
Spatio-temporal objects to proxy a

PostgreSQL table

ifgi

Institute for Geoinformatics
University of Münster

Edzer Pebesma

February 13, 2025

Abstract

This vignette describes and implements a class that proxies data sets

in a PostgreSQL database with classes in the spacetime package. This

might allow access to data sets too large to fit into R memory.

Contents

1 Introduction 1

2 Setting up a database 2

3 A proxy class 3

4 Selection based on time period and/or region 3

5 Closing the database connection 5

6 Limitations and alternatives 5

1 Introduction

Massive data are difficult to analyze with R, because R objects reside in memory.
Spatio-temporal data easily become massive, either because the spatial domain
contains a lot of information (satellite imagery), or many time steps are available
(high resolution sensor data), or both. This vignette shows how data residing
in a data base can be read into R using spatial or temporal selection.

In case the commands are not evaluated because CRAN packages cannot
access an external data base, a document with evaluated commands is found
here.

This vignette was run using the following libraries:

R> library(RPostgreSQL)

1

mailto:edzer.pebesma@uni-muenster.de
http://pebesma.staff.ifgi.de/stpg.pdf


R> library(sp)

R> library(spacetime)

2 Setting up a database

We will first set the characteristics of the database1

R> dbname = "postgis"

R> user = "edzer"

R> password = "pw"

R> #password = ""

Next, we will create a driver and connect to the database:

R> drv <- dbDriver("PostgreSQL")

R> con <- dbConnect(drv, dbname=dbname, user=user, password=password,

+ host='localhost', port='5432')

It should be noted that these first two commands are specific to PostgreSQL;
from here on, commands are generic and should work for any database connector
that uses the interface of package DBI.

We now remove a set of tables (if present) so they can be created later on:

R> dbRemoveTable(con, "rural_attr")

R> dbRemoveTable(con, "rural_space")

R> dbRemoveTable(con, "rural_time")

R> dbRemoveTable(con, "space_select")

Now we will create the table with spatial features (observation locations).
For this, we need the rgdal function writeOGR, which by default creates an
index on the geometry:

R> data(air)

R> rural = STFDF(stations, dates, data.frame(PM10 = as.vector(air)))

R> rural = as(rural, "STSDF")

R> p = rural@sp

R> sp = SpatialPointsDataFrame(p, data.frame(geom_id=1:length(p)))

R> library(rgdal)

R> OGRstring = paste("PG:dbname=", dbname, " user=", user,

+ " password=", password, " host=localhost", sep = "")

R> print(OGRstring)

R> writeOGR(sp, OGRstring, "rural_space", driver = "PostgreSQL")

In case you have problems replicating this, verify that your rgdal installation
privides the PostgreSQL driver, e.g. by checking that

R> subset(ogrDrivers(), name == "PostgreSQL")$write

prints a TRUE, and not a logical(0).
Second, we will write the table with times to the database, and create an

index to time:

1It is assumed that the database is spatially enabled, i.e. it understands how simple features

are stored. The standard for this from the open geospatial consortium is described here.

2

http://www.opengeospatial.org/standards/sfs


R> df = data.frame(time = index(rural@time), time_id = 1:nrow(rural@time))

R> dbWriteTable(con, "rural_time", df)

R> idx = "create index time_idx on rural_time (time);"

R> dbSendQuery(con, idx)

Finally, we will write the full attribute data table to PosgreSQL, along with
its indexes to the spatial and temporal tables:

R> idx = rural@index

R> names(rural@data) = "pm10" # lower case

R> df = cbind(data.frame(geom_id = idx[,1], time_id = idx[,2]), rural@data)

R> dbWriteTable(con, "rural_attr", df)

3 A proxy class

The following class has as components a spatial and temporal data structure,
but no spatio-temporal attributes (they are assumed to be the most memory-
hungry). The other slots refer to the according tables in the PostGIS database,
the name(s) of the attributes in the attribute table, and the database connection.

