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Abstract

The package smicd supports two new statistical methods for the analysis of interval censored
data: 1) direct estimation/prediction of statistical indicators and 2) linear (mixed) regression
analysis. Direct estimation of statistical indicators, for instance poverty and inequality indi-
cators, is facilitated by a non-parametric kernel density algorithm. The algorithm allows to
account for weights in the estimation of statistical indicators. The standard errors of the statis-
tical indicators are estimated by a non-parametric bootstrap. Furthermore, the package offers
statistical methods for the estimation of linear and linear mixed regression models with an in-
terval censored dependent variable, particularly random slope and random intercept models.
Standard errors are estimated by a non-parametric bootstrap in the linear regression model and
by a parametric bootstrap in the linear mixed regression model. To handle departures from the
model assumptions, fixed (logarithmic) and data-driven (Box-Cox) transformations are incor-
porated into the algorithm. The functionality of the package is illustrated with example data
sets to estimate poverty indicators from interval censored data in Germany and to linear model
interval censored examination scores of students from London schools.

Keywords: grouped data, kernel density estimation, regression models, income data, stochastic
expectation maximization algorithm, direct estimation

1 Introduction

Interval censored or grouped data occurs when only the lower Ak−1 and upper Ak interval bounds
(Ak−1, Ak) of a variable are observed and its true value remains unknown. Instead of measuring
the variable of interest on a continuous scale, for instance income data, the scale is divided into nk
intervals. The variable k (1 ≤ k ≤ nk) indicates in which of the nk intervals an observation falls
into. This leads to a loss of information since the shape of the distribution within the intervals
remains unknown. In the field of survey statistics, asking for interval censored data is often done
in order to avoid item non-response and thus increase data quality. Item non-response is avoided
because interval censored data offers a higher level of data privacy protection (Moore and Welniak,
2000; Hagenaars and Vos, 1988). Among others, popular surveys and censuses that collect interval
censored data are the German Microcensus (Statistisches Bundesamt, 2017), the Columbian census
(Departamento Administrativo Nacional De Estadistica, 2005) and the Australian census (Aus-
tralian Bureau of Statistics, 2011). While item non-response is reduced or avoided, the statistical
analysis of the data requires more elaborate mathematical methods. Even statistical indicators
that are easily calculated for continuous data, e.g. the mean, cannot be estimated using standard
formulas (Fahrmeir et al., 2011). Also estimating linear and linear mixed regression models which
are applied in many fields of statistics requires advanced statistical methods when the dependent
variable is interval censored. Therefore, the presented R package (R Core Team, 2018) implements
three major functions: kdeAlgo() to estimate statistical indicators (e.g. the mean) from interval
censored data, semLm() and semLme() to estimate linear and linear mixed regression models with
an interval censored dependent variable.

1



For the estimation of statistical indicators from interval censored data different approaches are
described in the literature. These approaches can broadly be categorized into four groups: Esti-
mation on the midpoints (Fahrmeir et al., 2011), linear interpolation of the distribution function
(Information und Technik (NRW), 2009), non-parametric modelling via splines (Berger and Esco-
bar, 2016) and fitting a parametric distribution function to the censored data (Bandourian et al.,
2002; Dagum, 1977; McDonald, 1984). Some of these methods are implemented in R packages
available on the Comprehensive R Archive Network (CRAN). The method of linear interpolation
is implemented for the estimation of quantiles in the R package actuar (Dutang et al., 2008). The
package also enables the estimation of the mean on the interval midpoints. Fitting a paramet-
ric distribution to interval censored data can be done by the use of the R package fitdistrplus
(Delignette-Muller and Dutang, 2015).

In survey statistics, interval censored data is often collected for income or wealth variables.
Thus, the performance of the above mentioned methods is commonly evaluated by simulation
studies that rely on data that follows some kind of income distribution. The German statistical
office (DESTATIS) uses the method of linear interpolation for the estimation of statistical indicators
from interval censored income data collected by the German Microcensus (Information und Technik
(NRW), 2009). This approach gives the same results as assuming a uniform distribution within
the income intervals. Estimation results are reasonably accurate if the estimated indicators do
not depend on the whole shape of the distribution, e.g. the median (Lenau and Münnich, 2016).
Fitting a parametric distribution to the data enables the estimation of indicators that rely on the
whole shape of the distribution. This method works well when the data is censored to only a
few equidistant intervals (Lenau and Münnich, 2016). Non-parametric modelling via splines shows
especially good results for a high number of intervals in ascending order (Lenau and Münnich,
2016). However, according to Lenau and Münnich (2016) all of the above mentioned methods
show large biases and variances when the estimation is based on a small number of intervals.
Therefore, a novel kernel density estimation (KDE) algorithm is implemented in the smicd package
that overcomes the drawbacks of the previously mentioned methods (Walter and Weimer, 2018).
The algorithm bases the estimation of statistical indicators on pseudo samples that are drawn from
a fitted non-parametric distribution. The method automatically adapts to the shape of the true
unknown distribution and provides reliable estimates for different interval censoring scenarios. It
can be applied by the function kdeAlgo().

