Package ‘spaths’

April 4, 2025
Type Package
Title Shortest Paths Between Points in Grids
Version 1.2.0

Description Shortest paths between points in grids. Optional barriers and custom transition func-
tions. Applications regarding planet Earth, as well as
generally spheres and planes. Optimized for computational performance, customizabil-
ity, and user friendliness. Graph-theoretical implementation tailored
to gridded data. Currently focused on Dijkstra's (1959) <doi:10.1007/BF01386390> algo-
rithm. Future updates broaden the scope to other least cost path
algorithms and to centrality measures.

License MIT + file LICENSE
Encoding UTF-8

URL https://github.com/cdueben/spaths

BugReports https://github.com/cdueben/spaths/issues

Imports base (>=4.0.0), Rcpp (>= 1.0.9), data.table, parallel, stats,
utils

LinkingTo Rcpp

Suggests terra, knitr, rmarkdown, testthat (>= 3.0.0)
VignetteBuilder knitr

RoxygenNote 7.3.2

Config/testthat/edition 3

NeedsCompilation yes

Author Christian Diiben [aut, cre]

Maintainer Christian Diiben <cdueben.ml+cran@proton.me>
Repository CRAN

Date/Publication 2025-04-04 05:10:02 UTC


https://doi.org/10.1007/BF01386390
https://github.com/cdueben/spaths
https://github.com/cdueben/spaths/issues

2 max_edges
Contents
Max_edges . . . . .. e e e e e 2
rmd_locations . . . . . . .. e e 3
shortest_paths . . . . . . . . . L 4
Index 12
max_edges Maximum number of edges in your grid
Description
The maximum number of edges in your grid, determining what type of transition function you can
use in shortest_paths.
Usage
max_edges (
rst,
contiguity = c("queen”, "rook"),
spherical = TRUE,
extent = NULL
)
Arguments
rst SpatRaster (terra), RasterLayer (raster), matrix, or list of matrices object. Raster-
Layers are converted to SpatRasters.
contiguity "queen” (default) for queen’s case contiguity or "rook” for rook’s case con-
tiguity. In the latter case, the algorithm only moves between horizontally or
vertically adjacent cells. In the former case, it is also travels between diagonally
adjacent cells.
spherical Logical specifying whether coordinates are unprojected, i.e. lonlat, and refer to
a sphere, e.g., a planet, if rst is a matrix or a list of matrices. It defaults to TRUE.
If FALSE, the function assumes the coordinates to originate from a planar pro-
jection. This argument has no effect when rst is a SpatRaster or RasterLayer.
extent Vector of length 4, specifying the extent of rst, if rst is a matrix or a list of
matrices. It must contain Xxmin, xmax, ymin, and ymax, in that order. The
argument has no effect when rst is a SpatRaster or RasterLayer.
Details

An edge is a connection between adjacent grid cells. With queen’s case contiguity, each cell has up
to 8 edges. With rook’s case contiguity, they have up 4 edges. It is up to 8 and 4, and not exactly 8

or 4, because rst’s

outer pixels do not have neighbors in all directions.

If the data is unprojected and spans from 180 degrees West to 180 degrees East, the easternmost
cells are connected to the westernmost cells. Like in any other geo-spatial software, this is the



rnd_locations 3

only scenario in which the algorithm connects cells across the grid boundary, i.e. in which, e.g., a
shortest path leaves the grid on one side and enters it on the opposite side. In all other cases, cells
are only connected to their direct neighbors within the grid.

Another source of edge removal are NA cells. There are no edges to or from NA cells in rst.

Value

Returns a numeric value denoting the maximum number of edges in rst that shortest_paths may
store in an adjacency list in R at some point. If there are any NA cells, the returned number is
greater than the final graph’s number of edges for two reasons. First, shortest_paths assembles the
adjacency list in multiple steps. Second, for efficiency reasons, max_edges does not evaluate where
in the grid the NA cells are and assumes the most conservative impact.

The returned value is the same number upon which shortest_paths decides to either construct the
adjacency list in R or in C++. If the result is larger than 2,147,483,647 (the maximum number
of elements native R objects can store), it chooses C++. Otherwise, it selects R. In the C++ case,
any tr_fun transition function must be an Rcpp C++ function with various restrictions (see the
transition functions vignette).

