radius = 0)

Arguments

y a numeric vector containing the serial data

X a numeric vector of the same length as y containing the corresponding sample
points

X0 a single numeric giving the last unobserved sample point directly before sam-
pling started

max . cand single integer giving the maximal number of blocks to find; defaults to using all
data (note: there will be one block more than the number of jumps

family distribution of the errors, either "gauss”, "poisson” or "binomial”; "gaussInhibit”
is like "gauss” forbids jumps getting close together or to the ends in steppath. stepcand,
"gaussInhibitBoth" already forbids this in stepcand (not recommended)

param additional parameters specifying the distribution of the errors; the number of
trials for family "binomial”; for gaussInhibit and gaussInhibitBoth a nu-
meric of length 3 with components "start”, "middle” and "end” preventing
the first jump from getting closer to x@ than the "start” value, any two jumps
from getting closer than the "middle” value, and the last jump from geting
closer than the "end” value to the end, all distances measured by weights (cf.
example below)

weights a numeric vector of the same length as y containing non-negative weights

cand.radius a non-negative integer: adds for each candidate found all indices that are at most
cand.radius away

Value

An object of class stepcand extending class stepfit such that it can be used as an input to
steppath.stepcand: additionally contains columns

cumSum The cumulative sum of x up to rightEnd.
cumSumSq The cumulative sum of squares of x up to rightEnd (for family = "gauss").
cumSumWe The cumulative sum of weights up to rightEnd.
improve The improvement this jump brought about when it was selected.
See Also

steppath, stepfit, family
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Examples

# simulate 5 blocks (4 jumps) within a total of 100 data points
b <- c(sort(sample(1:99, 4)), 100)

f <= rep(rnorm(5, @, 4), c(b[1], diff(b)))

rbind(b = b, f = unique(f), lambda = exp(unique(f) / 10) * 20)
# add gaussian noise

x <= f + rnorm(100)

# find 10 candidate jumps

stepcand(x, max.cand = 10)

# for poisson observations

y <- rpois(100, exp(f / 10) * 20)

# find 10 candidate jumps

stepcand(y, max.cand = 10, family = "poisson”)
# for binomial observations
size <- 10

z <- rbinom(100, size, pnorm(f / 10))
# find 10 candidate jumps

stepcand(z, max.cand = 10, family = "binomial”, param = size)
stepFit Piecewise constant multiscale inference
Description

Computes the multiscale regression estimator, see (3.1) in the vignette, and allows for confidence
statements, see section 3 in the vignette. It implements the estimators SMUCE and HSMUCE as well
as their confidence intervals and bands.

If g == NULL a Monte-Carlo simulation is required for computing critical values. Since a Monte-
Carlo simulation lasts potentially much longer (up to several hours or days if the number of ob-
servations is in the millions) than the main calculations, this package saves them by default in the
workspace and on the file system such that a second call requiring the same Monte-Carlo simulation
will be much faster. For more details, in particular to which arguments the Monte-Carlo simulations
are specific, see Section Storing of Monte-Carlo simulations below. Progress of a Monte-Carlo sim-
ulation can be reported by the argument messages and the saving can be controlled by the argument
option, both can be specified in ... and are explained in monteCarloSimulation and critVal,
respectively.

Usage
stepFit(y, q = NULL, alpha = NULL, x = 1:1length(y), x0 = 2 x x[1] - x[2],
family = NULL, intervalSystem = NULL, lengths = NULL, confband = FALSE,
jumpint = confband, ...)
Arguments

y a numeric vector containing the observations
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q either NULL, then the vector of critical values at level alpha will be computed
from a Monte-Carlo simulation, or a numeric giving the global quantile or a
numeric vector giving the vector of critical values. Either q or alpha must be
given. Otherwise, alpha == 0.5 is chosen with a warning. This argument will
be passed to critVal to obtain the needed critical values. Additional parame-
ters for the computation of g can be specified in ..., for more details see the
documentation of critVal. Please note that by default the Monte-Carlo simu-
lation will be saved in the workspace and on the file system, for more details see
Section Storing of Monte-Carlo simulations below

alpha a probability, i.e. a single numeric between 0 and 1, giving the significance
level. Its choice is a trade-off between data fit and parsimony of the estimator.
In other words, this argument balances the risks of missing change-points and
detecting additional artefacts. For more details on this choice see (Frick et al.,
2014, section 4) and (Pein et al., 2017, section 3.4). Either q or alpha must be
given. Otherwise, alpha == 0.5 is chosen with a warning