Similarly to the direct estimation of statistical indicators from interval censored data, a variety
of ad-hoc approaches and explicitly formulated mathematical methods for the estimation of linear
regression models with an interval censored dependent variable exists. The following methods and
approaches are used for handling interval censored dependent variables within linear regression
models: Ordinary least squares (OLS) regression on the midpoints (Thompson and Nelson, 2003),
ordered logit- or probit-regression (McCullagh, 1980) and regression methodology formulated for
left-, right- and interval censored data (Tobin, 1958; Rosett and Nelson, 1975; Stewart, 1983). All
of these methods are implemented in different R packages available on CRAN. OLS regression on
the midpoints is applicable by using the lm() function from the stats Package (R Core Team,
2018), ordered logit regression is implemented in the MASS package (Venables and Ripley, 2002)
and interval regression is implemented in the IntReg (Toomet, 2015) package.

While OLS regression on the midpoints of the intervals is easily applied, it comes with the
disadvantage of giving biased estimation results (Cameron, 1987). This approach disregards the
uncertainty stemming from the unknown true distribution of the data within the intervals and
therefore leads to biased parameter estimates. Its performance relies on the number of intervals
and estimation results are only comparable to more advanced methods when the number of inter-
vals is very large (Fryer and Pethybridge, 1972). Conceptualizing the model as ordered logit or
probit regression is feasible by treating the dependent variable as an ordered factor variable (Mc-
Cullagh, 1980). However, this approach also neglects the unknown distribution of the data within
the intervals. Furthermore, the predicted values are not on a continuous scale but in terms of
probability of belonging to a certain group. To overcome these disadvantages and obtain unbiased
estimation results Stewart (1983) introduces regression methodology for models with an interval
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censored dependent variable. Walter et al. (2017) further develop his approach and introduce a
novel stochastic expectation maximization (SEM) algorithm for the estimation of linear regression
models with an interval censored dependent variable that is implemented in the smicd package.
The model parameters are unbiasedly estimated as long as the model assumptions are fulfilled.
The function semLm() provides the SEM-algorithm and enables the use of fixed (logarithmic) and
data-driven (Box-Cox) transformations (Box and Cox, 1964). The Box-Cox transformation auto-
matically adapts to the shape of the data and transforms the dependent variable in order to meet
the model assumption (Gurka et al., 2006).

In order to analyse longitudinal or clustered data (e.g. students within schools) linear mixed
regression models are applicable. These kind of models control for the correlated structure of the
data by including random effects in addition to the usual fixed effects. In order to deal with an
interval censored dependent variable in linear mixed regression models there are several approaches
described in the literature. Linear mixed regression models, just as linear regression models, can
be estimated on the interval midpoints of the censored dependent variable. Furthermore, concep-
tualizing the model as ordered logit or probit regression model is feasible (Agresti, 2010). These
approaches inherit the same advantages and disadvantages as discussed before. Linear mixed re-
gression on the midpoints can be applied by the lme4 (Pinheiro et al., 2017) or nlme (Bates et al.,
2015) package and ordered logit regression is implemented in the ordinal package (Christensen,
2015). Up to my knowledge, there are no R packages for the estimation of linear mixed regression
models with an interval censored dependent variable. Therefore, the package smicd contains the
SEM-algorithm proposed by Walter et al. (2017) for the estimation of linear mixed regression mod-
els with an interval censored dependent variable. If the model assumptions are fulfilled, the method
gives unbiased estimation results. The function semLme() enables the estimation of the regression
parameters and it also allows for the usage of the logarithmic and Box-Cox transformation in order
to fulfil the model assumptions (Gurka et al., 2006).

The paper is structured into two main sections. Section 2 deals with the direct estimation of
statistical indicators from interval censored data whereas Section 3 introduces linear and linear
mixed regression models with an interval censored dependent variable. Both sections are split up
into three subsections: first the statistical methodology is introduced, then the core functions of
the smicd package are presented and finally, illustrative examples with two different datasets are
provided. In Section 4 the main results are summarized and an outlook is given.

2 Direct estimation of statistical indicators

In the following three subsections, the methodology for the direct estimation of statistical indicators
from interval censored data is introduced, the core functionality of the function kdeAlgo() is
presented and statistical indicators are estimated using the European Union Statistics on Income
and Living Conditions (EU-SILC) dataset (European Commission, 2013).

2.1 Methodology: direct estimation of statistical indicators

In order to estimate statistical indicators from interval censored data the proposed algorithm gen-
erates metric pseudo samples of an interval censored variable. These pseudo samples can be used
to estimate any statistical indicator. They are drawn from a non-parametrically estimated kernel
density. Kernel density estimation was first introduced by Rosenblatt (1956) and Parzen (1962).
By its application the density f(x) of a continuous independently and identically distributed ran-
dom variable is estimated without assuming any distributional shape of the data. The estimator is
defined as

