--- title: "Tutorial" output: rmarkdown::html_vignette: toc: true vignette: > %\VignetteIndexEntry{Tutorial} %\VignetteEncoding{UTF-8} %\VignetteEngine{knitr::rmarkdown} editor_options: chunk_output_type: console --- ```{r, include = FALSE} knitr::opts_chunk$set( collapse = TRUE, comment = "#>", fig.width=10, fig.height=5 ) ``` First step is load the package `spacemodR`. You can install from CRAN or from the [github repository](https://github.com/Qonfluens/spacemodR) ```{r setup} library(spacemodR) ``` # Load habitat layers in the Region Of Interest (ROI) The following examples are given for a specific French situation. The methods are designed to be updated for other countries. For new regions, new layers or new features, feel free to open an issue at this link: [issue link](https://github.com/Qonfluens/spacemodR/issues). ## Set French Departments The `get_departements_for_roi` function identifies the codes of French departments that intersect with a given Region of Interest (ROI). This is particularly useful for spatial analyses in France, where administrative boundaries (like departments) are often needed to fetch or process geospatial data. - `roi`: An `sf` or `sfc` object representing your region of interest. The function uses only the first geometry (polygon) in the object. ```{r load_departement} data("roi_metaleurop") ## Or load a ROI via geojson # roi_metaleurop <- sf::st_read("data/metaleurop_roi.geojson") dpts <- get_departements_for_roi(roi_metaleurop) ``` ## Load OCS-GE layers in the Region Of Interest (ROI) The `get_ocsge_data` function is designed to download, extract, and prepare OCS GE (Occupation du Sol à Grande Échelle) version 2 datasets for a specific Region of Interest (ROI). This function automates the process of fetching spatial data from the French National Geographic Institute (IGN), merging data from all relevant departments, and cropping the result to match the boundaries of your ROI. Input Parameters: - `roi`: An `sf` object (simple features) defining your region of interest. Only the first feature in the object is used. - `local_cache` (optional): A directory path where downloaded archives are stored. If not provided, a temporary directory is used. The function ensures that the ROI is transformed into the Lambert-93 projection (EPSG:2154), which is the standard coordinate system for French geographic data. ```{r load_metaleurop_ocsge} ## This function is long to compute so we load the data set # sf_site <- get_ocsge_data(roi_metaleurop) data(ocsge_metaleurop) ``` You can then plot the object using for instance the `ggplot2` library which is not included in `spacemodR`. ```{r vizualize_metaleurop_roi, fig.height=10} library(ggplot2) ggplot() + theme_minimal() + geom_sf(data=ocsge_metaleurop, aes(fill=code_cs)) + geom_sf(data=roi_metaleurop, fill=NA, color="red", size=1) ``` # Build a spacemodel ## Prepare `raster_stack`: a stack of raster for ground and habitats. ### Setting habitat from shapefiles (vector maps) ```{r set_habitat_ocsge} layer_CS2111 = ocsge_metaleurop[ocsge_metaleurop$code_cs == "CS2.1.1.1", ] layer_CS221 = ocsge_metaleurop[ocsge_metaleurop$code_cs == "CS2.2.1", ] layer_CS1121 = ocsge_metaleurop[ocsge_metaleurop$code_cs == "CS1.1.2.1", ] ``` The `habitat` function creates a spatial habitat object, which inherits from both `sf` and `data.frame` classes. This object is designed