| Type: | Package | 
| Title: | Social Autocorrelation | 
| Version: | 1.0 | 
| Date: | 2017-07-16 | 
| Author: | Tom Pike | 
| Maintainer: | Tom Pike <tpike@lincoln.ac.uk> | 
| Description: | A set of functions to quantify and visualise social autocorrelation. | 
| License: | GPL-2 | GPL-3 [expanded from: GPL (≥ 2)] | 
| Imports: | Rcpp (≥ 0.12.9) | 
| LinkingTo: | Rcpp | 
| Depends: | stats, graphics | 
| RoxygenNote: | 6.0.1 | 
| LazyData: | true | 
| NeedsCompilation: | yes | 
| Packaged: | 2017-07-18 20:21:09 UTC; Tom Pike | 
| Repository: | CRAN | 
| Date/Publication: | 2017-07-18 21:43:17 UTC | 
All paths between two nodes
Description
Estimate all the possible paths between two nodes in a simple graph using the stochastic method described by Roberts & Kroese (2007).
Usage
social.all.paths(A, start.node, end.node, max.depth = nrow(A), 
  n.pilot = 5000, n.estimate = 10000)
Arguments
| A | a (possibly weighted) adjacency matrix. | 
| start.node | the index of the vertex from which the paths will be calculated. | 
| end.node | the index of the vertex to which the paths will be calculated. | 
| max.depth | the maximum length of the paths to the returned. | 
| n.pilot | the number of naive paths to generate (see Roberts & Kroese, 2007). | 
| n.estimate | the number of paths to generate (see Roberts & Kroese, 2007). | 
Value
An estimate of all the unique paths between start.node and end.node as an nrow(A)xN matrix, padded with zeros.
References
Roberts, B. & Kroese, D.P. (2007) Estimating the number of s-t paths in a graph. Journal of Graph Algorithms and Applications 11(1), 195-214.
Examples
# Using the data from Figure 1 in Roberts & Kroese (2007)
A = matrix(c(0,1,0,1,0,
             1,0,0,1,1,
             0,0,0,1,1,
             1,1,1,0,0,
             0,1,1,0,0), nrow=5)
paths = social.all.paths(A, 1, 5)
Social correlation matrix
Description
Calculates the social correlation matrix for a given network
Usage
social.cor.matrix(A, max.depth = nrow(A), n.pilot = 5000,
  n.estimate = 10000)
Arguments
| A | a (possibly weighted) adjacency matrix. | 
| max.depth | the maximum length of the paths to use. | 
| n.pilot | parameter to be passed to  | 
| n.estimate | parameter to be passed to  | 
Value
The calculated social correlation matrix.
Examples
A = matrix(c(0,1,0,1,0,
             1,0,0,1,1,
             0,0,0,1,1,
             1,1,1,0,0,
             0,1,1,0,0), nrow=5)
S = social.cor.matrix(A)
Example dataset 1
Description
An example dataset for demonstrating the functions available in the social package.
Usage
data(social.example1)Format
The dataset consists of a list with 3 items: A, a 30x30 adjacency matrix; S, a 30x30 social correlation matrix derived from A using S = social.cor.matrix(A, max.depth=5); and social.data, a 30-row data frame containing two columns of numeric data, x and y, and a column of node IDs (node.id, corresponding to the row and column names of A and S). 
Examples
data(social.example1)
Example dataset 2
Description
An example dataset for demonstrating the functions available in the social package.
Usage
data(social.example2)Format
The dataset consists of a list with 3 items: A, a 30x30 adjacency matrix; S, a 30x30 social correlation matrix derived from A using S = social.cor.matrix(A, max.depth=5); and social.data, a 30-row data frame containing two columns of numeric data, x and y, and a column of node IDs (node.id, corresponding to the row and column names of A and S). 
Examples
data(social.example2)
Social scatterplot
Description
A plot of social data against its socially lagged values
Usage
social.plot(x, S, ...)
Arguments
| x | a numeric vector of social data. | 
| S | a social correlation matrix. | 
| ... | further arguments to be passed to  | 
Value
None
Examples
A = matrix(c(0,1,0,1,0,
             1,0,0,1,1,
             0,0,0,1,1,
             1,1,1,0,0,
             0,1,1,0,0), nrow=5)
S = social.cor.matrix(A)
x = rnorm(nrow(A))
social.plot(x, S, ylim=c(min(x),max(x)), xlab="x", ylab="Socially lagged x")
abline(0, 1, lty=2)
Social signal
Description
Calculates the social signal for a given variable (essentially just Moran's I, but using the social correlation matrix as the weights)
Usage
social.signal(x, S)
Arguments
| x | a numeric vector of social data. | 
| S | a social correlation matrix. | 
Value
A list containing the computed global social signal (Is), 
the p-value of a test of the null hypothesis that there
is no social autocorrelation under the assumption of normality (p.value), and the 
local social signal for each node (I.local).
Examples
A = matrix(c(0,1,0,1,0,
             1,0,0,1,1,
             0,0,0,1,1,
             1,1,1,0,0,
             0,1,1,0,0), nrow=5)
S = social.cor.matrix(A)
x = rnorm(nrow(A))
s = social.signal(x, S)