simecol-Howto: Tips, Tricks and Building Blocks

Thomas Petzoldt

Technische Universitdt Dresden

Abstract

This document is a loose collection of chapters that describe different aspects of
modelling and model implementation in R with the simecol package. It supplements the
original publication of Petzoldt and Rinke (2007) from which an updated version,
simecol-introduction, is also part of this package. Please refer to this publication
when citing this work.

Keywords: R, simecol, ecological modeling, object-oriented programming (OOP), compiled
code, debugging.

Contents

References26

1. The Basics

1.1. Building simecol objects

The intention behind simecol is the construction of “all-in-one” model objects. That is, ev-
erything that defines one particular model, equations and data are stored together in one
simObj (spoken: sim-Object), and only some general algorithms (e.g. differential equation
solvers or interpolation routines) remain external, preferably as package functions (e.g. func-
tion lsoda in the package deSolve (Soetaert, Petzoldt, and Setzer 2010) or as functions in
the user workspace.

This strategy has three main advantages:

1. We can have several independent versions of one model in the computer memory at the
same time. These instances may have different settings, parameters and data or even
use different formula, but they do not interfere with each other. Moreover, if all data
and functions are encapsulated in their sim0bjects, identifiers can be re-used and it is,
for example, not necessary to keep track over a large number of variable names or to
invent new identifiers for parameter sets of different scenarios.

2. We can give simObjects away, either in binary form or as source code objects. Every-
thing essential to run such a model is included, not only the formula but also defaults
for parameter and data. You, or your users need only R, some packages and your model

2 simecol-Howto

object. It is also possible to start model objects directly from the internet or, on the
other hand, to distribute model collections as R packages.

3. All simObjects can be handled, simulated and modified with the same generic functions,
e.g. sim, plot or parms. Our users can start playing with the models without the need
to understand all the internals.

While it is, of course, preferable to have all parts of a model encapsulated in one object, it is
not mandatory to have the complete working model object before starting to use simecol.
simecol models (in the following called simObjects) can be built step by step, starting with
mixed applications composed by rudimentary simObjects and ordinary user space functions.
When everything works, you should encapsulate all the main parts of your model in the
simObject to get a clean object that does not interfere with others.

An example

We start with the example given in the simecol-introduction (Petzoldt and Rinke 2007), an
implementation of the UPCA model of Blasius, Huppert, and Stone (1999), but we write it
in the usual deSolve style, i.e. without using simecol:

R> f <- function(x, y, k){x*y / (1+k*x)} # Holling II
R> func <- function(time, y, parms) {

+ with(as.list(c(parms, y)), {

+ du <- a * u - alphal * f(u, v, k1)

+ dv <- -b * v + alphal * f(u, v, k1) +
+ - alpha2 * f(v, w, k2)

+ dw <- -c * (w - wstar) + alpha2 * f(v, w, k2)

+ list(c(du, dv, dw))

+ »

+ F

R> times <- seq(0, 100, 0.1)
R> parms <- c(a=1, b=1, c¢=10, alphal=0.2, alpha2=1, k1=0.05, k2=0, wstar=0.006)
R>y <- c(u=10, v=5, w=0.1)

The model is defined by 5 variables in the R user workspace, namely f, func, times, parms
and init. The implementation is similar to the help page examples of package deSolve and
we can solve it exactly in the same manner:

R> library(deSolve)
R> out <- lsoda(y, times, func, parms)
R> matplot(out[,1], out[,-1], type="1")

Transition to simecol

If we compare this example with the simecol structure, we may see that they are kind of
similar. This obvious coincidence is quite natural, because the notation of both, deSolve and
simecol, is based on the state-space notation of control theory!.