f̂h(x) =
1

nh

n∑
i=1

K

(
x− xi
h

)
, i = 1, . . . , n

where K(·) is a kernel function, h > 0 the bandwidth and x = {x1, x2, . . . , xn} denotes a
sample of size n. The performance of the estimator is determined by the optimal choice of h. The
selection of an optimal h is widely discussed in the literature, see Zambom and Dias (2012); Jones
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et al. (1996); Loader (1999). When working with interval censored data, standard KDE cannot be
applied since x is not observed on a continuous scale. Nevertheless, its unobserved true distribution
is of continuous form. As ad hoc solution the density f̂h(x) can be estimated based on the interval
midpoints. The resulting density estimate will be spiky unless the bandwidth is sufficiently large.
A large bandwidth, however, is leading to a loss of information (Wang and Wertelecki, 2013).
Therefore, Walter and Weimer (2018) propose an iterative KDE-algorithm for density estimation
from interval censored data. The approach is based on Groß et al. (2017) who introduce a similar
KDE-algorithm in a two-dimensional setting with equidistant interval width. Walter and Weimer
(2018) show that the algorithm can be adjusted to one-dimensional data with arbitrary class width.
For the estimation of linear and non-linear statistical indicators the unknown distribution of x has
to be reconstructed by using the observed interval k = {k1, k2, . . . , kn} an observation falls into.
From Bayes theorem (Bayes, 1763) it follows that the conditional distribution of x|k is:

π(x|k) ∝ π(k|x)π(x)

with π(k|x) is defined by a product of a Dirac distribution π(k|x) =
∏n
i=1 π(ki|xi) with

π(ki|xi) =

{
1 if Ak−1 ≤ xi ≤ Ak,
0 else,

for i = 1, . . . , n. Since π(x) is unknown it is replaced by a kernel density estimate f̂h(x).

Estimation and computational details

For fitting the model pseudosamples of xi are drawn from the conditional distribution

π(xi|ki) ∝ I(Ak−1 ≤ xi ≤ Ak)f(xi),

where I(·) denotes the indicator function. The conditional distribution of π(xi|ki) is given by
the product of a uniform distribution and density f(xi). As the density is unknown it is replaced
by an estimate, which is obtained by the KDE f̂h(x). In particular, xi is repeatedly drawn from
the given interval (Ak−1, Ak) by using the current density estimate f̂h(x) as sampling weight. The
explicit steps of the iterative algorithm as given in Walter and Weimer (2018) are stated below:

1. Use the midpoints of the intervals as pseudo x̃i for the unknown xi. Estimate a pilot estimate
of f̂h(x), by applying KDE. Note: Choose a sufficiently large bandwidth h in order to avoid
rounding spikes.

2. Evaluate f̂h(x) on an equally spaced grid G = {g1, . . . , gj} with grid points g1, . . . , gj . The
width of the grid is denoted by δg. It is given by

δg =
|A0 −Ank

|
j − 1

,

and the grid is defined as:

G = {g1 = A0, g2 = A0 + δg, g3 = A0 + 2δg, . . . , gj−1 = A0 + (j − 2)δg, gj = Ank
}.

3. Sample from π(x|k) by drawing randomly from Gk = {gj |gj ∈ (Ak−1, Ak)} with sampling

weights f̂h(x̃i) for k = 1, . . . , nk. The sample size for each interval is given by the number of
observations within each interval. Obtain x̃i for i = 1, . . . , n.

4. Estimate any statistical indicator of interest Î using x̃i.

5. Recompute the density f̂h(x), using the pseudo samples x̃i obtained in iteration step 3.

6. Repeat steps 2-5, with B(KDE) burn-in and M (KDE) additional iterations.
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7. Discard the B(KDE) burn-in iterations and estimate the final Î by averaging the obtained
M (KDE) estimates.

For open ended intervals e.g. (15000,∞) the upper bound has to be replaced by a finite number.
Walter and Weimer (2018) show by model-based simulations that a value of 3 times the value of the
lower bound (15000, 45000) gives appropriate estimation results when working with income data.

The variance of the statistical indicators is estimated by bootstrapping. Bootstrap methods
were first introduced by Efron (1979). These methods serve as estimation procedure when the
variance cannot be stated as closed form solution (Shao and Tu, 1995). While bootstrapping avoids
the problem of non availability of a closed form solution, it comes with the disadvantage of long
computational times. In the package, a non-parametric bootstrap that accounts for the additional
uncertainty coming from the interval censored data is implemented. This non-parametric bootstrap
was first introduced in Walter and Weimer (2018).

2.2 Core functionality: direct estimation of statistical indicators

The presented KDE-algorithm is implemented in the function kdeAlgo() (see Table 1). The ar-
guments and default settings of kdeAlgo() are shortly summarized in Table 2. The function gives
back an S3 object of class "kdeAlgo". A detailed explanation of all components of an "kdeAlgo"

object can be found in the package documentation. The generic functions plot() and print() can
be applied to "kdeAlgo" objects to output the main estimation results (see Table 1). In the next
section the function kdeAlgo() is used to estimate a variety of statistical indicators from interval
censored EU-SILC data and its arguments are explained in more detail.