See Also

shortest_paths.

Examples

# Generate example data

set.seed(2L)

input_grid <- terra::rast(crs = "epsg:4326", resolution = 2, vals = sample(c(1L, NA_integer_),
16200L, TRUE, c(0.8, 0.2)))

# Obtain maximum number of edges
max_edges(input_grid)

rnd_locations Random location drawing

Description

This function draws random unprojected (lonlat) locations.

Usage
rnd_locations(
nobs,
xmin = -180,
xmax = 180,
ymin = -90,

ymax = 90,


../doc/transition_functions.html

4 shortest_paths

output_type = c("data.table”, "data.frame", "SpatVector”)

)

Arguments
nobs Number of observations
xmin Minimum longitude
Xmax Maximum longitude
ymin Minimum latitude
ymax Maximum latitude

output_type type of output object. Either "data. table” (default), "data. frame”, or "SpatVector".

Details

By default, the function draws a global sample of random locations. You can restrict it to a certain
region via specifying xmin, xmax, ymin, and ymax. The function draws from a uniform spatial
distribution that assumes the planet to be a perfect sphere. The spherical assumption is common in
GIS functions, but deviates from Earth’s exact shape.

Value

Returns a data.table, data.frame, or SpatVector object of unprojected (lonlat) points.

See Also

shortest_paths.

Examples

rnd_locations(1000)

shortest_paths Shortest paths and/ or distances between locations

Description

The shortest paths and/ or distance between locations in a grid according to Dijkstra’s (1959) algo-
rithm.



shortest_paths 5

Usage
shortest_paths(
rst,
origins,
destinations = NULL,
output = c("distances”, "lines"”, "both"),

output_class = NULL,

origin_names = NULL,
destination_names = NULL,
pairwise = FALSE,

contiguity = c("queen”, "rook"),
spherical = TRUE,

radius = 6371010,

extent = NULL,

dist_comp = c("spaths”, "terra"),
tr_fun = NULL,

v_matrix = FALSE,

tr_directed = TRUE,

pre = TRUE,

early_stopping = TRUE,
bidirectional = FALSE,

update_rst = NULL,

touches = TRUE,

ncores = NULL,

par_lvl = c("update_rst”, "points"),
show_progress = FALSE,

bar_limit = 150L,

path_type = c("int"”, "unsigned short int"),

distance_type = c("double”, "float”, "int", "unsigned short int")
)
Arguments

rst SpatRaster (terra), RasterLayer (raster), matrix, or list of matrices object. Raster-
Layers are converted to SpatRasters. Pixels with non-NA values in all layers
mark the cells through which the algorithm may pass. The values of rst can be
accessed in tr_fun.

origins Origin points at which the shortest paths start. If rst is a SpatRaster or Raster-

Layer object, these points can be passed as a single SpatVector (terra), sf (sf), or
Spatial* (sp) object. sf and sp objects are converted to SpatVectors. Polygons
and lines are converted to points using their centroid. If rst is a matrix or list of
matrices, origins must be a single matrix, data.frame, or data.table of coordi-
nates with columns named "x" and "y". The coordinates must refer to points in
the reference system that rst utilizes. Lines and polygons are thus not accepted
in this case. Details on which points the function connects are outlined below.

destinations Destination points to which the shortest paths are derived. It defaults to NULL,
resulting in the function to compute shortest paths between the origins points.



output

output_class

origin_names

shortest_paths

Otherwise, the same input rules as for origins apply. Details on which points
the function connects are outlined below.

"distances"” (default), "lines"”, or "both”. "distances" lists the total transi-
tion costs along the shortest paths. By default, it is the distance between origin
and destination in meters, if rst is an unprojected SpatRaster or RasterLayer
or if dist_comp = "terra”. Otherwise, it is denoted in the projection’s units.
If you pass another function to tr_fun, the total transition cost is measured in
the units of tr_fun’s results. "1ines"” returns the shortest paths as spatial lines.
"both" returns both distances and lines. "distances” is faster and requires less
RAM than "lines"” or "both".