X a numeric vector of the same length as y containing the corresponding sample
points
X0 a single numeric giving the last unobserved sample point directly before sam-

pling started

family a string specifying the assumed parametric family, for more details see paramet-
ricFamily, currently "gauss”, "hsmuce"” and "mDependentPS" are supported.
By default (NULL) "gauss"” is assumed

intervalSystem a string giving the used interval system, either "all” for all intervals, "dyaLen"”
for all intervals of dyadic length or "dyaPar"” for the dyadic partition, for more
details see intervalSystem. By default (NULL) the default interval system of the
specified parametric family will be used, which one this will be is described in
parametricFamily

lengths an integer vector giving the set of lengths, i.e. only intervals of these lengths
will be considered. Note that not all lengths are possible for all interval sys-
tems and for all parametric families, see intervalSystem and parametricFamily,
respectively, to see which ones are allowed. By default (NULL) all lengths that
are possible for the specified intervalSystem and for the specified parametric
family will be used

confband single logical, indicates if a confidence band for the piecewise-continuous
function should be computed

jumpint single logical, indicates if confidence sets for change-points should be com-
puted

there are two groups of further arguments:

1. further parameters of the parametric family. Depending on argument family
some might be required, but others might be optional, please see paramet-
ricFamily for more details,

2. further parameters that will be passed to critVal. critVal will be called
automatically with the number of observations n = length(y), the argu-
ments family, intervalSystem, lengths, q and output set. For these
arguments no user interaction is required and possible, all other arguments
of critVal can be passed additionally
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Value

An object of class stepfit that contains the fit. If jumpint == TRUE function jumpint allows to
extract the 1 - alpha confidence interval for the jumps. If confband == TRUE function confband
allows to extract the 1 - alpha confidence band.

Storing of Monte-Carlo simulations

If g == NULL a Monte-Carlo simulation is required for computing critical values. Since a Monte-
Carlo simulation lasts potentially much longer (up to several hours or days if the number of observa-
tions is in the millions) than the main calculations, this package offers multiple possibilities for sav-
ing and loading the simulations. Progress of a simulation can be reported by the argument messages
which can be specified in . .. and is explained in the documentation of monteCarloSimulation.
Each Monte-Carlo simulation is specific to the number of observations, the parametric family (in-
cluding certain parameters, see parametricFamily) and the interval system, and for simulations of
class "MCSimulationMaximum”, additionally, to the set of lengths and the used penalty. Monte-
Carlo simulations can also be performed for a (slightly) larger number of observations n, given in
the argument nq in ... and explained in the documentation of critVal, which avoids extensive
resimulations for only a little bit varying number of observations. Simulations can either be saved
in the workspace in the variable critValStepRTab or persistently on the file system for which the
package R.cache is used. Moreover, storing in and loading from variables and RDS files is sup-
ported. Finally, a pre-simulated collection of simulations can be accessed by installing the package
stepRdata available from http://www.stochastik.math.uni-goettingen.de/stepRdata_1.
0-0.tar.gz. The simulation, saving and loading can be controlled by the argument option which
can be specified in ... and is explained in the documentation of critVal. By default simulations
will be saved in the workspace and on the file system. For more details and for how simulation can
be removed see Section Simulating, saving and loading of Monte-Carlo simulations in critVal.

References

Frick, K., Munk, A., Sieling, H. (2014) Multiscale change-point inference. With discussion and
rejoinder by the authors. Journal of the Royal Statistical Society, Series B 76(3), 495-580.

Pein, F,, Sieling, H., Munk, A. (2017) Heterogeneous change point inference. Journal of the Royal
Statistical Society, Series B, 79(4), 1207-1227.

