
Package ‘sox’
May 7, 2025

Type Package

Title Structured Learning in Time-Dependent Cox Models

Version 1.2.2

Date 2025-05-07

Description Efficient procedures for fitting and cross-validating the structurally-regularized time-
dependent Cox models.

License GPL (>= 3)

Encoding UTF-8

Depends R (>= 3.5.0), survival, glmnet

Imports Rcpp (>= 1.0.10)

LinkingTo Rcpp

Suggests testthat (>= 3.0.0)

Config/testthat/edition 3

RoxygenNote 7.3.1

LazyData true

Copyright file inst/COPYRIGHTS

NeedsCompilation yes

Author Yi Lian [aut, cre],
Guanbo Wang [aut],
Archer Y. Yang [aut],
Mireille E. Schnitzer [aut],
Robert W. Platt [aut],
Rui Wang [aut],
Marc Dorais [aut],
Sylvie Perreault [aut],
Julien Mairal [ctb],
Yuansi Chen [ctb]

Maintainer Yi Lian <yi.lian@mail.mcgill.ca>

Repository CRAN

Date/Publication 2025-05-07 18:40:01 UTC

1

2 nested_structure

Contents
nested_structure . 2
overlap_structure . 3
plot.sox . 4
plot.sox_cv . 6
sim . 7
sox . 9
sox_cv . 13

Index 18

nested_structure Automatically generate objects used to describe the structure of the
nested group lasso penalty.

Description

Automatically generate objects used to describe the structure of the nested group lasso penalty. The
output is then used by sox() and sox_cv().

Usage

nested_structure(group_list)

Arguments

group_list A list containing the indices of the group members.

Value

A list of objects describing the group structure.

groups Required by sox() and sox_cv() to describe the relationship between the G
overlapping groups. A G ∗G integer matrix whose (i, j) entry is 1 if and only
if i ̸= j and gi is a child group (subset) of gj , and is 0 otherwise.

own_variables Required by sox() and sox_cv() to describe the relationship between the G
overlapping groups and the p variables. The entries are the smallest variable
indices in the groups (to achieve this, group is sorted. For any two groups i and
j, if i is the parent group of j, then i is before j and vice versa, otherwise, the
one with the smallest variable index is before the other.

N_own_variables

Required by sox() and sox_cv() to describe the relationship between the G
overlapping groups and the p variables. An integer vector of length G indi-
cating the number of variables that are in each group but not in any of its child
groups.

group_weights Required by sox() and sox_cv() to specify the group-specific penalty weights.
The weight is generated in a way such that, the penalty weights of all the groups
that contain a given variable sum to 1 for all variables.

overlap_structure 3

Examples

p = 9 Variables:
1: A1
2: A2
3: C1
4: C2
5: B
6: A1B
7: A2B
8: C1B
9: C2B

G = 12 Nested groups (misspecified, for the demonstration of the software only.)
g1: A1, A2, C1, C2, B, A1B, A2B, C1B, C2B
g2: A1B, A2B, A1B, A2B
g3: C1, C2, C1B, C2B
g4: 1
g5: 2
...
G12: 9

nested.groups <- list(1:9,
c(1, 2, 6, 7),
c(3, 4, 8, 9),
1, 2, 3, 4, 5, 6, 7, 8, 9)

pars.nested <- nested_structure(nested.groups)

str(pars.nested)

overlap_structure Automatically generate objects used to describe the structure of the
overlapping group lasso penalty

Description

Automatically generate objects used to describe the structure of the overlapping group lasso penalty
The output is then used by sox() and sox_cv().

Usage

overlap_structure(group_list)

Arguments

group_list A list containing the indices of the group members.

4 plot.sox

Value

A list of objects describing the group structure.

groups Required by sox() and sox_cv() to describe the relationship between the G
overlapping groups. A G ∗G integer matrix whose (i, j) entry is 1 if and only
if i ̸= j and gi is a child group (subset) of gj , and is 0 otherwise.

groups_var Required by sox() and sox_cv() to describe the relationship between the G
overlapping groups and the p variables. A p ∗ G integer matrix whose (i, j)
entry is 1 if and only if variable i is in group gj , but not in any child group of gj ,
and is 0 otherwise.

group_weights Required by sox() and sox_cv() to specify the group-specific penalty weights.
The penalty weight for each group is equal to the square root of the group size.

