Package ‘simputation’

December 16, 2024

Maintainer Mark van der Loo <mark.vanderloo@gmail.com>

License GPL-3

Title Simple Imputation

Type Package
LazyLoad yes

Description Easy to use interfaces to a number of imputation methods
that fit in the not-a-pipe operator of the 'magrittr' package.

Version 0.2.9

Depends R (>=4.0.0)

Imports stats, utils, MASS, rpart, gower, VIM, randomForest, glmnet,
missForest, norm

URL https://github.com/markvanderloo/simputation

BugReports https://github.com/markvanderloo/simputation/issues

Suggests tinytest, knitr, rmarkdown, dplyr

RoxygenNote 7.3.2

VignetteBuilder knitr

NeedsCompilation no

Author Mark van der Loo [aut, cre]

Repository CRAN

Date/Publication 2024-12-16 16:10:02 UTC

Contents

simputation-package e e e e

deparse . .
foretell . . .

glimpse_na

impute . . .

impute_cart

https://github.com/markvanderloo/simputation
https://github.com/markvanderloo/simputation/issues

Index

deparse

impute_hotdeck L. e 9
impute_lm 12
impute_median L. e e e 15
impute_multivariate L. e 16
IMPULE_PIOXY .« « o v v v v e i e e e e e e e e e e 17
naroughfix e e 19
NA_SLATUS e e e e e e e e e 19
21

simputation-package simputation

Description

A package to make imputation simpler.

Details

To get started, see the introductory vignette.

Author(s)

Maintainer: Mark van der Loo <mark.vanderloo@gmail.com>

See Also

Useful links:

* https://github.com/markvanderloo/simputation

* Report bugs at https://github.com/markvanderloo/simputation/issues

deparse A deparse replacement that always returns a length-1 vector

Description

A deparse replacement that always returns a length-1 vector

Usage

deparse(...)

Arguments

Arguments passed on to base: :deparse()

../doc/intro.html
https://github.com/markvanderloo/simputation
https://github.com/markvanderloo/simputation/issues

foretell 3

Value

The deparsed string

Examples

long_formula <- this_is_a_formula_with_long_variables ~
the_test_is_checking_if_deparse_will_return +
multiple_strings_or_not

simputation:: :deparse(long_formula)

foretell Alternative to 'predict’ returning values of correct type.

Description

Te default precict function doesn’t always return the predicted variable by default. For example,
when estimating a binomial model using glm, by default the log-odds are returned. foretell wraps
predict while setting options so that the actual predicted value is returned.

Usage

foretell(object, ...)

Default S3 method:
foretell(object, ...)

S3 method for class 'glm'
foretell(object, newdata = NULL, type, ...)

S3 method for class 'rpart'

foretell(object, newdata, type, ...)
Arguments
object A model object,(1m, glm, ...)

Furher arguments passed to predict.

newdata [data.frame] a data frame in which to look for variables with which to predict.
For glmnet models this argument is mandatory.

type [character] Type of output. If missing, the type of predicted variable is re-
turned.

4 glimpse_na

glimpse_na Show the number of (remaining) missing values.

Description

Quick indication of the amount and location of missing values. The function uses na_status
to print the missing values, but returns the original x (invisibly) and therefore can be used in an
imputation pipeline to peek at the NA’s status.

Usage

glimpse_na(x, show_only_missing = TRUE, ...)

lhs %?>% rhs

Arguments

X an R object caryying data (e.g. data. frame)

show_only_missing
if TRUE only columns with NA’s will be printed.

arguments passed to na_status.

lhs left hand side of pipe
rhs right hand side of pipe
Details

glimpse_na is especially helpful when interactively adding imputation methods. glimpse_na is
named after glimpse in dplyr.

Operator %?>% is syntactic sugar: it inserts a glimpse_na in the pipe.

Examples

irisNA <- iris
irisNA[1:3,1] <- irisNA[3:7,2] <- NA

How many NA's?
na_status(irisNA)

add an imputation method one at a time
iris_imputed <-

irisNA [>

glimpse_na() # same as above

ok, glimpse_na says "Sepal.Width"” has NA's
fix that:

impute

iris_imputed <-
irisNA |[>
impute_const(Sepal.Width ~ 7) |>
glimpse_na() # end NA

Sepal.Length is having NA's

iris_imputed <-
irisNA |>
impute_const(Sepal.Width ~ 7) |>
impute_cart(Sepal.Length ~ .) |>
glimpse_na() # end NA

in an existing imputation pipeline we can peek with
glimpse_na or %?>%

iris_imputed <-

irisNA |>
glimpse_na() |> # shows the begin NA
impute_const(Sepal.Width ~ 7) |>
glimpse_na() |> # after 1 imputation
impute_cart(Sepal.Length ~ .) |>
glimpse_na() # end NA

or

iris_imputed <-
irisNA %?>%
impute_const(Sepal.Width ~ 7) %?>%
impute_cart(Sepal.Length ~ .)

na_status(iris_imputed)

impute Impute using a previously fitted model.