See Also

critVal, penalty, parametricFamily, intervalSystem, monteCarloSimulation
Examples

# generate random observations

y <= c(rnorm(50), rnorm(50, 1))

x <- seq(0.01, 1, 0.01)

plot(x, y, pch = 16, col = "grey30", ylim = c(-3, 4))

# computation of SMUCE and its confidence statements
fit <- stepFit(y, x = x, alpha = @.5, jumpint = TRUE, confband = TRUE)
lines(fit, 1lwd = 3, col = "red”, lty = "22")


http://www.stochastik.math.uni-goettingen.de/stepRdata_1.0-0.tar.gz
http://www.stochastik.math.uni-goettingen.de/stepRdata_1.0-0.tar.gz

stepfit

# confidence intervals for the change-point locations
points(jumpint(fit), col = "red")

# confidence band

lines(confband(fit), 1ty = "22", col = "darkred”, lwd = 2)

# higher significance level for larger detection power, but less confidence
stepFit(y, x = x, alpha = 0.99, jumpint = TRUE, confband = TRUE)

# smaller significance level for the small risk that the number of
# change-points is overestimated with probability not more than 5%,
# but smaller detection power

stepFit(y, x = x, alpha = 0.05, jumpint = TRUE, confband = TRUE)

# different interval system, lengths, penalty and given parameter sd
stepFit(y, x = x, alpha = 0.5, intervalSystem = "dyalen",

lengths = c(1L, 2L, 4L, 8L), penalty = "weights”,

weights = c(0.4, 0.3, 0.2, 0.1), sd = 0.5,

jumpint = TRUE, confband = TRUE)

# with given g

identical(stepFit(y, x = x, q = critVal(1eeL, alpha = 0.5),
jumpint = TRUE, confband = TRUE), fit)

identical(stepFit(y, x = x, q = critVal(1eoL, alpha = 0.5, output = "value"),
jumpint = TRUE, confband = TRUE), fit)

# the above calls saved and (attempted to) load Monte-Carlo simulations and
# simulated them for nq = 128 observations
# in the following call no saving, no loading and simulation for n = 100
# observations is required, progress of the simulation will be reported
stepFit(y, x = x, alpha = 0.5, jumpint = TRUE, confband = TRUE,
messages = 1000L, options = list(simulation = "vector”,
load = list(), save = list()))

# with given stat to compute q
stat <- monteCarloSimulation(n = 128L)
identical(stepFit(y, x = x, alpha = 0.5, stat = stat,
jumpint = TRUE, confband = TRUE),
stepFit(y, x = x, alpha = 0.5, jumpint = TRUE, confband = TRUE,
options = list(load = list())))

stepfit Fitted step function

Description

Constructs an object containing a step function fitted to some data.



58 stepfit

Usage

stepfit(cost, family, value, param = NULL, leftEnd, rightEnd, x0,

leftIndex

leftEnd, rightIndex = rightEnd)

## S3 method for class 'stepfit'
x[i, j, drop = if(missing(i)) TRUE else

if(missing(j)) FALSE else length(j) == 1, refit = FALSE]
## S3 method for class 'stepfit'

print(x,

## S3 method for class 'stepfit'

plot(x, dataspace = TRUE, ...)

## S3 method for class 'stepfit'

lines(x, dataspace = TRUE, ...)

## S3 method for class 'stepfit'

fitted(object, ...)

## S3 method for class 'stepfit'

residuals(object, vy, ...)