Examples

p = 9 Variables:
1: A1
2: A2
3: C1
4: C2
5: B
6: A1B
7: A2B
8: C1B
9: C2B

G = 5 Overlapping groups:
g1: A1, A2, A1B, A2B
g2: B, A1B, A2B, C1B, C2B
g3: A1B, A2B
g4: C1, C2, C1B, C2B
g5: C1B, C2B

overlapping.groups <- list(c(1, 2, 6, 7),
c(5, 6, 7, 8, 9),
c(6, 7),
c(3, 4, 8, 9),
c(8, 9))

pars.overlapping <- overlap_structure(overlapping.groups)

str(pars.overlapping)

plot.sox Solution path plot for sox()

plot.sox 5

Description

Plot the solution path generated by sox().

Usage

S3 method for class 'sox'
plot(x, type = "l", log = "x", ...)

Arguments

x Fitted sox model.

type Graphical argument to be passed to matplot(), a character string (length 1 vec-
tor) or vector of 1-character strings indicating the type of plot for each column
of y, see plot.default for all possible types. Default is "l" for lines.

log Graphical argument to be passed to matplot(), a character string which con-
tains "x" if the x axis is to be logarithmic, "y" if the y axis is to be logarithmic,
"" if neither, "xy" or "yx" if both axes are to be logarithmic. Default is "x".

... Further arguments of matplot() and ultimately of plot.default() for some.

Value

Produces a coefficient profile plot of the coefficient paths for a fitted sox model.

See Also

sox, sox_cv.

Examples

x <- as.matrix(sim[, c("A1","A2","C1","C2","B","A1B","A2B","C1B","C2B")])
lam.seq <- exp(seq(log(1e0), log(1e-3), length.out = 20))

overlapping.groups <- list(c(1, 2, 6, 7),
c(5, 6, 7, 8, 9),
c(6, 7),
c(3, 4, 8, 9),
c(8, 9))

pars.overlapping <- overlap_structure(overlapping.groups)

fit.overlapping <- sox(
x = x,
ID = sim$Id,
time = sim$Start,
time2 = sim$Stop,
event = sim$Event,
penalty = "overlapping",
lambda = lam.seq,
group = pars.overlapping$groups,
group_variable = pars.overlapping$groups_var,

6 plot.sox_cv

penalty_weights = pars.overlapping$group_weights,
tol = 1e-4,
maxit = 1e3,
verbose = FALSE

)

plot(fit.overlapping)

cv.overlapping <- sox_cv(
x = x,
ID = sim$Id,
time = sim$Start,
time2 = sim$Stop,
event = sim$Event,
penalty = "overlapping",
lambda = lam.seq,
group = pars.overlapping$groups,
group_variable = pars.overlapping$groups_var,
penalty_weights = pars.overlapping$group_weights,
nfolds = 5,
tol = 1e-4,
maxit = 1e3,
verbose = FALSE

)

plot(cv.overlapping$sox.fit)

plot.sox_cv Plots for sox_cv

Description

Plot the solution path or cross-validation curves produced by sox_cv().

Usage

S3 method for class 'sox_cv'
plot(x, type = "cv-curve", ...)

Arguments

x The sox_cv object.

type Character string, "solution-path" to generate a solution path with marks at
lambda.min and lambda.1se; "cv-curve" to generate a cross-validation curve.

... Other graphical parameters to plot

sim 7

Value

The "solution-path" plot produces a coefficient profile plot of the coefficient paths for a fitted sox
model. The "cv-curve" plot is the cvm (red dot) for each lambda with its standard error (vertical
bar). The two vertical dashed lines corresponds to the lambda.min and lambda.1se

See Also

sox, sox_cv.