Description

Impute one or more variables using a single R object representing a previously fitted model.

Usage

impute(dat, formula, predictor = foretell, ...)

impute_(dat, variables, model, predictor = foretell, ...)

Arguments
dat
formula

predictor

variables

model

Model specification

impute

[data.frame] The data to be imputed.
[formula] object of the form <imputed variables> ~ <model object>

[function] with signature object, newdata, ... that returns predicted val-
ues given a model object and a new dataset newdata. By default foretell is
used.

Extra arguments passed to predictor
[character] Names of columns in dat to impute.

A model object.

Formulas are of the form

IMPUTED_VARIABLES ~ MODEL_OBJECT

The left-hand-side of the formula object lists the variable or variables to be imputed. The right-
hand-side must be a model object for which an S3 predict method is implemented. Alternatively,
one can specify a custom predicting function. This function must accept at least a model and a
dataset, and return one predicted value for each row in the dataset.

foretell implements usefull predict methods for cases where by default the predicted output is
not of the same type as the predicted variable (e.g. when using certain link functions in glm)

Details

impute_ is an explicit version of impute that works better in programming contexts, especially in
cases involving nonstandard evaluation.

See Also

Other imputation: impute_cart(), impute_hotdeck, impute_1m()

Examples

irisNA <- iris

iris[1:3,1] <= NA
my_model <- 1m(Sepal.Length ~ Sepal.Width + Species, data=iris)
impute(irisNA, Sepal.Length ~ my_model)

impute_cart

impute_cart

Decision Tree Imputation

Description

Imputation based on CART models or Random Forests.

Usage

impute_cart(
dat,
formula,

add_residual = c("none", "observed”, "normal”),

cp,
na_action

na.rpart,

impute_all = FALSE,

)
impute_rf(
dat,
formula,
add_residual = c("none"”, "observed”, "normal”),
na_action = na.omit,

impute_all = FALSE,

Arguments

dat
formula

add_residual

cp

na_action

[data.frame], with variables to be imputed and their predictors.
[formula] imputation model description (see Details below).

[character] Type of residual to add. "normal” means that the imputed value is
drawn from N(mu, sd) where mu and sd are estimated from the model’s residuals
(mu should equal zero in most cases). If add_residual = "observed”, residu-
als are drawn (with replacement) from the model’s residuals. Ignored for non-
numeric predicted variables.

The complexity parameter used to prune the CART model. If omitted, no prun-
ing takes place. If a single number, the same complexity parameter is used for
each imputed variable. If of length # of variables imputed, the complexity pa-
rameters used must be in the same order as the predicted variables in the model
formula.

[function] what to do with missings in training data. By default cases with
missing values in predicted or predictors are omitted (see ‘Missings in training
data’).

8 impute_cart

impute_all [logical] If FALSE (default) then only missings in predicted variables are
imputed. If TRUE, predictions are imputed for all records and if a prediction
cannot be made then NA is imputed.

further arguments passed to

 rpart for impute_cart

¢ randomForest for impute_rf

Model specification

Formulas are of the form
IMPUTED_VARIABLES ~ MODEL_SPECIFICATION [| GROUPING_VARIABLES]

The left-hand-side of the formula object lists the variable or variables to be imputed. Variables on
the right-hand-side are used as predictors in the CART or random forest model.

If grouping variables are specified, the data set is split according to the values of those variables,
and model estimation and imputation occur independently for each group.

Grouping using dplyr: : group_by is also supported. If groups are defined in both the formula and
using dplyr: : group_by, the data is grouped by the union of grouping variables. Any missing value
in one of the grouping variables results in an error.

Methodology

CART imputation by impute_cart can be used for numerical, categorical, or mixed data. Missing
values are estimated using a Classification and Regression Tree as specified by Breiman, Friedman
and Olshen (1984). This means that prediction is fairly robust agains missingess in predictors.