## S3 method for class 'stepfit'

loglLik(object, df = NULL, nobs = object$rightIndex[nrow(object)], ...)
Arguments

cost the value of the cost-functional used for the fit: RSS for family gauss, log-

likelihood (up to a constant) for families poisson and binomial

family distribution of the errors, either "gauss”, "poisson” or "binomial”

value a numeric vector containing the fitted values for each block; its length gives the
number of blocks

param additional paramters specifying the distribution of the errors, the number of trials
for family "binomial”

leftEnd a numeric vector of the same length as value containing the left end of each
block

rightEnd a numeric vector of the same length as value containing the left end of each
block

X0 a single numeric giving the last unobserved sample point directly before sam-
pling started, i.e. before leftEnd[@]

leftIndex a numeric vector of the same length as value containing the index of the sample
points corresponding to the block’s left end, cf. stepcand

rightIndex a numeric vector of the same length as value containing the index of the sample
points corresponding to the block’s right end, cf. stepcand

x, object the object

y a numeric vector containing the data with which to compare the fit

df the number of estimated parameters: by default the number of blocks for fami-
lies poisson and binomial, one more (for the variance) for family gauss

nobs the number of observations used for estimating

for generic methods only
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i, j,drop see "[.data.frame”

refit logical; determines whether the function will be refitted after subselection, i.e.
whether the selection should be interpreted as a fit with fewer jumps); in that
case, for family = "gaussKern”, refit needs to be set to the original data, i.e.
y

dataspace logical determining whether the expected value should be plotted instead of
the fitted parameter value, useful e.g. for family = "binomial”, where it will
plot the fitted success probability times the number of trials per observation

Value
stepfit an object of class stepfit which extends stepblock, additionally contain-
ing attributes cost, family and param, as well as columns leftIndex and
rightIndex
[.stepfit an object of class stepfit which contains the selected subset

fitted.stepfit anumeric vector of length rightIndex[length(rightIndex)] giving the fit at
the original sample points

residuals.stepfit
anumeric vector of length rightIndex[length(rightIndex) ] giving the resid-
uals at the original sample points

loglLik.stepfit an object of class loglLik giving the likelihood of the data given this fit, e.g. for
use with AIC and stepsel; this will (incorrectly) treat family = "gaussKern"
as if it were fitted with family = "gauss”

plot.stepfit, plot.stepfit
the corresponding functions for stepblock are called

See Also

stepblock, stepbound, steppath, stepsel, family, "[.data.frame"”, fitted, residuals, loglLik,
AIC

Examples
# simulate 5 blocks (4 jumps) within a total of 100 data points
b <- c(sort(sample(1:99, 4)), 100)
p <= rep(runif(5), c(b[1], diff(b))) # success probabilities
# binomial observations, each with 10 trials
y <- rbinom(100, 10, p)
# find solution with 5 blocks

fit <- steppath(y, family = "binomial”, param = 10)[[5]]
plot(y, ylim = c(@, 10))

lines(fit, col = "red")

# residual diagnostics for Gaussian data

yg <- rnorm(10@, gnorm(p), 1)

fitg <- steppath(yg)[[5]1]

plot(yg, ylim = c(@, 10))

lines(fitg, col = "red")

plot(resid(fitg, yg))

ggnorm(resid(fitg, yg))
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steppath Solution path of step-functions

Description

Find optimal fits with step-functions having jumps at given candidate positions for all possible
subset sizes.

Usage

steppath(y, ..., max.blocks)
## Default S3 method:
steppath(y, x = 1:length(y), x0 = 2 * x[1] - x[2], max.cand = NULL,
family = c("gauss”, "gaussvar”, "poisson”, "binomial”, "gaussKern"), param = NULL,

weights = rep(1, length(y)), cand.radius = @, ..., max.blocks = max.cand)

## S3 method for class 'stepcand'

steppath(y, ..., max.blocks = sum(!is.na(y$number)))

## S3 method for class 'steppath'

x[[i]1]

## S3 method for class 'steppath'

length(x)

## S3 method for class 'steppath'

print(x, ...)