R> setClass("ST_PG", contains = "ST",

+ # slots = c(space_table = "character",

+ representation(space_table = "character",

+ time_table = "character",

+ attr_table = "character",

+ attr = "character",

+ con = "PostgreSQLConnection"))

Next, we will create an instance of the new class:

R> rural_proxy = new("ST_PG",

+ #ST(rural@sp, rural@time, rural@endTime),

+ as(rural, "ST"),

+ space_table = "rural_space",

+ time_table = "rural_time",

+ attr_table = "rural_attr",

+ attr = "pm10",

+ con = con)

4 Selection based on time period and/or region

The following two helper functions create a character string with an SQL com-
mand that for a temporal or spatial selection:

R> .SqlTime = function(x, j) {

+ stopifnot(is.character(j))

+ require(xts)

+ t = .parseISO8601(j)

+ t1 = paste("'", t$first.time, "'", sep = "")

+ t2 = paste("'", t$last.time, "'", sep = "")

+ what = paste("geom_id, time_id", paste(x@attr, collapse = ","), sep = ", ")

3



+ paste("SELECT", what, "FROM", x@attr_table, "AS a JOIN", x@time_table,

+ "AS b USING (time_id) WHERE b.time >= ", t1, "AND b.time <=", t2,";")

+ }

R> .SqlSpace = function(x, i) {

+ stopifnot(is(i, "Spatial"))

+ writeOGR(i, OGRstring, "space_select", driver = "PostgreSQL")

+ what = paste("geom_id, time_id", paste(x@attr, collapse = ","), sep = ", ")

+ paste("SELECT", what, "FROM", x@attr_table,

+ "AS a JOIN (SELECT p.wkb_geometry, p.geom_id FROM",

+ x@space_table, " AS p, space_select AS q",

+ "WHERE ST_Intersects(p.wkb_geometry, q.wkb_geometry))",

+ "AS b USING (geom_id);")

+ }

The following selection method selects a time period only, as defined by the
methods in package xts. A time period is defined as a valid ISO8601 string,
e.g. 2005-05 is the full month of May for 2005.

R> setMethod("[", "ST_PG", function(x, i, j, ... , drop = TRUE) {

+ stopifnot(missing(i) != missing(j)) # either of them present

+ if (missing(j))

+ sql = .SqlSpace(x,i)

+ else

+ sql = .SqlTime(x,j)

+ print(sql)

+ df = dbGetQuery(x@con, sql)

+ STSDF(x@sp, x@time, df[x@attr], as.matrix(df[c("geom_id", "time_id")]))

+ })

R> pm10_20050101 = rural_proxy[, "2005-01-01"]

R> summary(pm10_20050101)

R> summary(rural[,"2005-01-01"])

R> pm10_NRW = rural_proxy[DE_NUTS1[10,],]

R> summary(pm10_NRW)

R> summary(rural[DE_NUTS1[10,],])

Clearly, the temporal and spatial components are not subsetted, so do not reflect
the actual selection made; the attribute data however do; the following selection
step “cleans” the unused features/times:

R> dim(pm10_NRW)

R> pm10_NRW = pm10_NRW[T,]

R> dim(pm10_NRW)

Comparing sizes, we see that the selected object is smaller:

R> object.size(rural)

R> object.size(pm10_20050101)

R> object.size(pm10_NRW)

4



5 Closing the database connection

The following commands close the database connection and release the driver
resources:

R> dbDisconnect(con)

R> dbUnloadDriver(drv)

6 Limitations and alternatives

The example code in this vignette is meant as an example and is not meant
as a full-fledged database access mechanism for spatio-temporal data bases. In
particular, the selection here can do only one of spatial locations (entered as
features) or time periods. If database access is only based on time, a spatially
enabled database (such as PostGIS) would not be needed.

For massive databases, data would typically not be loaded into the database
from R first, but from somewhere else.

An alternative to access from R large, possibly massive spatio-temporal data
bases for the case where the data base is accessible through a sensor observation
service (SOS) is provided by the R package sos4R, which is also on CRAN.

5

https://cran.r-project.org/web/package=sos4R

	Introduction
	Setting up a database
	A proxy class
	Selection based on time period and/or region 
	Closing the database connection
	Limitations and alternatives