Random Forest imputation with impute_rf can be used for numerical, categorical, or mixed data.
Missing values are estimated using a Random Forest model as specified by Breiman (2001).

References

Breiman, L., Friedman, J., Stone, C.J. and Olshen, R.A., 1984. Classification and regression trees.
CRC press.

Breiman, L., 2001. Random forests. Machine learning, 45(1), pp.5-32.

See Also

Other imputation: impute(), impute_hotdeck, impute_1m()

impute_hotdeck 9

impute_hotdeck Hot deck imputation

Description

Hot-deck imputation methods include random and sequential hot deck, k-nearest neighbours impu-
tation and predictive mean matching.

Usage

impute_rhd(
dat,
formula,
pool = c("complete”, "univariate”, "multivariate"),
prob,
backend = getOption("simputation.hdbackend”, default = c("simputation”, "VIM")),

)
impute_shd(
dat,
formula,
pool = c("complete”, "univariate”, "multivariate"),
order = c("locf"”, "nocb"),

backend = getOption("simputation.hdbackend”, default = c("simputation”, "VIM")),

impute_pmm(
dat,
formula,
predictor = impute_1m,
pool = c("complete”, "univariate”, "multivariate”),

impute_knn(
dat,
formula,
pool = c("complete”, "univariate”, "multivariate"),
k =5,
backend = getOption("simputation.hdbackend”, default = c("simputation”, "VIM")),

Arguments

dat [data.frame], with variables to be imputed and their predictors.

10

formula

pool

prob

backend

order

predictor

Model specification

impute_hotdeck

[formula] imputation model description (see Details below).
[character] Specify donor pool when backend="simputation”

* "complete”. Only records for which the variables on the left-hand-side of
the model formula are complete are used as donors. If a record has multiple
missings, all imputations are taken from a single donor.

* "univariate”. Imputed variables are treated one by one and independently
so the order of variable imputation is unimportant. If a record has multiple
missings, separate donors are drawn for each missing value.

* "multivariate”. A donor pool is created for each missing data pattern.
If a record has multiple missings, all imputations are taken from a single
donor.

[numeric] Sampling probability weights (passed through to sample). Must be
of length nrow(dat).

[character] Choose the backend for imputation. If backend="VIM" the vari-
ables used to sort the data (in case of sequential hot deck) may not coincide with
imputed variables.

further arguments passed to VIM: :hotdeck if VIM is chosen as backend, other-
wise they are passed to

¢ order for impute_shd and backend="simputation”

¢ VIM: :hotdeck for impute_shd and impute_rhd when backend="VIM".

e VIM:kNN for impute_knn when backend="VIM"

e The predictor function for impute_pmm.
[character] Last Observation Carried Forward or Next Observarion Carried
Backward. Only for backend="simputation”

[function] Imputation to use for predictive part in predictive mean matching.
Any impute_ function of this package that supports the impute_all argument
can be used.

[numeric] Number of nearest neighbours to draw the donor from.

Formulas are of the form

IMPUTED_VARIABLES ~ MODEL_SPECIFICATION [| GROUPING_VARIABLES]

The left-hand-side of the formula object lists the variable or variables to be imputed. The interpre-
tation of the independent variables on the right-hand-side depends on the imputation method.

e impute_rhd Variables in MODEL_SPECIFICATION and/or GROUPING_VARIABLES are used to
split the data set into groups prior to imputation. Use ~ 1 to specify that no grouping is to be

applied.

* impute_shd Variables in MODEL_SPECIFICATION are used to sort the data. When multiple
variables are specified, each variable after the first serves as tie-breaker for the previous one.

e impute_knn The predictors are used to determine Gower’s distance between records (see
gower_topn). This may include the variables to be imputed..

impute_hotdeck 11

e impute_pmm Predictive mean matching. The MODEL_SPECIFICATION is passed through to the
predictor function.

If grouping variables are specified, the data set is split according to the values of those variables,
and model estimation and imputation occur independently for each group.

Grouping using dplyr: : group_by is also supported. If groups are defined in both the formula and
using dplyr: : group_by, the data is grouped by the union of grouping variables. Any missing value
in one of the grouping variables results in an error.

Methodology

Random hot deck imputation with impute_rhd can be applied to numeric, categorical or mixed
data. A missing value is copied from a sampled record. Optionally samples are taken within a
group, or with non-uniform sampling probabilities. See Andridge and Little (2010) for an overview
of hot deck imputation methods.