## S3 method for class 'steppath'

loglik(object, df = NULL, nobs = object$cand$rightIndex[nrow(object$cand)], ...)
Arguments

for steppath:

y either an object of class stepcand for steppath. stepcand or a numeric vector

containing the serial data for steppath.default
X, X@, max.cand, family, param, weights, cand.radius
for steppath.default which calls stepcand; see there

max.blocks single integer giving the maximal number of blocks to find; defaults to number
of candidates (note: there will be one block more than the number of jumps

for generic methods only
for methods on a steppath object x or object:

object the object

i if this is an integer returns the fit with i blocks as an object of class stepcand,
else the standard behaviour of a 1ist

df the number of estimated parameters: by default the number of blocks for fami-
lies poisson and binomial, one more (for the variance) for family gauss

nobs the number of observations used for estimating
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Value

For steppath an object of class steppath, i.e. a 1ist with components

path A list of length 1length(object) where the ith element contains the best fit by
a step-function having i-1 jumps (i.e. i blocks), given by the candidates indices

cost A numeric vector of length length(object) giving the value of the cost func-
tional corresponding to the solutions.

cand An object of class stepcand giving the candidates among which the jumps were
selected.

[[.steppath returns the fit with i blocks as an object of class stepfit; length.steppath the
maximum number of blocks for which a fit has been computed. loglLik.stepfit returns an object
of class loglLik giving the likelihood of the data given the fits corresponding to cost, e.g. for use
with AIC.

References

Friedrich, F., Kempe, A., Liebscher, V., Winkler, G. (2008) Complexity penalized M-estimation:
fast computation. Journal of Computational and Graphical Statistics 17(1), 201-224.

See Also

stepcand, stepfit, family, loglL ik, AIC

Examples

simulate 5 blocks (4 jumps) within a total of 100 data points

<- c(sort(sample(1:99, 4)), 100)

<- rep(rnorm(5, @, 4), c(b[1], diff(b)))

add Gaussian noise

<- f + rnorm(100)

find 10 candidate jumps

cand <- stepcand(x, max.cand = 10)

cand

# compute solution path

path <- steppath(cand)

path

plot(x)

lines(path[[5]], col = "red"”)

# compare result having 5 blocks with truth

fit <- path[[5]]

fit

loglLik(fit)

AIC(logLik(fit))

cbind(fit, trueRightEnd = b, truelLevel = unique(f))

# for poisson observations

y <- rpois(100, exp(f / 10) * 20)

# compute solution path, compare result having 5 blocks with truth

cbind(steppath(y, max.cand = 10, family = "poisson”)[[5]1],
trueRightEnd = b, truelntensity = exp(unique(f) / 10) * 20)

# for binomial observations

H X H H T H
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size <- 10

z <- rbinom(100, size, pnorm(f / 10))

# compute solution path, compare result having 5 blocks with truth

cbind(steppath(z, max.cand = 10, family = "binomial”, param = size)[[5]],
trueRightEnd = b, truelntensity = pnorm(unique(f) / 10))

# an example where stepcand is not optimal but indices found are close to optimal ones

blocks <- c(rep(@, 9), 1, 3, rep(1, 9))

blocks

stepcand(blocks, max.cand = 3)[,c("rightEnd”, "value”, "number"”)]

# erroneously puts the "1" into the right block in the first step

steppath(blocks)[[3]11[,c("rightEnd”, "value")]

# putting the "1" in the middle block is optimal

steppath(blocks, max.cand = 3, cand.radius = 1)[[3]1[,c("rightEnd”, "value")]

# also looking in the 1-neighbourhood remedies the problem

stepsel Automatic selection of number of jumps

Description

Select the number of jumps.

Usage
stepsel(path, y, type = c("MRC", "AIC", "BIC"), ...)
stepsel .MRC(path, y, q, alpha = 0.05, r = ceiling(50 / min(alpha, 1 - alpha)),
lengths = if(attr(path$cand, "family") == "gaussKern")

2*(floor(log2(length(y))):ceiling(log2(length(attr(path$cand, "param”)$kern)))) else
2*(floor(log2(length(y))):0),
penalty = c("none"”, "log", "sqrt"), name = if(attr(path$cand, "family") == "gaussKern")
".MRC.ktable"” else ".MRC.table",
pos = .MCstepR)

stepsel.AIC(path, ...)
stepsel.BIC(path, ...)
Arguments
path an object of class steppath
y for type=MRC only: a numeric vector containing the serial data
type how to select, dispatches specific method

e further argument passed to specific method
g, alpha, r, lengths, penalty, name, pos
see bounds

Value

A single integer giving the number of blocks selected, with attribute crit containing the values
of the criterion (MRC / AIC / BIC) for each fit in the path.
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Note

To obtain the threshold described in Boysen et al.~(2009, Theorem~5), set g=(1+delta) * sdrobnorm(y)
* sqrt(2xlength(y)) for some positive delta and penalty="none".