Table 1: Implemented functions for the direct estimation of statistical indicators

Function Name Description

kdeAlgo() Estimates statistical indicators and its standard errors from
interval censored data

plot() Plots convergence of the estimated statistical indicators and
estimated density of the pseudo x̃i

print() Prints estimated statistical indicators and its standard errors

2.3 Example: direct estimation of statistical indicators

To demonstrate the function kdeAlgo(), the total disposable household income and the corre-
sponding household weight from the public use file (PUF) of the European Union Statistics on
Income and Living Condition (EU-SILC) dataset is used (European Commission, 2013). The PUF
is a fully synthetic dataset which cannot be used for inferential statistics. Nevertheless, the dis-
tribution of the data mimics the distribution of the original dataset (Eurostat, 2018). The PUF
has the advantage (over the scientific use file) of being easily available on the Eurostat website
(Eurostat, 2018). The analysis is carried out using the German PUF from 2013. After the deletion
of missing values there are 12703 observations left in the EU-SILC survey that are used in the anal-
ysis. Since the total disposable household income is measured on a continuous scale, it is censored
to 24 intervals for demonstration purposes. For a realistic censoring scheme the interval bounds
are chosen such that they match the interval bounds used in the German Microcensus from 2013
(Statistisches Bundesamt, 2014). The German Microcensus is a representative household survey
that covers 830000 persons in 370000 households (1 % of the German population) in which income
is only collected as interval censored variable (Statistisches Bundesamt, 2016).

In a first step the variable total disposable household income called hhincome net is interval
censored according to the 24 intervals in the German Microcensus using the function cut(). The
vector of interval bounds is called intervals and the newly obtained interval censored income
variable is called c.hhincome.
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Table 2: Arguments of function kdeAlgo()

Argument Description Default

xclass Interval censored variable
classes Numeric vector of interval bounds
threshold Threshold used for poverty indicators

(60% of the median of the target variable) 0.6

burnin Number of burn-in iterations B(KDE) 80

samples Number of additional iterations M (KDE) 400
bootstrap.se If TRUE, standard errors of the statistical

indicators are estimated FALSE
b Number of bootstraps for the estimation of

the standard errors 100
bw Smoothing bandwidth used ”nrd0”
evalpoints Number of evaluation grid points 4000
adjust Bandwidth multiplier bw = adjust ∗ bw 1
custom indicator A list of user defined statistical indicators NULL
upper If upper bound of the upper interval is ∞

e.g. (15000,∞), then ∞ is replaced by 15000 ∗ upper 3
weights Survey weights NULL
oecd Household weights of equivalence scale NULL

R> intervals <- c(0,150,300,500,700,900,1100,1300,1500,1700,2000,2300,2600,

+ 2900,3200,3600,4000,4500,5000,5500,6000,7500,10000,18000,Inf)

R> c.hhincome <- cut(hhincome_net, breaks = intervals)

In order to get a descriptive overview of the distribution of the censored income data the function
table() is applied.

R> table(c.hhincome)

c.hhincome

(0,150] (150,300] (300,500]

229 283 442

(500,700] (700,900] (900,1.1e+03]

532 576 609

(1.1e+03,1.3e+03] (1.3e+03,1.5e+03] (1.5e+03,1.7e+03]

570 555 586

(1.7e+03,2e+03] (2e+03,2.3e+03] (2.3e+03,2.6e+03]

819 744 673

(2.6e+03,2.9e+03] (2.9e+03,3.2e+03] (3.2e+03,3.6e+03]

612 604 685

(3.6e+03,4e+03] (4e+03,4.5e+03] (4.5e+03,5e+03]

510 587 461

(5e+03,5.5e+03] (5.5e+03,6e+03] (6e+03,7.5e+03]

375 279 536

(7.5e+03,1e+04] (1e+04,1.8e+04] (1.8e+04,Inf]

392 198 23

Most incomes are in interval (1700, 2000] and only 23 incomes are in the upper interval. For
the estimation of the statistical indicators the function kdeAlgo() of the smicd package is called
with the following arguments.

R> Indicators <- kdeAlgo(xclass = c.hhincome, classes = intervals,

+ bootstrap.se = TRUE, custom_indicator = list(quant05 =
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+ function(y, treshold, weights){wtd.quantile(y, probs =

+ 0.05, weights)}, quant95 = function(y, treshold, weights)

+ {wtd.quantile(y, probs = 0.95, weights)}), weights = hhweight)

The variable c.hhincome is assigned to the argument xclass and the vector of interval bounds
intervals is assigned to the argument classes. The default settings of the arguments burnin,
samples, bw, evalpoints, adjust and upper are retained. Simulation results from Walter and
Weimer (2018) and Groß et al. (2017) show that these settings give good results when working with
income data. Changing these arguments has an impact on the performance of the KDE-algorithm.
As default, the statistical indicators: Mean, Gini, Headcount Ratio (HCR), the Quantiles (10%,
25%, 50%, 75%, 90%), the Poverty Gap (PGAP) and the Quintile Share Ratio (QSR) are estimated
(Gini, 1912; Foster et al., 1984). The HCR and PGAP rely on a poverty threshold. The default
choice of the threshold argument is 60% of the median of the target variable as suggested by
Eurostat (2014). Besides the mentioned indicators, any other statistical indicator can be estimated
via the argument custom indicator. In the example the argument is assigned a list that holds
functions to estimate the 5% and 95% quantile. The custom indicators must depend on the target
variable, the threshold (even if it is not needed for the specified indicator) and optionally on the
weights argument, if the estimation of a weighted indicator is required. To estimate the standard
errors of all indicators bootstrap.se = TRUE and the number of bootstrap samples is 100 (the
default value as suggested in Walter and Weimer (2018)). Lastly, the household weight (hhweight)
is assigned to the argument weights in order to estimate weighted statistical indicators. It can
also be controlled for households of different size by assigning oecd a variable with household
equivalence weights. By applying the print() function to the "kdeAlgo" object the estimated
statistical indicators (default and custom indicators) as well as their standard errors are printed.
For instance in this example the estimated mean is about 2916 Euro and its standard error is
23.124.