to represent habitat zones and includes specific attributes: a `habitat` column (logical, indicating the presence or absence of habitat), a `weight` column (numeric, representing relative importance or weight), and a `geometry` column (containing spatial geometries). If no geometry is provided, the function creates an empty object. It also performs checks to ensure that the lengths of the habitat and weight vectors match the number of geometries and that their types are correct (logical for habitat, numeric for weight). This function is useful for initializing spatial analyses where distinguishing between habitat and non-habitat zones is essential. ```{r build_plot_habitat_10} habitat_10 = habitat(layer_CS2111) plot(habitat_10) ``` ```{r build_plot_habitat_11} habitat_11 = habitat(layer_CS2111, weight=0.2) head(habitat_11) ``` ```{r build_plot_habitat_12} habitat_12 = habitat( layer_CS2111, habitat=sample(c(TRUE,FALSE), nrow(layer_CS2111), replace=TRUE), weight=runif(nrow(layer_CS2111), 0, 10) ) plot(habitat_12) ``` Another option more convenient use of the function for more complex situation, an idea is the use the function `add_habitat`. The `add_habitat` function is a generic method that adds habitat zones to an existing habitat object. It takes as input a hab object of class habitat, an `sf` object `sf_data` containing the geometries to add, and an optional weight parameter (defaulting to 1) to assign weights to the new geometries. The function checks that `sf_data` is indeed an `sf` object, then creates a temporary habitat object with the geometries to be added, marking them as habitat (`habitat = TRUE`). If the initial `hab` object is empty, the new object becomes the result. Otherwise, the two objects are merged using `dplyr::bind_rows`, while preserving the habitat class. This function is particularly useful for dynamically expanding habitat zones in a spatial analysis. ```{r build_plot_habitat_20} habitat_20 = habitat() |> add_habitat(layer_CS2111) class(habitat_20) ``` ```{r build_plot_habitat_21} habitat_21 = habitat() |> add_habitat(layer_CS2111, weight=0.2) head(habitat_21) ``` ```{r build_habitat_22} habitat_22 = habitat() |> add_habitat(layer_CS2111, weight=0.2) |> add_habitat(layer_CS1121, weight=0.4) |> add_nohabitat(layer_CS221) head(habitat_22) ``` ```{r plot_habitat_22} plot(habitat_22) ``` ### /!\ WHAT IS AN HABITAT What we consider `habitat` is defined by the purpose of the model. There is 3 situations: 1. the area where the species cannot go, even just passing (impossible) A raster of ### Defining raster of habitat based on a raster of the ground Here, we download a raster layer with the interpolation of the ground concentration of cadmium. ```{r load_ground_cd} # the raster tif file is internal to the spacemodR package ground_cd <- load_raster_extdata("ground_concentration_cd_compressed.tif") terra::plot(ground_cd) ``` Then, it's the same algorithm to specified habitat and then build rasters. ```{r OCSGE_codes} # prepare a list of OSGE code to make life easier OCSGE_codes <- list( forest = c("CS2.1.1.1", "CS2.1.1.2", "CS2.1.1.3", "CS2.1.3"), grass = "CS2.2.1", water = "CS1.2.2", soil = c("CS1.2.1","CS2.1.1.1","CS2.1.1.2","CS2.1.1.3", "CS2.1.2","CS2.1.3","CS2.2.1","CS2.2.3"), sealed = c("CS1.1.1.1", "CS1.1.1.2", "CS1.1.2.1") ) ``` ```{r build_habitat_sol} layer_soil_natural = ocsge_metaleurop[ocsge_metaleurop$code_cs %in% OCSGE_codes$soil, ] layer_soil_artificial = ocsge_metaleurop[ocsge_metaleurop$code_cs %in% OCSGE_codes$sealed, ] habitat_sol = habitat() |> add_habitat(layer_soil_natural) |> add_nohabitat(layer_soil_artificial) plot(habitat_sol) ``` ```{r build_raster_habitat} rast_sol <- habitat_raster(ground_cd, habitat_sol) terra::plot(rast_sol) rast_10 <- habitat_raster(ground_cd, habitat_10) terra::plot(rast_10) rast_12 <- habitat_raster(ground_cd, habitat_12) terra::plot(rast_12) rast_22 <- habitat_raster(ground_cd, habitat_22) terra::plot(rast_22) ``` ### Join all rasters with a single stack ```{r build_stack_raster_habitat} stack_habitat <- raster_stack( raster_list = list(rast_sol, rast_10, rast_12, rast_22), names = c("sol", "sp10", "sp12", "sp22") ) terra::plot(stack_habitat) ``` ## Prepare `trophic_df`: a `data.frame` of trophic web You can use a data.frame like this: ```{r} df_raw <- data.frame( src = c("sol", "sol", "sp10", "sp12"), target = c("sp10", "sp12", "sp12", "sp22"), w = c(2, 3, 2, 1)) trophic_from_df <- trophic(df_raw, from = "src", to = "target", weight = "w") attr(trophic_from_df, "level") ``` ```{r build_trophic_web_df} trophic_df <- trophic() |> add_link("sol", "sp10", 2) |> add_link("sol", "sp12", 3) |> add_link("sp10", "sp12", 2) |> add_link("sp12", "sp22") attr(trophic_df, "level") ``` The trophic web can then be computed: ```{r plot_trophic_web_df_noshift} plot(trophic_df, shift=FALSE) ``` ```{r plot_trophic_web_df_shift} plot(trophic_df, shift=TRUE) ``` ## Spacemodel: merge a stack of rasters with a trophic web linking rasters A `spacemodel` is a list of two object a raster_stack and a trophic_graph: - the `raster_stack` is a stack of rasters using the `terra` package and the object `raster_stack` - the `trophic_graph` is a directed acyclic graph (DAG) to which we can add `weight`. ```{r build_spacemodel_habitat} spcmdl_habitat <- spacemodel(stack_habitat, trophic_df) ``` ```{r} color_habitat <- colorRampPalette(c("white", "#169E19"))(255) terra::plot(spcmdl_habitat, col=color_habitat) ``` # Spacemodel for Dispersal Dispersal is independent of trophic link for now since we did not yet implemented a dispersal dependent of the potential trophic links. ```{r set_kernels} k_sp10 <- compute_kernel(radius=10, GSD=25, size_std=1.5) k_sp12 <- compute_kernel(radius=100, GSD=25, size_std=1.5) k_sp22 <- compute_kernel(radius=200, GSD=25, size_std=1.5) ``` ```{r build_spacemodel_dispersal} spcmdl_dispersal <- spcmdl_habitat |> dispersal("sp10", method="convolution", method_option=list(kernel=k_sp10)) |> dispersal("sp12", method="convolution", method_option=list(kernel=k_sp12)) |> dispersal("sp22", method="convolution", method_option=list(kernel=k_sp22)) ``` Plot the dispersal object: ```{r plot_spacemodel_dispersal} color_dispersal <- colorRampPalette(c("white", "#166C9E"))(255) terra::plot(spcmdl_dispersal, col=color_dispersal) ``` # Spacemodel for Exposure ```{r exposure_set_ground_cd} spcmdl_dispersal[["sol"]][] <- ground_cd terra::plot(spcmdl_dispersal[["sol"]]) ``` ```{r kernel_exposure} kernels <- list( sol = NA, sp10 = k_sp10, sp12 = k_sp12, sp22 = k_sp22 ) ``` ```{r} attr(spcmdl_dispersal, "trophic_tbl") ``` ```{r exposure_spacemodel_build} test_intakes <- intake(spcmdl_dispersal, # General rule: sp12 uptake with factor 3 "sp12" = 3, # Exception: when sp12 feed on sp10, factor