Examples

x <- as.matrix(sim[, c("A1","A2","C1","C2","B","A1B","A2B","C1B","C2B")])
lam.seq <- exp(seq(log(1e0), log(1e-3), length.out = 20))

overlapping.groups <- list(c(1, 2, 6, 7),
c(5, 6, 7, 8, 9),
c(6, 7),
c(3, 4, 8, 9),
c(8, 9))

pars.overlapping <- overlap_structure(overlapping.groups)

cv.overlapping <- sox_cv(
x = x,
ID = sim$Id,
time = sim$Start,
time2 = sim$Stop,
event = sim$Event,
penalty = "overlapping",
lambda = lam.seq,
group = pars.overlapping$groups,
group_variable = pars.overlapping$groups_var,
penalty_weights = pars.overlapping$group_weights,
nfolds = 5,
tol = 1e-4,
maxit = 1e3,
verbose = FALSE

)

plot(cv.overlapping)
plot(cv.overlapping, type = "solution-path")

sim A simulated demo dataset sim

Description

A simulated demo dataset sim

8 sim

Usage

data(sim)

Format

A simulated data frame that is used to illustrate the use of the sox package. The max follow-up time
for each subject is set to be 5. The total number of subject is 50.

Id The ID of each subject.

Event During the time from Start to Stop, if the subject experience the event. We use the function
permalgorithm in the R package PermAlgo to generate the Event.

Start Start time.

Stop Stop time.

Fup The total follow-up time for the subject.

Covariates A1, A2, C1, C2, B, A1B, A2B, C1B, C2B. The dataset contains 5 variables (9 columns
after one-hot encoding). Variable A is a e 3-level categorical variable, which results in 2
binary variables (A1 and A2), the same with the variable C. B is a continuous variable. The
interaction term AB and CB are also two 3-level categorical variables. The code for generating
the covariates is given below.

See Also

PermAlgo

Examples

generate B
gen_con=function(m){
X=rnorm(m/5)
XX=NULL
for (i in 1:length(X)) {

if (length(XX)<m){
X.rep=rep(X[i],round(runif(1,5,10),0))
XX=c(XX,X.rep)
}

}
return(XX[1:m])
}
generate A and C
gen_cat=function(m){
X=sample.int(3, m/5,replace = TRUE)
XX=NULL
for (i in 1:length(X)) {

if (length(XX)<m){
X.rep=rep(X[i],round(runif(1,5,10),0))
XX=c(XX,X.rep)

}
}
return(XX[1:m])

sox 9

}

generate covariate for one subject
gen_X=function(m){
A=gen_cat(m);B=gen_con(m);C=gen_cat(m)
A1=ifelse(A==1,1,0);A2=ifelse(A==2,1,0)
C1=ifelse(C==1,1,0);C2=ifelse(C==2,1,0)
A1B=A1*B;A2B=A2*B
C1B=C1*B;C2B=C2*B
return(as.matrix(cbind(A1,A2,C1,C2,B,A1B,A2B,C1B,C2B)))

}

generate covariate for all subject
gen_X_n=function(m,n){
Xn=NULL
for (i in 1:n) {
X=gen_X(m)
Xn=rbind(Xn,X)

}
return(Xn)

}

n=50;m=5
covariates=gen_X_n(m,n)
generate outcomes
library(PermAlgo)
data <- permalgorithm(n, m, covariates,
XmatNames = c("A1","A2","C1","C2","B","A1B","A2B","C1B","C2B"),
#change according to scenario 1/2
betas = c(rep(log(3),2),rep(0,2), log(4), rep(log(3),2),rep(0,2)),
groupByD=FALSE)
fit.original = coxph(Surv(Start, Stop, Event) ~ . ,data[,-c(1,3)])

sox (Time-dependent) Cox model with structured variable selection

Description

Fit a (time-dependent) Cox model with overlapping (including nested) group lasso penalty. The
regularization path is computed at a grid of values for the regularization parameter lambda.

Usage

sox(
x,
ID,
time,
time2,
event,
penalty,

10 sox

lambda,
group,
group_variable,
own_variable,
no_own_variable,
penalty_weights,
par_init,
stepsize_init = 1,
stepsize_shrink = 0.8,
tol = 1e-05,
maxit = 1000L,
verbose = FALSE

)

Arguments

x Predictor matrix with dimension nm∗p, where n is the number of subjects, m is
the maximum observation time, and p is the number of predictors. See Details.