R> print(Indicators)

Value:

mean gini hcr quant10 quant25 quant50 quant75 quant90

2916.041 0.425 0.289 591.783 1203.239 2295.574 3901.166 5935.196

pgap qsr quant05 quant95

0.131 11.929 343.548 7583.327

Standard error:

mean gini hcr quant10 quant25 quant50 quant75 quant90 pgap

23.124 0.004 0.003 11.050 15.289 25.819 38.855 57.051 0.002

qsr quant05 quant95

0.251 11.451 82.597

In Walter and Weimer (2018) the performance of the KDE-algorithm is evaluated by detailed
simulation studies. By applying the function plot() "kdeAlgo" objects can be plotted. Thereby,
convergence plots for all estimated statistical indicators and a plot of the estimated final density
are obtained.

R> plot(Indicators)

Figure 1 shows convergence plots for three of the estimated indicators (panel 1-3). Additionally,
a plot of the estimated final density with a histogram of the observed data in the background (panel
4) is obtained. In panel 1-3 the estimated statistical indicator (HCR, PGAP, 75% Quantile) is
plotted for each iteration step of the KDE-algorithm. A vertical line marks the end of the burn-in
period. All convergence plots in Figure 1 demonstrate that the number of iterations is chosen
sufficiently large for the estimates to converge. If convergence were not achieved the arguments
burnin and samples should be increased. It is notable that the estimated 75% quantile has the
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same value for almost all iterations steps. This is the case because the quantile, as any other
statistical indicator, is estimated using the pseudo samples that are drawn on 4000 grid points G.
Estimating a quantile based on only 4000 unique outcomes leads to equal quantile estimates for
almost all iteration steps of the KDE-algorithm.
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Figure 1: Convergence plots of the statistical indicators and a plot of the estimated final density
with a histogram of the observed distribution of the data in the background

3 Regression analysis

In the following three subsections the statistical methodology for linear and linear mixed regression
models with an interval censored dependent variable is introduced, the core functionality of the
functions semLM() and semLME() is presented and examination scores of students from schools in
London are being exemplary modelled.
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3.1 Methodology: regression analysis

The theoretical introduction of the new regression method, proposed by Walter et al. (2017), is
presented for linear mixed regression models. The theory for linear regression models can be ob-
tained by simplifying the introduced method. In its standard form the linear mixed regression
model serves to analyse the linear relationship between a continuous dependent variable and some
independent variables (Goldstein, 2003). Random parameters (random slopes and random inter-
cepts) are included into the model to account for correlated data e.g. students within schools. The
model in matrix notation (Laird and Ware, 1983) is given by,

y = Xβ + Zv + e, (1)

where y is a n× 1 column vector of the dependent variable, n is the sample size, X is a n× p
matrix where p is equal to the number of predictors, β is a column vector of the fixed-effects
regression parameters of size p× 1, Z is the n× q design matrix with q random effects, v is a q× 1
vector of random effects and e is the residual vector of size n× 1. The distribution of the random
effects is given by,

v ∼ N(0,G), where G =


σ20 σ01 . . . σ0q
σ10 σ21 . . . σ1q

...
...

. . .
...

σq0 σq1 . . . σ2q


and the distribution of the residuals is given by e ∼ N(0,R) with R = Inσ

2
e where In is the

identity matrix and σ2e is the residual variance. The random effects v and the residuals e are
assumed to be independent. For a more detailed introduction of mixed models see Snijders and
Bosker (2011); Searle et al. (1992); McCulloch et al. (2008). In the case of an interval censored
dependent variable the parameters of Model 1 have to be estimated without observing y on a
continuous scale. Instead, only the interval identifier k, now defined as n × 1 column vector, is
observed. Open ended interval bounds A0 = −∞ and Ank

= +∞ and unequal interval widths are
allowed. Since the true distribution of y is unknown the aim is to reconstruct the distribution of
y by using the known intervals k and the linear relationship stated in Model 1. As presented in
Walter et al. (2017) in order to reconstruct the unknown distribution of f(y|X,Z,v,k,θ), where
θ = (β,R,G), the Bayes theorem (Bayes, 1763) is applied. Hence,

f(y|X,Z,v,k,θ) ∝ f(k|y,X,Z,v,θ)f(y|X,Z,v,θ),

with f(k|y,X,Z,v,θ) = f(k|y) because the conditional distribution of the interval identifier k
only depends on y. Therefore,

f(k|y) =

{
1 if Ak−1 ≤ y ≤ Ak,

0 else,

and

f(y|X,Z,v,θ) ∼ N(Xβ + Zv,R). (2)

The relationship in Equation 2 follows from the linear mixed model assumptions (Model 1). The
unknown parameters θ = (β,R,G) are estimated based on pseudo samples ỹ (since y is unknown)
that are iteratively drawn from f(y|X,Z,v,k,θ). The next subsection states the computational
details of the SEM-algorithm.