is 5 "sp10 -> sp12" = 5, # General rule: sp22 has a complex function "sp22" = ~ x^2 + 10, # Exception: sol to sp10 is a coef "sol -> sp10" = 0.1, default = 1 # for all other default is 1 ) spcmdl_transfer <- transfer(spcmdl_dispersal, kernels, test_intakes) ``` ```{r exposure_spacemodel_plot} color_transfer <- colorRampPalette(c("white", "#A33D0A"))(255) terra::plot(spcmdl_transfer, col=color_transfer) ``` # Eco-SSL Example: Build a `spacemodel` for Eco-SSL The first step is to build a raster stack with the ground as raster. ```{r eco_ssl_cd_habitat} ground_cd <- load_raster_extdata("ground_concentration_cd_compressed.tif") names_hab = c("soil", "plant", "invert", "mamHerb", "mamInsect", "birdInsect") list_habitat <- lapply(names_hab, function(i) ground_cd) stack_habitat <- raster_stack(list_habitat, names_hab) terra::plot(stack_habitat) ``` The second step is to build the trophic web, all species connecting directly to the soil. ```{r eco_ssl_cd_trophic} trophic_df <- trophic() |> add_link("soil", "plant") |> add_link("soil", "invert") |> add_link("soil", "mamHerb") |> add_link("soil", "mamInsect") |> add_link("soil", "birdInsect") attr(trophic_df, "level") ``` ```{r eco_ssl_cd_trophic_plot} plot(trophic_df) ``` The third step is to merge the raster stack with the trophic data.frame. ```{r eco_ssl_cd_spacemodel} spcmdl_ecossl_h <- spacemodel(stack_habitat, trophic_df) terra::plot(spcmdl_ecossl_h) ``` ## Build the Risk indice ```{r eco_ssl_kernles_build} # no dispersal for eco_ssl ecossl_kernels <- list( soil = NA, plant = NA, invert = NA, mamHerb = NA, mamInsect = NA, birdInsect = NA) ``` ```{r eco_ssl_risk_build} ecossl_intakes <- intake(spcmdl_ecossl_h, "soil -> plant" = ~ 10^x/32, "soil -> invert" = ~ 10^x/140, "soil -> mamHerb" = ~ 10^x/73, "soil -> mamInsect" = ~ 10^x/0.36, "soil -> birdInsect" = ~ 10^x/0.77, default = 1, # for all other default is 1 normalize = FALSE # TRUE would weight every link to sum at 1 ) spcmdl_ecossl_risk <- transfer( spcmdl_ecossl_h, ecossl_kernels, ecossl_intakes, exposure_weighting="potential") ``` A plot of layer with risk threshold color scale. ```{r eco_ssl_risk_plot} # Risk colors breaks_risk <- c(0, 0.1, 0.5, 1, 5, 10, Inf) cols_risk <- c( "darkgreen", # 0 - 0.1 "green", # 0.1 - 0.5 "lightgreen", # 0.5 - 1 "yellow", # 1 - 5 "saddlebrown", # 5 - 10 "#4A2C2A" # > 10 ) names_keep <- names(spcmdl_ecossl_risk)[names(spcmdl_ecossl_risk) != "soil"] spcmdl_ecossl_risk_sub <- spcmdl_ecossl_risk[[names_keep]] terra::plot(spcmdl_ecossl_risk_sub, breaks = breaks_risk, col = cols_risk) ``` ```{r eco_ssl_risk_plot_crop} poly <- roi_metaleurop poly_vect <- terra::project(terra::vect(poly), terra::crs(spcmdl_ecossl_risk_sub)) rast_crop <- terra::crop(spcmdl_ecossl_risk_sub, poly_vect) rast_final <- terra::mask(rast_crop, poly_vect) terra::plot(rast_final, breaks = breaks_risk, col = cols_risk) ``` ### checking Eco-SSL For this very simple example, a simple check can be done, because Eco-SSL is a computing of a risk based on the amount in soil: ```{r} check_ecossl_risk = list( "soil -> plant" = 10^ground_cd/32, "soil -> invert" = 10^ground_cd/140, "soil -> mamHerb" = 10^ground_cd/73, "soil -> mamInsect" = 10^ground_cd/0.36, "soil -> birdInsect" = 10^ground_cd/0.77 ) r_check_ecossl_risk = terra::rast(check_ecossl_risk) terra::plot(r_check_ecossl_risk, breaks = breaks_risk, col = cols_risk) ```