Sequential hot deck imputation with impute_rhd can be applied to numeric, categorical, or mixed
data. The dataset is sorted using the ‘predictor variables’. Missing values or combinations thereof
are copied from the previous record where the value(s) are available in the case of LOCF and from
the next record in the case of NOCF.

Predictive mean matching with impute_pmm can be applied to numeric data. Missing values or
combinations thereof are first imputed using a predictive model. Next, these predictions are replaced
with observed (combinations of) values nearest to the prediction. The nearest value is the observed
value with the smallest absolute deviation from the prediction.

K-nearest neighbour imputation with impute_knn can be applied to numeric, categorical, or
mixed data. For each record containing missing values, the £ most similar completed records are
determined based on Gower’s (1977) similarity coefficient. From these records the actual donor is
sampled.

Using the VIM backend

The VIM package has efficient implementations of several popular imputation methods. In partic-
ular, its random and sequential hotdeck implementation is faster and more memory-efficient than
that of the current package. Moreover, VIM offers more fine-grained control over the imputation
process then simputation.

If you have this package installed, it can be used by setting backend="VIM" for functions supporting
this option. Alternatively, one can set options(simputation.hdbackend="VIM") so it becomes
the default.

Simputation will map the simputation call to a function in the VIM package. In particular:

* impute_rhd is mapped to VIM: : hotdeck where imputed variables are passed to the variable
argument and the union of predictor and grouping variables are passed to domain_var. Extra
arguments in . . . are passed to VIM: : hotdeck as well. Argument pool is ignored.

* impute_shd is mapped to VIM: : hotdeck where imputed variables are passed to the variable
argument, predictor variables to ord_var and grouping variables to domain_var. Extra ar-
guments in ... are passed to VIM::hotdeck as well. Arguments pool and order are ig-
nored. In VIM the donor pool is determined on a per-variable basis, equivalent to setting
pool="univariate” with the simputation backend. VIM is LOCF-based. Differences be-
tween simputation and VIM likely occurr when the sorting variables contain missings.

https://CRAN.R-project.org/package=VIM

12 impute_Im

e impute_knn is mapped to VIM: : kNN where imputed variables are passed to variable, pre-
dictor variables are passed to dist_var and grouping variables are ignored with a message.
Extra arguments in . . . are passed to VIM: : kNN as well. Argument pool is ignored. Note that
simputation adheres stricktly to the Gower’s original definition of the distance measure, while
VIM uses a generalized variant that can take ordered factors into account.

By default, VIM’s imputation functions add indicator variables to the original data to trace what
values have been imputed. This is switched off by default for consistency with the rest of the
simputation package, but it may be turned on again by setting imp_var=TRUE.

References

Andridge, R.R. and Little, R.J., 2010. A review of hot deck imputation for survey non-response.
International statistical review, 78(1), pp.40-64.

Gower, J.C., 1971. A general coefficient of similarity and some of its properties. Biometrics,
pp-857-871.

See Also

Other imputation: impute(), impute_cart(), impute_1m()

impute_1lm (Robust) Linear Regression Imputation

Description

Regression imputation methods including linear regression, robust linear regression with M -estimators,
regularized regression with lasso/elasticnet/ridge regression.

Usage

impute_Im(
dat,
formula,
add_residual = c("none"”, "observed”, "normal”),
na_action = na.omit,
impute_all = FALSE,

impute_rlm(
dat,
formula,
add_residual = c("none”, "observed”, "normal"),
na_action = na.omit,
impute_all = FALSE,

impute_Im

)

impute_en(
dat,
formula,

13

add_residual = c("none”, "observed”, "normal”),
na_action = na.omit,
impute_all = FALSE,

family = c("gaussian”, "poisson”),
s =0.01,
)
Arguments
dat [data.frame], with variables to be imputed and their predictors.
formula [formula] imputation model description (See Model description)

add_residual

na_action

impute_all

family

Value

[character] Type of residual to add. "normal” means that the imputed value is
drawn from N(mu, sd) where mu and sd are estimated from the model’s residuals
(mu should equal zero in most cases). If add_residual = "observed”, residu-
als are drawn (with replacement) from the model’s residuals. Ignored for non-
numeric predicted variables.

[function] what to do with missings in training data. By default cases with
missing values in predicted or predictors are omitted (see ‘Missings in training
data’).