Estimation and computational details

For fitting Model 1, the parameter vector θ̂ = (β̂, R̂, Ĝ) is estimated and pseudo samples of the
unknown y are iteratively generated by the following SEM-algorithm. The pseudo samples ỹ are
drawn from the conditional distribution
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f(y|X,Z,v,k,θ) ∝ I(Ak−1 ≤ y ≤ Ak)×N(Xβ + Zv,R),

where I(·) denotes the indicator function. Hence, for y with explanatory variables X the
corresponding ỹ is drawn from N(Xβ+Zv,R) conditional on the given interval (Ak−1 ≤ y ≤ Ak).
If θ̂ is estimated the conditional distribution f(y|X,Z,v,k,θ) follows a two-sided truncated normal
distribution. Its probability density function equals

f̂(y|X,Z, v̂,k, θ̂) =
φ
(
y−µ̂

R̂

)
R̂

(
Φ
(
Ak−µ̂

R̂

)
− Φ

(
Ak−1−µ̂

R̂

)) , (3)

with µ̂ = Xβ̂ + Zv̂. φ(•) denotes the probability density function of the standard normal
distribution and Φ(•) denotes its cumulative distribution function. From its definition it follows

that Φ
(
Ak−µ̂
R̂

)
= 1 if Ak =∞ and Φ

(
Ak−1−µ̂

R̂

)
= 0 if Ak−1 = −∞. The steps of the SEM-algorithm

as described in Walter et al. (2017) are:

1. Estimate θ̂ = (β̂, R̂, Ĝ) from Model 1 using the midpoints of the intervals as substitute for
the unknown y. The parameters are estimated by restricted maximum likelihood theory
(REML) (Thompson, 1962).

2. Stochastic Step: For i = 1, . . . , n, draw randomly from N(Xβ̂ + Zv̂, R̂) within the given
interval (Ak−1 ≤ y ≤ Ak) (the two sided truncated normal distribution given in Equation 3)
obtaining (ỹ,X,Z). The drawn pseudo ỹ are used as replacement for the unobserved y.

3. Maximization Step: Re-estimate the parameter vector θ̂ from Model 1 by using the pseudo
samples (ỹ,X,Z) from step 2. Again, parameter estimation is carried out by REML.

4. Iterate steps 2-3 B(SEM) + M (SEM) times, with B(SEM) burn-in iterations and M (SEM)

additional iterations.

5. Discard the burn-in iterations and estimate θ̂ by averaging the obtained M (SEM) estimates.

If open ended intervals A0 = −∞ and Ank
= +∞ are present, the midpoints M1 and Mnk

of
these intervals in iteration step 1 are computed as follows:

M1 = (A1 −D)/2,

Mnk
= (Ank

+D)/2,

where

D =
1

(nk − 2)

nk−1∑
k=2

|Ak−1 −Ak|.

These midpoints serve as proxies for the unknown interval midpoints in step 1 of the algorithm.
The SEM-algorithm for the linear regression model is obtained by simplifying the conditional
distribution f(y|X,Z,v,θ) ∼ N(Xβ + Zv,R) to f(y|X,β, σe) ∼ N(Xβ, σe) according to the
model assumptions of a linear regression model. In the SEM-algorithm for linear models it is then
drawn from N(Xβ, σe) within the given interval.

The standard errors of the regression parameters are estimated by the use of bootstrap methods.
For the linear regression model a non-parametric bootstrap (Efron and Stein, 1981; Efron, 1982;
B. Efron and Tibshirani, 1986; Efron and Tibshirani, 1993) and for the linear mixed regression
model a parametric bootstrap (Wang et al., 2006; Thai et al., 2013) is used to estimate the standard
errors. The non-parametric as well as the parametric bootstrap are further developed to account
for the additional uncertainty that is due to the interval censored dependent variable. Both newly
proposed bootstraps are available in the smicd package.

To assure that the model assumptions are fulfilled the logarithmic and the Box-Cox transfor-
mations are incorporated into the function semLm() and semLme().

10



3.2 Core functionality: regression analysis

The introduced SEM-algorithm is implemented in the functions described in Table 3. The ar-
guments and default settings of the estimation functions semLm() and semLme() are summarized
in Table 4. Both functions return a S3 object of class "sem" "lm" or "sem" "lme". A detailed
explanation of all components of these objects can be found in the smicd package documentation.
The generic functions plot(), print() and summary() can be applied to objects of class "sem"

"lm" and "sem" "lme" in order to summarize the main estimation results. In the next section the
functionality of semLm() and semLme() is demonstrated based on an illustrative example.