ID The ID of each subjects, each subject has one ID (multiple rows in x can share
one ID).

time Represents the start of each time interval.

time2 Represents the stop of each time interval.

event Indicator of event. event = 1 when event occurs and event = 0 otherwise.

penalty Character string, indicating whether "overlapping" or "nested" group lasso
penalty is imposed.

lambda Sequence of regularization coefficients λ’s.

group A G ∗ G integer matrix required to describe the structure of the overlapping
and nested groups. We recommend that the users generate it automatically
using overlap_structure() and nested_structure(). See Examples and
Details.

group_variable A p ∗ G integer matrix required to describe the structure of the overlapping
groups. We recommend that the users generate it automatically using overlap_structure().
See Examples and Details.

own_variable A non-decreasing integer vector of length G required to describe the structure
of the nested groups. We recommend that the users generate it automatically
using nested_structure(). See Examples and Details.

no_own_variable

An integer vector of length G required to describe the structure of the nested
groups. We recommend that the users generate it automatically using nested_structure().
See Examples and Details

penalty_weights

Optional, vector of length G specifying the group-specific penalty weights. We
recommend that the users generate it automatically using overlap_structure()
or nested_structure(). If not specified, 1G is used.

par_init Optional, vector of initial values of the optimization algorithm. Default initial
value is zero for all p variables.

sox 11

stepsize_init Initial value of the stepsize of the optimization algorithm. Default is 1.0.
stepsize_shrink

Factor in (0, 1) by which the stepsize shrinks in the backtracking linesearch.
Default is 0.8.

tol Convergence criterion. Algorithm stops when the l2 norm of the difference be-
tween two consecutive updates is smaller than tol.

maxit Maximum number of iterations allowed.

verbose Logical, whether progress is printed.

Details

The predictor matrix should be of dimension nm ∗ p. Each row records the values of covari-
ates for one subject at one time, for example, the values at the day from time (Start) to time2
(Stop). An example dataset sim is provided. The dataset has the format produced by the R pack-
age PermAlgo. The specification of the arguments group, group_variable, own_variable and
no_own_variable for the grouping structure can be found in https://thoth.inrialpes.fr/
people/mairal/spams/doc-R/html/doc_spams006.html#sec26 and https://thoth.inrialpes.
fr/people/mairal/spams/doc-R/html/doc_spams006.html#sec27.

In the Examples below, p = 9, G = 5, the group structure is:

g1 = {A1, A2, A1B,A2B},

g2 = {B,A1B,A2B,C1B,C2B},

g3 = {A1B,A2B},

g4 = {C1, C2, C1B,C2B},

g5 = {C1B,C2B}.

where g3 is a subset of g1 and g2, and g5 is a subset of g2 and g4.

Value

A list with the following three elements.

lambdas The user-specified regularization coefficients lambda sorted in decreasing order.

estimates A matrix, with each column corresponding to the coefficient estimates at each λ
in lambdas.

iterations A vector of number of iterations it takes to converge at each λ in lambdas.

Examples

x <- as.matrix(sim[, c("A1","A2","C1","C2","B","A1B","A2B","C1B","C2B")])
lam.seq <- exp(seq(log(1e0), log(1e-3), length.out = 20))

Variables:
1: A1
2: A2
3: C1

https://thoth.inrialpes.fr/people/mairal/spams/doc-R/html/doc_spams006.html#sec26
https://thoth.inrialpes.fr/people/mairal/spams/doc-R/html/doc_spams006.html#sec26
https://thoth.inrialpes.fr/people/mairal/spams/doc-R/html/doc_spams006.html#sec27
https://thoth.inrialpes.fr/people/mairal/spams/doc-R/html/doc_spams006.html#sec27

12 sox

4: C2
5: B
6: A1B
7: A2B
8: C1B
9: C2B

Overlapping groups:
g1: A1, A2, A1B, A2B
g2: B, A1B, A2B, C1B, C2B
g3: A1B, A2B
g4: C1, C2, C1B, C2B
g5: C1B, C2B

overlapping.groups <- list(c(1, 2, 6, 7),
c(5, 6, 7, 8, 9),
c(6, 7),
c(3, 4, 8, 9),
c(8, 9))

pars.overlapping <- overlap_structure(overlapping.groups)

fit.overlapping <- sox(
x = x,
ID = sim$Id,
time = sim$Start,
time2 = sim$Stop,
event = sim$Event,
penalty = "overlapping",
lambda = lam.seq,
group = pars.overlapping$groups,
group_variable = pars.overlapping$groups_var,
penalty_weights = pars.overlapping$group_weights,
tol = 1e-4,
maxit = 1e3,
verbose = FALSE