Class of the returned object. With output = "distances”, the options are "data
(default) and "data.frame"”. With output = "lines” or output = "both”, the
options are "SpatVector” (default when rst is a SpatRaster or RasterLayer)
and "1list” (default when rst is a matrix or a list of matrices). In the case of
"list", the attributes, the line coordinates, and the CRS are returned as individ-
ual list elements. The first element in the list of line coordinates refers to the first
row in the attributes table etc. "SpatVector" is only available with a SpatRaster
or RasterLayer rst. output_class changes the format of the returned object,
not the information it contains.

Character specifying the name of the column in the origins object used to label
the origins in the output object. It defaults to row numbers.

destination_names

pairwise

contiguity

spherical

radius

extent

dist_comp

Character specifying the name of the column in the destinations object used
to label the destinations in the output object. It defaults to row numbers.

.table”

Logical specifying whether to compute pairwise paths, if origins and destinations

have equally many rows. If TRUE, the function computes the shortest path be-
tween the first origin and the first destination, the second origin and the second
destination, etc. Otherwise, it derives the shortest paths from all origins to all
destinations. pairwise = TRUE can alter the order in which results are returned.
Check the output’s origins and destinations columns for the respective order.

"queen” (default) for queen’s case contiguity or "rook” for rook’s case con-
tiguity. In the latter case, the algorithm only moves between horizontally or
vertically adjacent cells. In the former case, it is also travels between diagonally
adjacent cells. "rook” is more efficient than "queen” as it implies fewer edges.

Logical specifying whether coordinates are unprojected, i.e. lonlat, and refer to
a sphere, e.g., a planet, if rst is a matrix or a list of matrices. It defaults to TRUE.
If FALSE, the function assumes the coordinates to originate from a planar pro-
jection. This argument has no effect when rst is a SpatRaster or RasterLayer.

Radius of the object, e.g. planet, if spherical = TRUE. This argument has no
effect when rst is a SpatRaster or RasterLayer.

Vector of length 4, specifying the extent of rst, if rst is a matrix or a list of
matrices. It must contain Xmin, xmax, ymin, and ymax, in that order. The
argument has no effect when rst is a SpatRaster or RasterLayer.

Method to compute distances between adjacent cells. "spaths” (default) or
"terra”. The default "spaths” uses spherical (Haversine) distances in case
of lonlat data and planar (Euclidean) distances in case of projected (non-lonlat)



shortest_paths

tr_fun

v_matrix

tr_directed

pre

early_stopping

data. The functions are optimized based on the fact that many inter-pixel dis-
tances are identical. Modelling the planet as a perfect sphere is in line with e.g.
the s2 package, but is of course an oversimplification. With "terra”, the func-
tion derives distances via terra::distance. Because this computes all inter-
pixel distances separately, it is slower than the "spaths” approach. It does take
the non-spherical nature of the planet into account though. With tr_fun, you
can specify a custom distance function that uses neither "spaths” nor "terra”
distances.

The transition function based on which to compute edge weights, i.e. the travel
cost between adjacent grid cells. Defaults to the geographic distance between
pixel centroids. Permitted function parameter names are d (distance between the
pixel centroids), x1 (x coordinate or longitude of the first cell), x2 (x coordinate
or longitude of the second cell), y1 (y coordinate or latitude of the first cell), y2
(y coordinate or latitude of the second cell), v1 (rst layers’ values from the first
cell), v2 (rst layers’ values from the second cell), and nc (number of CPU cores
according to the ncores argument). If the data is unprojected, i.e. lonlat, or if
dist_comp = "terra”, d is measured in meters. Otherwise, it uses the units of
the CRS. If rst has one layer, the values are passed to v1 and v2 as vectors,
otherwise they are passed as a data table where the first column refers to the
first layer, the second column to the second layer etc. Note that data tables are
data frames. If rst produces a graph with more than 2,147,483,647 edges, the
adjacency list cannot be stored in R and any tr_fun needs to be written in C++
with a few additional requirements. See the details below.