'see https://en.wikipedia.org/wiki/State_space_(controls), last access 2018-05-07

https://en.wikipedia.org/wiki/State_space_(controls)

Thomas Petzoldt 3

o _
—
u l|
\ 1 & \
’ ! 1)
O | (O O A AP B o '. b
] 1 \ \ ' N I ‘| i\ I . ! 1
o | | | i\ ' 1 | ' 1, ' " ! \ | ! |
= R R A O Y I K ¢ LT A TR I EE
T Al ! |' ok ! |l ! || “ . a % ll ! s I |1 o ,‘\ " an
| : | ’l .] |I o) o,) ln AR HE e 1 || A " 1 an
1
':" ! l\ ! l\ Y ll || : ! ,’ | 1' ‘1 ! ‘I : .I ,' I| ,' ‘| ,' | " “ | \1 l‘ |,
> A KO B |‘ I ‘\ 1 ‘\ ! /I L P R A (YA I O VAP B B R A T
(@) - ,’ \ :‘ \ " ll . ’I /, \ '! N ", l‘ ,u X . 'l . \ :‘ \ I: \
W W \, N * ‘,I N N \/l N N A/
O —
| | | | | |
out[, 1]
Figure 1: Output of UPCA model, solved with 1soda from package deSolve.

Due to this, only small restructuring and renaming is needed to form a simObj:

R> library("simecol")
R> f <- function(x, y, k){x*y / (1+k*x)} # Holling II
R> upca <- new("odeModel",

+ main = function(time, y, parms) {

+ with(as.list(c(parms, y)), {

+ du <- a * u - alphal * f(u, v, k1)
+ dv <- -b * v + alphal * f(u, v, k1) +
+ - alpha2 * f(v, w, k2)
+ dw <- -c * (w - wstar) + alpha2 * f(v, w, k2)
+ list(c(du, dv, dw))

+ »

+ },

+ times = seq(0, 100, 0.1),

+ parms = c(a=1, b=1, ¢=10, alphal=0.2, alpha2=1,
+ k1=0.05, k2=0, wstar=0.006),

+ init = ¢(u=10, v=5, w=0.1),

+ solver = "lsoda"

+

W_"

We may notice that the assignment operators “<-” changed to a declarative equal sign

4 simecol-Howto

for the slot definitions, that some of the names (y, func) were changed to the pre-defined
slot names of simecol and that all the slot definitions are now comma separated arguments
of the new function that creates the upca object. The solver method 1lsoda is also given as a
character string pointing to the original 1soda function in package deSolve.

The new object can now be simulated very easily with the sim function of simecol that returns
the object with all original slots and one additional slot out holding the output values. A
generic plot function is also available for basic plotting of the output:

R> upca <- sim(upca)
R> plot(upca)

It is now also possible to extract the results from upca with a so called accessor function out,
and to use arbitrary, user-defined plot functions:

R> plotupca <- function(obj, ...) {

+ o <- out(obj)

+ matplot(o[,1], ol[,-1], type="1", ...)

+ legend ("topright", legend = c("u", "v", "w"), 1lty=1:3, , bg="white",col = 1:3)
+ F

R> plotupca(upca)

Okay, that’s it, but note that function f is not yet part of the simecol object, that’s why we
call here a “mixed implementation”. This function f is rather simple here, but it would be
also possible to call functions of arbitrary complexity from main.

Creating scenarios

After defining one simecol object (that we can call a parent object or a prototype), we
may create derived objects, simply by copying (cloning) and modification. As an example,
we create two scenarios with different parameter sets:

R> scl <- sc2 <- upca

R> parms(scl) ["wstar"] <- 0

R> parms(sc2) ["wstar"] <- 0.1
R> scl1 <- sim(scl)

R> sc2 <- sim(sc2)

R> par (mfrow=c(1,2))

R> plotupca(scl, ylim=c(0, 250))
R> plotupca(sc2, ylim=c(0, 250))

If we simulate and plot these scenarios, we see an exponentially growing u in both cases, and
cycles resp. an equilibrium state for v and w for the scenarios respectively (figure 2).

If we now also change the functional response function f from Holling IT to Lotka-Volterra:
R> f <- function(x, y, k){x * y}

both model scenarios, scl and sc2 are affected by this new definition.