[logical] If FALSE (default) then only missings in predicted variables are
imputed. If TRUE, predictions are imputed for all records and if a prediction
cannot be made then NA is imputed.

further arguments passed to

e 1mfor impute_1lm
e rlmfor impute_rlm

e glmnet for impute_en

Response type for elasticnet / lasso regression. For family="gaussian” the
imputed variables are general numeric variables. For family="poisson" the
imputed variables are nonnegative counts. See glmnet for details.

The value of A to use when computing predictions for lasso/elasticnet regres-
sion (parameter s of predict.glmnet). For impute_en the (optional) param-
eter lambda is passed to glmnet when estimating the model (which is advised
against).

dat, but imputed where possible.

14 impute_Im

Model specification

Formulas are of the form
IMPUTED_VARIABLES ~ MODEL_SPECIFICATION [| GROUPING_VARIABLES]

The left-hand-side of the formula object lists the variable or variables to be imputed. The right-hand
side excluding the optional GROUPING_VARIABLES model specification for the underlying predictor.

If grouping variables are specified, the data set is split according to the values of those variables,
and model estimation and imputation occur independently for each group.

Grouping using dplyr: : group_by is also supported. If groups are defined in both the formula and
using dplyr: :group_by, the data is grouped by the union of grouping variables. Any missing value
in one of the grouping variables results in an error.

Grouping is ignored for impute_const.

Methodology

Linear regression model imputation with impute_1lm can be used to impute numerical variables
based on numerical and/or categorical predictors. Several common imputation methods, including
ratio and (group) mean imputation can be expressed this way. See 1m for details on possible model
specification.

Robust linear regression through M-estimation with impute_rlm can be used to impute numeri-
cal variables employing numerical and/or categorical predictors. In M -estimation, the minimization
of the squares of residuals is replaced with an alternative convex function of the residuals that de-
creases the influence of outliers.

Also see e.g. Huber (1981).

Lasso/elastic net/ridge regression imputation with impute_en can be used to impute numerical
variables employing numerical and/or categorical predictors. For this method, the regression co-
efficients are found by minimizing the least sum of squares of residuals augmented with a penalty
term depending on the size of the coefficients. For lasso regression (Tibshirani, 1996), the penalty
term is the sum of squares of the coefficients. For ridge regression (Hoerl and Kennard, 1970), the
penalty term is the sum of absolute values of the coefficients. Elasticnet regression (Zou and Hastie,
2010) allows switching from lasso to ridge by penalizing by a weighted sum of the sum-of-squares
and sum of absolute values term.

References

Huber, PJ., 2011. Robust statistics (pp. 1248-1251). Springer Berlin Heidelberg.

Hoerl, A.E. and Kennard, R.W., 1970. Ridge regression: Biased estimation for nonorthogonal
problems. Technometrics, 12(1), pp.55-67.

Tibshirani, R., 1996. Regression shrinkage and selection via the lasso. Journal of the Royal Statis-
tical Society. Series B (Methodological), pp.267-288.

Zou, H. and Hastie, T., 2005. Regularization and variable selection via the elastic net. Journal of
the Royal Statistical Society: Series B (Statistical Methodology), 67(2), pp.301-320.

See Also

Getting started with simputation,

Other imputation: impute(), impute_cart(), impute_hotdeck

../doc/intro.html

impute_median 15

Examples

data(iris)

irisNA <- iris

irisNA[1:4, "Sepal.Length”] <- NA
irisNA[3:7, "Sepal.Width"] <- NA

impute a single variable (Sepal.lLength)
i1 <- impute_lm(irisNA, Sepal.Length ~ Sepal.Width + Species)

impute both Sepal.Length and Sepal.Width, using robust linear regression
i2 <- impute_rlm(irisNA, Sepal.Length + Sepal.Width ~ Species + Petal.Length)

impute_median Impute (group-wise) medians

Description

Impute medians of group-wise medians.

Usage

impute_median(
dat,
formula,
add_residual = c("none", "observed”, "normal"),
type = 7,

Arguments

dat [data. frame], with variables to be imputed and their predictors.
formula [formula] imputation model description (See Model description)

add_residual [character] Type of residual to add. "normal” means that the imputed value is
drawn from N(mu, sd) where mu and sd are estimated from the model’s residuals
(mu should equal zero in most cases). If add_residual = "observed”, residu-
als are drawn (with replacement) from the model’s residuals. Ignored for non-
numeric predicted variables.

type [integer] Specifies the algorithm to compute the median. See the ’details’
section of quantile.