)

str(fit.overlapping)

Nested groups (misspecified, for the demonstration of the software only.)
g1: A1, A2, C1, C2, B, A1B, A2B, C1B, C2B
g2: A1B, A2B, A1B, A2B
g3: C1, C2, C1B, C2B
g4: 1
g5: 2
...
G12: 9

nested.groups <- list(1:9,
c(1, 2, 6, 7),
c(3, 4, 8, 9),
1, 2, 3, 4, 5, 6, 7, 8, 9)

sox_cv 13

pars.nested <- nested_structure(nested.groups)

fit.nested <- sox(
x = x,
ID = sim$Id,
time = sim$Start,
time2 = sim$Stop,
event = sim$Event,
penalty = "nested",
lambda = lam.seq,
group = pars.nested$groups,
own_variable = pars.nested$own_variables,
no_own_variable = pars.nested$N_own_variables,
penalty_weights = pars.nested$group_weights,
tol = 1e-4,
maxit = 1e3,
verbose = FALSE

)

str(fit.nested)

sox_cv cross-validation for sox

Description

Conduct cross-validation (cv) for sox.

Usage

sox_cv(
x,
ID,
time,
time2,
event,
penalty,
lambda,
group,
group_variable,
own_variable,
no_own_variable,
penalty_weights,
par_init,
nfolds = 10,
foldid = NULL,
stepsize_init = 1,

14 sox_cv

stepsize_shrink = 0.8,
tol = 1e-05,
maxit = 1000L,
verbose = FALSE

)

Arguments

x Predictor matrix with dimension nm∗p, where n is the number of subjects, m is
the maximum observation time, and p is the number of predictors. See Details.

ID The ID of each subjects, each subject has one ID (multiple rows in x can share
one ID).

time Represents the start of each time interval.

time2 Represents the stop of each time interval.

event Indicator of event. event = 1 when event occurs and event = 0 otherwise.

penalty Character string, indicating whether "overlapping" or "nested" group lasso
penalty is imposed.

lambda Sequence of regularization coefficients λ’s.

group A G ∗ G integer matrix required to describe the structure of the overlapping
and nested groups. We recommend that the users generate it automatically
using overlap_structure() and nested_structure(). See Examples and
Details.

group_variable A p ∗ G integer matrix required to describe the structure of the overlapping
groups. We recommend that the users generate it automatically using overlap_structure().
See Examples and Details.

own_variable A non-decreasing integer vector of length G required to describe the structure
of the nested groups. We recommend that the users generate it automatically
using nested_structure(). See Examples and Details.

no_own_variable

An integer vector of length G required to describe the structure of the nested
groups. We recommend that the users generate it automatically using nested_structure().
See Examples and Details

penalty_weights

Optional, vector of length G specifying the group-specific penalty weights. We
recommend that the users generate it automatically using overlap_structure()
or nested_structure(). If not specified, 1G is used.

par_init Optional, vector of initial values of the optimization algorithm. Default initial
value is zero for all p variables.

nfolds Optional, the folds of cross-validation. Default is 10.

foldid Optional, user-specified vector indicating the cross-validation fold in which each
observation should be included. Values in this vector should range from 1 to
nfolds. If left unspecified, sox will randomly assign observations to folds

stepsize_init Initial value of the stepsize of the optimization algorithm. Default is 1.

sox_cv 15

stepsize_shrink

Factor in (0, 1) by which the stepsize shrinks in the backtracking linesearch.
Default is 0.8.

tol Convergence criterion. Algorithm stops when the l2 norm of the difference be-
tween two consecutive updates is smaller than tol.

maxit Maximum number of iterations allowed.

verbose Logical, whether progress is printed.