References

Boysen, L., Kempe, A., Liebscher, V., Munk, A., Wittich, O. (2009) Consistencies and rates of
convergence of jump-penalized least squares estimators. The Annals of Statistics 37(1), 157-183.

Yao, Y.-C. (1988) Estimating the number of change-points via Schwarz’ criterion. Statistics &
Probability Letters 6, 181-189.

See Also

steppath, stepfit, family, stepbound

Examples

# simulate 5 blocks (4 jumps) within a total of 100 data points
b <- c(sort(sample(1:99, 4)), 100)
f <= rep(rnorm(5, @, 4), c(b[1], diff(b)))
rbind(b = b, f = unique(f))
# add gaussian noise
y <= f + rnorm(100)
# find 10 candidate jumps
path <- steppath(y, max.cand = 10)
# select number of jumps by simulated MRC with sqrt-penalty
# thresholded with positive delta, and by BIC
sel . MRC <- stepsel(path, y, "MRC", alpha = .05, r = 1e2, penalty = "sqrt")
sel .MRC
delta <- .1
sel.delta <- stepsel(path, y, "MRC",
q = (1 + delta) * sdrobnorm(y) * sqrt(2 * length(y)), penalty = "none")
sel.delta
sel.BIC <- stepsel(path, type="BIC")
sel.BIC
# compare results with truth
fit.MRC <- path[[sel.MRC]]
as.data.frame(fit.MRC)
as.data.frame(path[[sel.deltal])
as.data.frame(path[[sel.BIC]])

testSmallScales Test Small Scales

Description

For developers only; users should look at the function improveSmallScales in the CRAN package
clampSeg. Implements the second step of HILDE (Pein et al., 2020, Section III-B) in which an
initial fit is tested for missed short events.
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Usage

testSmallScales

.testSmallScales(data, family, lengths = NULL, q, alpha, ...)

Arguments

data

family

lengths

alpha

Value

a numeric vector containing the observations

a string specifying the assumed parametric family, currently "LR" and "2Param”
are supported

an integer vector giving the set of lengths, i.e. only intervals of these lengths
will be considered. By default (NULL) 1:20 will be used for parametric family
"LR" and 1:65 will be used for parametric family "2Param”

either NULL, then the vector of critical values at level alpha will be computed
from a Monte-Carlo simulation or a numeric vector giving the vector of critical
values. Either g or alpha must be given. Otherwise, alpha == 0.5 is chosen
with a warning. This argument will be passed to critVal to obtain the needed
critical values. Additional parameters for the computation of g can be specified
in ..., for more details see the documentation of critVal. Please note that
by default the Monte-Carlo simulation will be saved in the workspace and on
the file system, for more details see Section Storing of Monte-Carlo simulations
below

a probability, i.e. a single numeric between 0 and 1, giving the significance
level. Its choice is a trade-off between data fit and parsimony of the estimator.
In other words, this argument balances the risks of missing change-points and
detecting additional artefacts. For more details on this choice see (Frick et al.,
2014, section 4) and (Pein et al., 2017, section 3.4). Either q or alpha must be
given. Otherwise, alpha == 0.5 is chosen with a warning

there are two groups of further arguments:

1. further parameters of the parametric family,

2. further parameters that will be passed to critVal. critVal will be called
automatically with the number of observations n = length(y), the argu-
ments family, intervalSystem, lengths, q and output set. For these
arguments no user interaction is required and possible, all other arguments
of critVal can be passed additionally

a list with entries jumps, addLeft, addRight, noDeconvolution, data, q

References

Pein, F., Bartsch, A., Steinem, C., and Munk, A. (2020) Heterogeneous idealization of ion channel
recordings - Open channel noise. Submitted.
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transit TRANSIT algorithm for detecting jumps

Description

Reimplementation of VanDongen’s algorithm for detecting jumps in ion channel recordings.