Currently not used.

16 impute_multivariate

Model Specification

Formulas are of the form
IMPUTED_VARIABLES ~ MODEL_SPECIFICATION [| GROUPING_VARIABLES]

The left-hand-side of the formula object lists the variable or variables to be imputed. Variables in
MODEL_SPECIFICATION and/or GROUPING_VARIABLES are used to split the data set into groups prior
to imputation. Use ~ 1 to specify that no grouping is to be applied.

Examples

group-wise median imputation

irisNA <- iris

irisNA[1:3,1] <- irisNA[4:7,2] <- NA

a <- impute_median(irisNA, Sepal.Length ~ Species)
head(a)

group-wise median imputation, all variables except species

a <- impute_median(irisNA, . - Species ~ Species)
head(a)

impute_multivariate Multivariate, model-based imputation

Description

Models that simultaneously optimize imptuation of multiple variables. Methods include imputation
based on EM-estimation of multivariate normal parameters, imputation based on iterative Random
Forest estimates and stochastic imptuation based on bootstrapped EM-estimatin of multivariate nor-
mal parameters.

Usage
impute_em(dat, formula, verbose = 0, ...)
impute_mf(dat, formula, ...)
Arguments
dat [data.frame] with variables to be imputed.
formula [formula] imputation model description
verbose [numeric] Control amount of output printed to screen. Higher values mean

more output, typically per iteration.
e 0 or anumber > 1 for impute_em
¢ 0, 1, or 2 for impute_emb
Options passed to
e norm: :em.norm for impute_em
e missForest::missForest for impute_mf

impute_proxy 17

Model specification

Formulas are of the form
[IMPUTED_VARIABLES] ~ MODEL_SPECIFICATION [| GROUPING_VARIABLES]

When IMPUTED_VARIABLES is empty, every variable in MODEL_SPECIFICATION will be imputed.
When IMPUTED_VARIABLES is specified, all variables in IMPUTED_VARIABLES and MODEL _SPECIFICATION
are part of the model, but only the IMPUTED_VARIABLES are imputed in the output.

GROUPING_VARIABLES specify what categorical variables are used to split-impute-combine the data.
Grouping using dplyr: : group_by is also supported. If groups are defined in both the formula and
using dplyr: : group_by, the data is grouped by the union of grouping variables. Any missing value
in one of the grouping variables results in an error.

Methodology

EM-based imputation with impute_em only works for numerical variables. These variables are
assumed to follow a multivariate normal distribution for which the means and covariance matrix is
estimated based on the EM-algorithm of Dempster Laird and Rubin (1977). The imputations are
the expected values for missing values, conditional on the value of the estimated parameters.

Multivariate Random Forest imputation with impute_mf works for numerical, categorical or
mixed data types. It is based on the algorithm of Stekhoven and Buehlman (2012). Missing values
are imputed using a rough guess after which a predictive random forest is trained and used to re-
impute themissing values. This is iterated until convergence.

References

Dempster, Arthur P, Nan M. Laird, and Donald B. Rubin. "Maximum likelihood from incomplete
data via the EM algorithm." Journal of the royal statistical society. Series B (methodological)
(1977): 1-38.

Stekhoven, D.J. and Buehlmann, P., 2012. MissForest—non-parametric missing value imputation
for mixed-type data. Bioinformatics, 28(1), pp.112-118.

impute_proxy Impute by variable derivation

Description
Impute missing values by a constant, by copying another variable computing transformations from
other variables.

Usage

impute_proxy(dat, formula, add_residual = c("none”, "observed”, "normal”), ...)

impute_const(dat, formula, add_residual = c("none”, "observed”, "normal"”), ...)

18 impute_proxy

Arguments
dat [data.frame], with variables to be imputed and their predictors.
formula [formula] imputation model description (See Model description)

add_residual [character] Type of residual to add. "normal” means that the imputed value is
drawn from N(mu, sd) where mu and sd are estimated from the model’s residuals
(mu should equal zero in most cases). If add_residual = "observed”, residu-
als are drawn (with replacement) from the model’s residuals. Ignored for non-
numeric predicted variables.

Currently unused

Model Specification

Formulas are of the form

IMPUTED_VARIABLES ~ MODEL_SPECIFICATION [| GROUPING_VARIABLES]

The left-hand-side of the formula object lists the variable or variables to be imputed.