Logical specifying whether to pass values to v1 and v2 in tr_fun as matrices
(TRUE) instead of data tables in the multi-layer case and vectors in the single-
layer case (FALSE). It defaults to FALSE. Setting it to TRUE might, e.g., be useful
when defining tr_fun as a C++ Armadillo function.

Logical specifying whether tr_fun creates a directed graph. In a directed graph,
transition costs can be asymmetric. Traveling from cells A to B may imply
a different cost than traveling from B to A. It defaults to TRUE and only has
an effect when tr_fun is not NULL. The default without tr_fun constructs an
undirected graph.

Logical specifying whether to compute the distances between neighboring cells
before executing the shortest paths algorithm in C++. pre only has an effect,
when no tr_fun is specified and dist_comp = "spaths”, as the distances are
otherwise imported from R. TRUE (default) is in the vast majority of cases faster
than FALSE. FALSE computes distances between neighboring cells while the
shortest paths algorithm traverses the graph. This requires less RAM, but is
slower than TRUE, unless early_stopping = TRUE and all points are close to
each other. TRUE’s speed advantage is even larger, when update_rst is not
NULL.

Logical specifying whether to stop the shortest path algorithm once the target
cells are reached. It defaults to TRUE, which can be faster than FALSE, if the
points are close to each other compared to the full set of rst cells. If at least one
points pair is far from each other, FALSE is the faster setting. FALSE computes the
distance to all cells and then extracts the distance to the target cells. It, therefore,
does not check for each visited cell, whether it is in the set of targets. TRUE



shortest_paths

and FALSE produce the same result and only differ in terms of computational
performance.

bidirectional Logical specifying whether to produce paths or distances in both directions, if
destinations are not specified and no directed transition function is given. In that
case, the distance and the path from point A to point B is the same as the distance
and path from point B to point A. FALSE (default) only returns distances or paths
in one direction. Declaring TRUE returns distances or paths in both directions.
This parameter’s objective is to control the return object’s RAM requirement.
It only has an effect, if destinations are not specified and no directed transition
function is given.

update_rst Object updating rst with moving barriers. It defaults to NULL, corresponding
to rst not being updated. If rst is a SpatRaster or RasterLayer, update_rst
can be a SpatVector (terra), sf (sf), or Spatial* (sp) object, or a list of them.
sf and sp objects are converted to SpatVectors. The function updates rst by
setting any cell intersecting with update_rst to NA, thereby not allowing the
shortest paths algorithm to pass through that cell. update_rst only sets non-
NA cells to NA, not vice versa. The elements of update_rst always update the
unmodified rst. Le. if update_rst is a list of two polygons, the shortest paths
are derived three times: once based on the not updated rst, denoted layer O in
the output, once based on rst updated with the first polygon, referred to as layer
1, and once based on rst updated with the second polygon, termed layer 2. The
second polygon updates the unmodified rst, not the rst updated by the first
polygon. If rst is a matrix or a list of matrices, update_rst can be a vector of
cell numbers, a matrix, or a list of either. Analogously to the SpatRaster case,
these objects mark which cells to set to NA. As in terra, cell numbers start with
1 in the top left corner and then increase first from left to right and then from top
to bottom. The cell numbers in the vector and the NA cells in the matrix identify
the pixels to set to NA. Accordingly, the matrix is of equal dimensions as rst.

touches Logical specifying the touches argument of terra: :extract used when update_rst
is a SpatVector, sf, or Spatial* object. It defaults to TRUE. If FALSE, the func-
tion only removes cells on the line render path or with the center point inside a

polygon.

ncores An integer specifying the number of CPU cores to use. It defaults to the num-
ber of cores installed on the machine. A value of 1 induces a single-threaded
process.

par_lvl "points” or "update_rst”, indicating the level at which to parallelize when

using multiple cores and update_rst is a list. "points” parallelizes over the
origin (and destination) point combinations in both the base grid not updated by
update_rst and the grids updated with update_rst. The default "update_rst”
is equivalent to "points” in the base grid, but parallelizes at the update_rst
list level in the updated grid stage.

show_progress Logical specifying whether the function prints messages on progress. It defaults
to FALSE.