Deprecation warning: This function is mainly used for patchlamp recordings and may be trans-
ferred to a specialised package.

Usage

transit(y, x = 1:length(y), x0 = 2 * x[1] - x[2], sigma.amp = NA, sigma.slope = NA,
amp.thresh = 3, slope.thresh = 2, rel.amp.n = 3, rel.amp.thresh = 4,
family = c("gauss", "gaussKern"), param = NULL, refit = FALSE)

Arguments

y a numeric vector containing the serial data

sigma.amp amplitude (i.e. raw data within block) standard deviation; estimated using sdrobnorm
if omitted

sigma.slope slope (i.e. central difference within block) standard deviation; estimated using
sdrobnorm if omitted

amp. thresh amplitude threshold

slope. thresh slope threshold

rel.amp.n relative amplitude threshold will be used for blocks with no more datapoints
than this

rel.amp.thresh relative amplitude threshold

X a numeric vector of the same length as y containing the corresponding sample
points
X0 a single numeric giving the last unobserved sample point directly before sam-

pling started
family, param specifies distribution of data, see family

refit should the values for family = "gaussKern” be obtained by fitting in the end
(otherwise they are meaningless)
Value

Returns an object of class stepfit which encodes the jumps and corresponding mean values.

Note

Only central, no forward differences have been used in this implementation. Moreover, the standard
deviations will be estimated by sdrobnorm if omitted (respecting the filter’s effect if applicable).
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References

VanDongen, A. M. J. (1996) A new algorithm for idealizing single ion channel data containing
multiple unknown conductance levels. Biophysical Journal 70(3), 1303-1315.

See Also

stepfit, sdrobnorm, jsmurf, stepbound, steppath

Examples

# estimating step-functions with Gaussian white noise added

# simulate a Gaussian hidden Markov model of length 1000 with 2 states
# with identical transition rates 0.01, and signal-to-noise ratio 2
sim <- contMC(1e3, 0:1, matrix(c(0, 0.01, .01, @), 2), param=1/2)
plot(sim$data, cex = 0.1)

lines(sim$cont, col="red")

# maximum-likelihood estimation under multiresolution constraints
fit.MRC <- smuceR(sim$data$y, sim$data$x)

lines(fit.MRC, col="blue")

# choose number of jumps using BIC

path <- steppath(sim$data$y, sim$data$x, max.blocks=1e2)

fit.BIC <- path[[stepsel.BIC(path)]]

lines(fit.BIC, col="green3", 1ty = 2)

# estimate after filtering

# simulate filtered ion channel recording with two states

set.seed(9)

# sampling rate 10 kHz

sampling <- le4

# tenfold oversampling

over <- 10

# 1 kHz 4-pole Bessel-filter, adjusted for oversampling

cutoff <- 1e3

df.over <- dfilter("bessel”, list(pole=4, cutoff=cutoff / sampling / over))

# two states, leaving state 1 at 10 Hz, state 2 at 20 Hz

rates <- rbind(c(@, 10), c(20, 0))

# simulate 0.5 s, level @ corresponds to state 1, level 1 to state 2

# noise level is 0.3 after filtering

Sim <- contMC(@.5 * sampling, @:1, rates, sampling=sampling, family="gaussKern"”,
param = list(df=df.over, over=over, sd=0.3))

plot(Sim$data, pch = ".")

lines(Sim$discr, col = "red")

# fit under multiresolution constraints using filter corresponding to sample rate

df <- dfilter("bessel”, list(pole=4, cutoff=cutoff / sampling))

Fit.MRC <- jsmurf(Sim$datas$y, Sim$data$x, param=df, r=1e2)

lines(Fit.MRC, col = "blue")

# fit using TRANSIT

Fit.trans <- transit(Sim$data$y, Sim$data$x)

lines(Fit.trans, col = "green3", lty=2)
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