Details

For each lambda, 10 folds cross-validation (by default) is performed. The cv error is defined as fol-
lows. Suppose we perform K-fold cross-validation, denote β̂−k by the estimate obtained from the
rest of K − 1 folds (training set). The error of the k-th fold (test set) is defined as 2(P − Q)

divided by R, where P is the log partial likelihood evaluated at β̂−k using the entire dataset,
Q is the log partial likelihood evaluated at β̂−k using the training set, and R is the number of
events in the test set. We do not use the negative log partial likelihood evaluated at β̂−k using
the test set because the former definition can efficiently use the risk set, and thus it is more sta-
ble when the number of events in each test set is small (think of leave-one-out). The cv error is
used in parameter tuning. To account for balance in outcomes among the randomly formed test
set, we divide the deviance 2(P − Q) by R. To get the estimated coefficients that has the mini-
mum cv error, use sox_cv()$Estimates[, sox_cv$index["min",]]. To apply the 1-se rule, use
sox_cv()$Estimates[, sox_cv$index["1se",]].

Value

A list.

lambdas A vector of lambda used for each cross-validation.

cvm The cv error averaged across all folds for each lambda.

cvsd The standard error of the cv error for each lambda.

cvup The cv error plus its standard error for each lambda.

cvlo The cv error minus its standard error for each lambda.

nzero The number of non-zero coefficients at each lambda.

sox.fit A fitted model for the full data at all lambdas of class "sox".

lambda.min The lambda such that the cvm reach its minimum.

lambda.1se The maximum of lambda such that the cvm is less than the minimum the cvup
(the minmum of cvm plus its standard error).

foldid The fold assignments used.

index A one column matrix with the indices of lambda.min and lambda.1se.

iterations A vector of number of iterations it takes to converge at each λ in lambdas.

See Also

sox, plot.sox_cv.

16 sox_cv

Examples

x <- as.matrix(sim[, c("A1","A2","C1","C2","B","A1B","A2B","C1B","C2B")])
lam.seq <- exp(seq(log(1e0), log(1e-3), length.out = 20))

Variables:
1: A1
2: A2
3: C1
4: C2
5: B
6: A1B
7: A2B
8: C1B
9: C2B

Overlapping groups:
g1: A1, A2, A1B, A2B
g2: B, A1B, A2B, C1B, C2B
g3: A1B, A2B
g4: C1, C2, C1B, C2B
g5: C1B, C2B

overlapping.groups <- list(c(1, 2, 6, 7),
c(5, 6, 7, 8, 9),
c(6, 7),
c(3, 4, 8, 9),
c(8, 9))

pars.overlapping <- overlap_structure(overlapping.groups)

cv.overlapping <- sox_cv(
x = x,
ID = sim$Id,
time = sim$Start,
time2 = sim$Stop,
event = sim$Event,
penalty = "overlapping",
lambda = lam.seq,
group = pars.overlapping$groups,
group_variable = pars.overlapping$groups_var,
penalty_weights = pars.overlapping$group_weights,
nfolds = 5,
tol = 1e-4,
maxit = 1e3,
verbose = FALSE

)

str(cv.overlapping)

Nested groups (misspecified, for the demonstration of the software only.)
g1: A1, A2, C1, C2, B, A1B, A2B, C1B, C2B
g2: A1B, A2B, A1B, A2B

sox_cv 17

g3: C1, C2, C1B, C2B
g4: 1
g5: 2
...
G12: 9

nested.groups <- list(1:9,
c(1, 2, 6, 7),
c(3, 4, 8, 9),
1, 2, 3, 4, 5, 6, 7, 8, 9)

pars.nested <- nested_structure(nested.groups)

cv.nested <- sox_cv(
x = x,
ID = sim$Id,
time = sim$Start,
time2 = sim$Stop,
event = sim$Event,
penalty = "nested",
lambda = lam.seq,
group = pars.nested$groups,
own_variable = pars.nested$own_variables,
no_own_variable = pars.nested$N_own_variables,
penalty_weights = pars.nested$group_weights,
nfolds = 5,
tol = 1e-4,
maxit = 1e3,
verbose = FALSE

)

str(cv.nested)

Index

∗ datasets
sim, 7

matplot, 5

nested_structure, 2, 10, 14

overlap_structure, 3, 10, 14

plot.default, 5
plot.sox, 4
plot.sox_cv, 6, 15

sim, 7, 11
sox, 2–5, 7, 9, 15
sox_cv, 2–7, 13

18

	nested_structure
	overlap_structure
	plot.sox
	plot.sox_cv
	sim
	sox
	sox_cv
	Index