Thomas Petzoldt

— u — u
. o .
S v S v
N W N W
7 7
i o — o
o O (@] O
A li| T I I O R —
||||!|I'I'||I|'|l‘||||I
l|"!|!’”|llf,“ Yl
o _| .“(i‘“lf”h;l!tlf,,;' o _]
Lo |'iil‘.‘&i“”rf,‘z:‘gni: Lo
'lﬂ‘,‘.‘&{.“'“llf,’ Flindy
\ :'it';"k"l':‘f:'iffl':;',xnn'r
o Wit :'_“'?,':,"_'!,"_"";,':,:n,l‘_v"_’illl;n,'i:‘““ "y o T orinonnnnnnnnnnnT
[[[[[[[[[[[[
0 20 40 60 80 0 20 40 60 80
of, 1] of, 1]

Figure 2: Two scenarios of the UPCA model (left: wstar=0, right: wstar=0.1; functional
response f is Holling IT).

R> sc1 <- sim(scl)

R> sc2 <- sim(sc2)

R> par (mfrow=c(1,2))

R> plotupca(scl, ylim=c(0, 20))
R> plotupca(sc2, ylim=c(0, 20))

Now, we get a stable cycle for u and v in scenario 1 and an equilibrium for all state variables
in scenario 2 (figure 3). You may also note that the new function f has exactly the same
parameters as above, including the, in the second case obsolete, parameter k.

In the examples above, function £ was an ordinary function in the user workspace, but it
is also possible to implement such functions (or sub-models) directly as part of the model
object. As one possibility, one might consider to define local functions within main, but that
would have the disadvantage that such functions are not easily accessible from outside.

To allow the latter, simecol has an optional slot “equations”, that can hold a list of sub-
models. Such an equations-slot can be defined either during object creation, or functions
may be added afterwards. In the following, we derive two new clones with default parameter
settings from the original upca-object, and then assign one version (the Holling II functional
response) to scenario 1 and the other version (simple multiplicative Lotka-Volterra functional
response) to scenario 2 (figure 4):

R> scl <- sc2 <- upca

of, -1]

simecol-Howto

o _| o _|
~ I3V
— Uu — u
EREEY) See- VW
B W B - W
—
o _| [o _|
— - —
)
o — n —
o o
[[[[[[[[[[[[
0 20 40 60 80 0 20 40 60 80
o[, 1] o[, 1]

Figure 3: Two scenarios of the UPCA model (left: wstar=0, right: wstar=0.1; functional
response f is Holling IT).

R>
R>
R>
R>
R>
R>
R>

equations(sc1)$f <- function(x, y, k){x*y / (1+k*x)}
equations(sc2)$f <- function(x, y, k){x * y}

scl <- sim(sc1)

sc2 <- sim(sc2)

par (mfrow=c(1,2))

plotupca(scl, ylim=c(0, 20))

plotupca(sc2, ylim=c(0, 20))

This method allows to compare models with different structures in the same way as scenarios
with different parameter values. In addition, it is also possible to define model objects with
different versions of built-in sub-models, that can be alternatively enabled:

R>

+ + + + + + + +

upca <- new("odeModel",
main = function(time, y, parms) {
with(as.list(c(parms, y)), {

du <- a *u - alphal * f(u, v, k1)

dv <- -b * v + alphal * f(u, v, k1) +
- alpha2 * f(v, w, k2)

dw <- -c * (w - wstar) + alpha2 * f(v, w, k2)

list(c(du, dv, dw))
»

Thomas Petzoldt 7

o | o _|
N AN
— u — u
----V ----V
=T =R W
ry ry
| o] | o _]
- —i - —
(@] (@]
o — o —
O O —
[[[[[[[[[[[[
0 20 40 60 80 0 20 40 60 80
o[, 1] o[, 1]

Figure 4: Two scenarios of the UPCA model (left: functional response f is Holling II, right
functional response is Lotka-Volterra).