bar_limit Integer specifying until up to how many paths or list elements of update_rst
to display a progress bar, if show_progress = TRUE. It defaults to 150, in which
case the function prints one = per computed path, if there are no more than 150
paths requested. In the grids updated with update_rst, the function displays



shortest_paths 9

one = per processed update_rst list element, not per path. In parallel appli-
cations, the progress bar can notably slow the execution as the functions only
permit one thread to write to output at a time. Do not set the argument too high
to avoid R crashes from text buffer overflows.

path_type Data type with which C++ stores cell numbers. "int"” (default) is the 4 byte
signed integers that R also uses and is the fastest option. "unsigned short
int"” is a 2 byte unsigned integer which requires less RAM than "int", but only
works if there are less than 65,535 non-NA cells and is comparatively slower
because it requires type conversions.

distance_type Data type with which C++ stores distances. "double” (default) is a double
precision 8 byte floating point number. It is the fastest and most precise option
and also used by R as its numeric data type. "float” is a single precision 4 byte
floating point number, which stores decimal values less precisely than "double”
does and is comparatively slower because it requires type conversions. "int"
and "unsigned short int"” are the integer types described in the path_type
documentation above. With "int"” and "unsigned short int”, distances are
rounded to integers. When employing these integers types, the distance between
any cells in rst, not just the cells of interest, must not exceed 2,147,483,647
and 65,535 respectively. The distance difference caused by rounding double
values to another type can accumulate along the shortest paths and can result in
notable distance deviation in the output. The recommendations is to stick with
the default "double” unless the machine does not have enough RAM to run the
function otherwise.

Details

This function computes shortest paths and/ or distance between locations in a grid using Dijkstra’s
algorithm. Examples are a ship navigating around land masses or a hiker traversing mountains.

Let us explore the ship example to illustrate how shortest_paths works. To compute shortest
paths between ports around the world, you start with a global SpatRaster, in which all land pixels
are set to NA and all ocean pixels are set a non-NA value, e.g. 1. A SpatVector marks port locations
as points on water pixels. Passing these two objects to the parameters rst and origins respectively
derives the shortest paths from each port to all other ports conditional on ships solely traversing
water pixels and returns the distances, i.e. lengths of these paths. If you are not interested in the
distances, but in the spatial lines themselves, set output to "lines”. If you want to obtain both, set
itto "both".

In a different application, you do not want to compute the paths between all ports, but only the
paths between the ports on the northern hemisphere and the ports on the southern hemisphere, but
not the paths between ports within the same hemisphere. To assess this, you split the ports into two
SpatVectors and pass them to origins and destinations respectively. What if you do not want
to connect all orgins to all destinations? Set pairwise to TRUE to connect the first origin just to the
first destination, the second origin to the second destination, etc.

By default, the distance or transition cost between adjacent cells of the input grid is the geographic
distance between the cells’ centroids. What if the boat is a sailing vessel that minimizes travel time
conditional on wind speed, wind direction, and ocean currents? Construct a SpatRaster with three
layers containing information on the three variables respectively. Define a transition function that
combines the three layers into a travel time measure and pass the SpatRaster to rst and this function



10 shortest_paths

to tr_fun. tr_fun makes this package very versatile. With custom transition functions, you can
take this software out of the geo-spatial context and, e.g., apply it to biomedical research.

If rst produces a graph with no more than 2,147,483,647 edges, tr_fun can either be an R or an
Repp C++ function returning a numeric R vector. Beyond that limit, the number of edges exceed
the maximum of elements that R’s native data structures can store. The data then has to be kept in
C++, and most function inputs and output are Rcpp: : XPtr types. max_edges tells you how many
edges your rst could produce and, hence, what type of tr_fun you may use. Check the transition
functions vignette for details.

Further boosting efficiency, shortest_paths allows you to handle multiple tasks in one function
call. In the ship routing example, consider that there are hurricanes in the Caribbean. Ships trav-
eling from India to Australia do not care, but ships traveling from Mexico to the Netherlands have
to go around the storm and must not take the shortest path through the hurricane. You have ten
SpatVector polygons delineating the extent of the hurricane on ten different days. You want to
know what the shortest paths are given that ships must go around the polygon on that day. Calling
shortest_paths ten times with ten different SpatRasters would be very inefficient. This would as-
semble the graph ten times and recompute also paths unaffected by the hurricanes, such as the
path between India and Australia, in each iteration. Instead, pass the SpatVector polygons to
update_rst. shortest_paths then produces the shortest paths for a hurricane-free route and
all ten hurricane days, only reestimating the paths that are affected by the hurricane polygon on a
specific day.