For impute_const, the MODEL_SPECIFICATION is a single value and GROUPING_VARIABLES are
ignored.

For impute_proxy, the MODEL_SPECIFICATION is a variable or expression in terms of variables in
the dataset that must result in either a single number of in a vector of length nrow(dat).

If grouping variables are specified, the data set is split according to the values of those variables,
and model estimation and imputation occur independently for each group.

Grouping using dplyr: : group_by is also supported. If groups are defined in both the formula and
using dplyr: :group_by, the data is grouped by the union of grouping variables. Any missing value
in one of the grouping variables results in an error.

Examples

irisNA <- iris
irisNA[1:3,1] <- irisNA[3:7,2] <- NA

impute a constant

a <- impute_const(irisNA, Sepal.Width ~ 7)
head(a)

a <- impute_proxy(irisNA, Sepal.Width ~ 7)
head(a)

copy a value from another variable (where available)
a <- impute_proxy(irisNA, Sepal.Width ~ Sepal.length)
head(a)

group mean imputation
a <- impute_proxy(irisNA

, Sepal.Length ~ mean(Sepal.Length,na.rm=TRUE) | Species)
head(a)

na.roughfix 19

random hot deck imputation
a <- impute_proxy(irisNA, Sepal.Length ~ mean(Sepal.Length, na.rm=TRUE)

, add_residual = "observed")

ratio imputation (but use impute_lm for that)
a <- impute_proxy(irisNA,
Sepal.Length ~ mean(Sepal.Length,na.rm=TRUE)/mean(Sepal.Width,na.rm=TRUE) * Sepal.Width)

na.roughfix Rough imputation for handling missing predictors.

Description

This function is re-exported from randomForest:na.roughfix when available. Otherwise it will
throw a warning and resort to options(”na.action™)

Usage
na.roughfix(object, ...)
Arguments
object an R object caryying data (e.g. data. frame)
arguments to be passed to other methods.
na_status Show the number of (remaining) missing values.
Description

Quick indication of the amount and location of missing values.

Usage

na_status(
X,
show_only_missing = TRUE,
sort_columns = show_only_missing,
show_message = TRUE,

20 na_status

Arguments

X an R object caryying data (e.g. data.frame)
show_only_missing
if TRUE only columns with NA’s will be printed.

sort_columns If TRUE the columns are sorted descending by the number of missing values.
show_message if TRUE message will be printed.

arguments to be passed to other methods.

Value

data. frame with the column and number of NA’s

See Also

glimpse_na

Examples
irisNA <- iris
irisNA[1:3,1] <- irisNA[3:7,2] <- NA
na_status(irisNA)

impute a constant
a <- impute_const(irisNA, Sepal.Width ~ 7)
na_status(a)

Index

* imputation
impute, 5
impute_cart, 7
impute_hotdeck, 9
impute_Im, 12
%?>% (glimpse_na), 4

deparse, 2
foretell, 3,6

glimpse, 4
glimpse_na, 4, 20
glm, 3

glmnet, 13
gower_topn, 10

impute, 5, 8, 12, 14

impute_ (impute), 5
impute_cart, 6,7, 12, 14
impute_const (impute_proxy), 17
impute_em (impute_multivariate), 16
impute_en (impute_1lm), 12
impute_hotdeck, 6, 8,9, 14
impute_knn (impute_hotdeck), 9
impute_1Im, 6, 8, 12, 12
impute_median, 15

impute_mf (impute_multivariate), 16
impute_multivariate, 16

impute_pmm (impute_hotdeck), 9
impute_proxy, 17

impute_rf (impute_cart), 7
impute_rhd (impute_hotdeck), 9
impute_rlm (impute_1lm), 12
impute_shd (impute_hotdeck), 9

Im, 13, 14
missForest::missForest, 16

na.roughfix, 19

21

na_status, 4, 19
norm: :em.norm, /16

order, 10

predict.glmnet, 13
prune, 7

quantile, 15

randomForest, 8§
randomForest:na.roughfix, 19
rim, 13

rpart, 8

sample, 10
simputation (simputation-package), 2
simputation-package, 2

VIM: :hotdeck, 10
VIM:kNN, /0

	simputation-package
	deparse
	foretell
	glimpse_na
	impute
	impute_cart
	impute_hotdeck
	impute_lm
	impute_median
	impute_multivariate
	impute_proxy
	na.roughfix
	na_status
	Index