Table 3: Implemented functions for the estimation of linear and linear mixed regression models

Function Name Description

semLm() Estimates linear regression models with an interval censored
dependent variable

semLme() Estimates linear mixed regression models with an interval
censored dependent variable

plot() Plots convergence of the estimated parameters and estimated
density of the pseudo ỹ from the last iteration step

print() Prints basic information of the estimated linear and linear mixed
regression models

summary() Summary of the estimated linear and linear mixed regression models

Table 4: Arguments of functions semLm() and semLme()

Argument Description Default

formula A two sided linear formula object
data A data frame containing the variables of the model
classes Numeric vector of interval bounds
burnin Burn-in iterations 40
samples Additional iterations 200
trafo Transformation of the dependent variable: None, ”None”

logarithmic or Box-Cox transformation
adjust Extends the number of iterations for the estimation of the 2

Box-Cox transformation parameter: (burnin+ samples) ∗ adjust
bootstrap.se If TRUE standard errors and confidence intervals of FALSE

the regression parameters are estimated
b Number of bootstraps for the estimation of

the standard errors 100

3.3 Example: regression analysis

To demonstrate the functions semLm() and semLme() the famous London school dataset that is
analysed in Goldstein et al. (1993) is used. The dataset contains examination results of 4059
students from 65 schools in six Inner London Education Authorities. The dataset is available in
the R package mlmRev (Bates et al., 2014) and also included in the package smicd. The variables
used in the following example are: General Certificate of Secondary Examination Scores (examsc),
the standardized London reading test scores at the age of 11 years (standLRT), the sex of the student
(sex) and the school identifier (school). In the original dataset the variable examsc is measured
on a continuous scale. In order to demonstrate the functionality of the functions semLm() and
semLme() the variable is arbitrarily censored to nine intervals. As before, the censoring is carried
out by the function cut() and the vector of interval bounds is called intervals.
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R> intervals <- c(1,1.5,2.5,3.5,4.5,5.5,6.5,7.7,8.5,Inf)

R> Exam$examsc.class<- cut(Exam$examsc, intervals)

The newly created interval censored variable is called examsc.class. The distribution is visu-
alized by applying the function table().

R> table(Exam$examsc.class)

(1,1.5] (1.5,2.5] (2.5,3.5] (3.5,4.5] (4.5,5.5] (5.5,6.5]

1 32 249 937 1606 951

(6.5,7.7] (7.7,8.5] (8.5,Inf]

267 15 1

It can be seen that most eximination scores are concentrated in the center intervals. To fit the
linear regression model the function semLM() is called.

R> LM <- semLm(formula = examsc.class ~ standLRT + sex, data = Exam,

+ classes = intervals, bootstrap.se = TRUE)

The formula argument is assigned the model equation, where examsc.class is regressed on
standLRT and sex. The argument data is assigned the name of the dataset Exam and the vector
of interval bounds intervals is assigned to the classes argument. The arguments burnin and
samples are left as default. The specified number of default iterations is sufficiently large for
most regression models, however convergence of the parameters has to be checked by plotting the
estimation results with the function plot() after the estimation. No transformation is specified
for the interval censored dependent variable therefore, trafo has assigned its default value. The
argument adjust is only relevant if the Box-Cox transformation trafo="bc" is chosen. In this
case the number of iterations for the estimation of the Box-Cox transformation parameter λ can
be specified by this argument. The convergence of the transformation parameter λ has to be
checked using the function plot(). More information on the Box-Cox transformation and on the
estimation of the transformation parameter is given in Walter et al. (2017). For the estimation of
the standard errors of the regression parameters the argument bootstrap.se is set to TRUE. The
number of bootstrap samples b is 100, its default value, which again is reasonable for most settings.
A summary of the estimation results is obtained by the application of the function summary().

R> summary(LM)

Call:

semLm(formula = examsc.class ~ standLRT + sex, data = Exam, classes = intervals,

bootstrap.se = TRUE)

Fixed effects:

Estimate Std. Error Lower 95%-level Upper 95%-level

(Intercept) 5.0696954 0.01769550 5.0291108 5.1062928

standLRT 0.5908558 0.01250971 0.5650455 0.6136739

sexM -0.1713774 0.02697037 -0.2370421 -0.1144653

Multiple R-squared: 0.3501 Adjusted R-squared: 0.3498

Variable examsc.class is divided into 9 intervals.

The output shows the function call, the estimated regression coefficients, the bootstrapped
standard errors and the confidence intervals as well as the R-squared and the adjusted R-squared.
Furthermore, the output reminds the user that the dependent variable is censored to 9 intervals.
All estimates are interpreted as in a linear regression model with a continuous dependent variable,
hence, if standLRT increases by one unit and all other parameters are kept constant, examsc.class

12



increases by 0.59 on average. The bootstraped confidence intervals indicate that all regressors have
a significant effect on the dependent variable.

By using the generic function plot() on an object of class "sem" "lm" convergence plots of each
estimated regression parameter and of the estimated residual variance are obtained. Furthermore,
the density of the generated pseudo ỹ variable from the last iteration step is plotted with a histogram
of the observed distribution of the interval censored variable examsc.class in the background.