Applications to Earth should always pass a SpatRaster or RasterLayer to rst. The option to use a
matrix or a list of matrices is meant for applications to other planets, non-geo-spatial settings, and
users who cannot install the terra package on their system.

The largest source of runtime inefficiency is the quantity of non-NA pixels in the rst grid. Limit
the rst argument to the relevant area. E.g., crop the grid to the North Atlantic when computing
shipping routes between Canada and France. And set regions through which the shortest path does
certainly not pass to NA.

shortest_paths is optimized for computational performance. Most of its functions are written in
C++ and it does not use a general purpose graph library, but comes with its custom graph-theoritical
implementation tailored to gridded inputs.

The introduction vignette provides further details on the package.

Value

If output = "distances”, the output is by default returned as a data table. If you want the result to
be a data frame only, not a data table, set output_classto "data.frame”. If output is "lines” or
"both”, the the function returns a SpatVector, if rst is a SpatRaster or a RasterLayer, and a list, if
rst is a matrix or a list of matrices. Explicitly setting output_class to "list"” returns a list in any
case. output_class = "SpatVector"”, however, returns a SpatVector only if rst is a SpatRaster or
a RasterLayer.

If output = "distances” or output = "both”, the distances variable marks which points are
connected. Unconnected point pairs have an Inf distance, if distance_type = "double” or distance_type
="float", and an NA distance, if distance_type = "int"” ordistance_type = "unsigned short

int”. If output = "1lines”, the connected variable marks which points are connected. Points are
connected, when it is possible to travel between them via non-NA cells in rst.


../doc/transition_functions.html
../doc/transition_functions.html
../doc/spaths_introduction.html

shortest_paths 11

References

Dijkstra, E. W. 1959. "A note on two problems in connexion with graphs." Numerische Mathematik
1(1): 269-71.

See Also

max_edges, rnd_locations.

Examples

# Generate example data

set.seed(2L)

input_grid <- terra::rast(crs = "epsg:4326", resolution = 2, vals = sample(c(1L, NA_integer_),
16200L, TRUE, c(0.8, 0.2)))

origin_pts <- rnd_locations(5L, output_type = "SpatVector”)

origin_pts$name <- sample(letters, 5)

destination_pts <- rnd_locations(5L, output_type = "SpatVector"”)

# Compute distances

shortest_paths(input_grid, origin_pts)

shortest_paths(input_grid, origin_pts, bidirectional = TRUE)
shortest_paths(input_grid, origin_pts, destination_pts)
shortest_paths(input_grid, origin_pts, origin_names = "name")
shortest_paths(input_grid, origin_pts, destination_pts, pairwise = TRUE)

# Compute lines
shortest_paths(input_grid, origin_pts, output = "lines”)

# Compute distances and lines
shortest_paths(input_grid, origin_pts, output = "both")

# Use custom transition function

input_grid[input_grid == 1L] <- stats::runif(terra::freq(input_grid, value = 1L)$count,
max = 1000)

shortest_paths(input_grid, origin_pts, tr_fun = function(d, v1, v2) sqrt(d*2 + abs(v2 - v1)*2),
tr_directed = FALSE)

# Compute distances with grid updating
barrier <- terra::vect("POLYGON ((-179 1, 30 1, 30 0, -179 @, -179 1))", crs = "epsg:4326")
shortest_paths(input_grid, origin_pts, update_rst = barrier)
barriers <- list(barrier, terra::vect("POLYGON ((©@ @, @ 89, 189, 10, @ 0))",
crs = "epsg:4326"))
shortest_paths(input_grid, origin_pts, update_rst = barriers)



Index

max_edges, 2, 10, 11
rnd_locations, 3, 11

shortest_paths, 24, 4

12



	max_edges
	rnd_locations
	shortest_paths
	Index