R> plot(LM)

In Figure 2 a selection of convergence plots is given in panel 1-3 and the density of the pseudo
ỹ from the last iteration step of the SEM-algorithm is given in panel 4. The estimated parameter
is plotted for each iteration step of the SEM-algorithm. A vertical line indicates the end of the
burn-in period (40 iterations). The final parameter estimate is obtained by averaging the M (SEM)

additional iterations (200). The selected 240 iterations are enough to obtain reliable estimates in
this example, because the estimates have converged.
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Figure 2: Convergence plots of estimated model parameters and the estimated final density with a
histogram of the observed distribution of the data in the background
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As already mentioned the smicd package also enables the estimation of linear mixed regression
models by the function semLme(). In the London school dataset students are nested within schools
therefore, it is necessary to control for the correlation within schools. In order to do that the
variable school is specified as random intercept. Furthermore, a random slope parameter on the
standardized London reading test score standLRT is included into the model to allow for different
slopes. Again the variable sex is included as additional regressor. Hence, the formula argument is
assigned the following model equation examsc.class ∼ standLRT + sex + (standLRT|school).
So far, the function semLme() enables the estimation of linear mixed models with a maximum of
one random slope and one random intercept parameter. Regarding all other arguments the same
specifications are made as before.

R> LME <- semLme(formula = examsc.class ~ standLRT + sex + (standLRT|school),

+ data = data, classes = intervals, bootstrap.se = TRUE)

By using the generic function summary() the estimation results are printed. Additionally to
the fixed effects, the estimated random effects are obtained as in the lme4 and nlme packages.
Since the R-squared and the adjusted R-squared are not defined for mixed models the summary()

function prints the Marginal R-squared and Conditional R-squared (Nakagawa and Schielzeth,
2013; Johnson, 2014).

> summary(LME)

Call:

semLme(formula = examsc.class ~ standLRT + sex + (standLRT |

school), data = data, classes = intervals, bootstrap.se = TRUE)

Random effects:

Groups Name Variance Std.Dev.

school (Intercept) 0.08524761 0.2919719

standLRT 0.01515524 0.1231066

Residual 0.57213169 0.7563939

Fixed effects:

Estimate Std. Error Lower 95%-level Upper 95%-level

(Intercept) 5.0657320 0.04352554 4.9735476 5.1595542

standLRT 0.5537966 0.02153048 0.5049930 0.5957868

sexM -0.1749747 0.03314769 -0.2506864 -0.1053517

Marginal R-squared: 0.319 Conditional R-squared: 0.4205

Variable examsc.class is divided into 9 intervals.

Again, interpretation is the same as in linear mixed models with a continuous dependent vari-
able. By applying the generic function plot() to an "sem" "lme" object the same plots as for the
linear regression model are plotted.

4 Discussion and outlook

Asking for interval censored data can lead to lower item non-response rates and increased data
quality. While item non-response is potentially avoided, applying traditional statistical methods
becomes infeasible because the true distribution of the data within each interval is unknown. The
functions of the smicd package enable researchers to easily analyse this kind of data. The paper
shortly introduces the new statistical methodology and presents, in detail, the core functions of the
package:

� kdeAlgo() for the direct estimation of any statistical indicator,
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� semLm() to estimate linear models with an interval censored dependent variable,

� semLme() to estimate linear mixed models with an interval censored dependent variable.

The functions are applied to estimate statistical indicators from interval censored EU-SILC
income data and to analyse interval censored examination scores of students from London with
linear and linear mixed regression models.

Further developments of the smicd package will include the possibility to estimate the boot-
straped standard errors in parallel computing environments. Additionally, it is planned to allow
for the use of survey weights in the linear (mixed) regression models.
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Università di Cagliari. Tipogr. di P. Cuppini, Bologna.

Goldstein, H. (2003). Multilevel Statistical Models. Wiley, New York.

Goldstein, H., Rasbash, J., Yang, M., Woodhouse, G., Pan, H., Nuttall, D., and Thomas, S. (1993).
A multilevel analysis of school examination results. Oxford Review of Education, 19(4):425–433.

Groß, M., Rendtel, U., Schmid, T., Schmon, S., and Tzavidis, N. (2017). Estimating the density
of ethnic minorities and aged people in Berlin: multivariate kernel density estimation applied
to sensitive georeferenced administrative data protected via measurement error. Journal of the
Royal Statistical Society: Series A, 180(1):161–183.

Gurka, M. J., Edwards, L. J., Muller, K. E., and Kupper, L. (2006). Extending the Box-Cox
transformation to the linear mixed model. Journal of the Royal Statistical Society: Series A,
169(2):273–288.

Hagenaars, A. and Vos, K. D. (1988). The definition and measurement of poverty. Journal of
Human Resources, 23(2):211–221.

Information und Technik (NRW) (2009). Berechnung von Armutsgefährdungsquoten auf Basis des
Mikrozensus. http://www.amtliche-sozialberichterstattung.de/pdf/Berechnung%20von%

20Armutsgefaehrdungsquoten_090518.pdf. Accessed: 2018-04-09.

Johnson, P. (2014). Extension of Nakagawa & Schielzeth’s R2
GLMM to random slopes models.

Methods in Ecology and Evolution, 5(9):944–946.

Jones, M. C., Marron, J. S., and Sheather, S. J. (1996). A brief survey of bandwidth selection for
density estimation. Journal of the American Statistical Association, 91(433):401–407.

Laird, M. N. and Ware, J. H. (1983). Random-effects models for longitudinal data. Biometrics,
38:963–74.
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