+ },

+ equations = list(

+ f1 = function(x, y, k){x*y}, # Lotka-Volterra

+ f2 = function(x, y, k){x*y / (1+k*x)} # Holling II

+),

+ times = seq(0, 100, 0.1),

+ parms = c(a=1, b=1, c=10, alphal=0.2, alpha2=1, k1=0.05, k2=0, wstar=0.006),
+ init = c(u=10, v=5, w=0.1),

+ solver = "lsoda"

+

)
R> equations(upca)$f <- equations(upca)$fil

Debugging

As stated before, all-in-one encapsulation of all functions and data in simObjects has many
advantages, but there is also one disadvantage, namely debugging. Debugging of S4 objects is
sometimes cumbersome, especially if slot-functions (e.g. main, equations, initfunc) come
into play. These difficulties are not much important for well-functioning ready-made model
objects, but they appear as an additional burden during model building, in particular if these
models are technically not as simple as in our example.

simecol-Howto

Fortunately, there are easy workarounds. One of them is implementing the technically chal-

lenging parts i

n the user-workspace first using the above mentioned mixed style. Then, after

developing and debugging the model and if everything works satisfactory, integrating the parts
into the object is straightforward, given that you keep the general structure in mind. In the
example below, we implement the main model as a workspace function fmain? with the same
interface (parameters and return values) as above, which is then called by the main-function

of the simObj:

R> f <- func
R> fmain <-
with(as
du <-
dv <-

dw <-
list(
»)
}

R> upca <- n

+ + + + + + + +

main =
times
parms
init
solver

+ + + + + +

This function

tion(x, y, k){x*y / (1+k*x)} # Holling II
function(time, y, parms) {

.list(c(parms, y)), {
a *u - alphal * f(u, v, k1)
b * v + alphal * f(u, v, ki) +
- alpha2 * f(v, w, k2)
-c * (w - wstar) + alpha2 * f(v, w, k2)

c(du, dv, dw))

ew("odeModel",

function(time, y, parms) fmain(time, y, parms),

= seq(0, 100, 0.1),

= c(a=1, b=1, c=10, alphal=0.2, alpha2=1, k1=0.05, k2=0, wstar=0.006),
= c(u=10, v=5, w=0.1),

"lsoda"

fmain as well as any other submodels like £ can now be debugged with the

usual R tools, e.g. debug:

R> debug(fma
R> upca <- s

in)
im(upca)

Debugging can be stopped by undebug(fmain). If everything works, you can add the body

of fmain to up
of object modi

R> main(upca
R> equations
R> rm(fmain,
R> str(upca)

Formal class
..Q parms

ca manually, and it is even possible to do this in the formalized simecol way
fication:

) <- fmain # assign workspace function to main slot

(upca) $f <- f # assign workspace function to equations

£) # optional, for saving memory and avoiding confusion
show the object

'odeModel' [package "simecol"] with 10 slots
: Named num [1:8] 1e+00 1e+00 1e+01 2e-01 1e+00 5e-02 0e+00 6e-03

..— attr(*, "names")= chr [1:8] "a" "b" "c" "alphal"

2Note that this function must never be named “func”, for some rather esoteric internal reasons which we
shall not discuss further here.

Thomas Petzoldt 9

..0@ init : Named num [1:3] 10 5 0.1
.. ..— attr(x, "names")= chr [1:3] "u" "v" "w"
..Q observer : NULL

..0 main :function (time, y, parms)
..— attr(x, "srcref")= 'srcref' int [1:8] 405 11 413 1 11 1 4 12
..— attr(*, "srcfile")=Classes 'srcfilecopy', 'srcfile' <environment: 0x000002e073

..0 equations:List of 1

..$ f:function (x, y, k)

..— attr(x, "srcref")= 'srcref' int [1:8] 403 6 403 37 6 37 2 2
. ..— attr(*, "srcfile")=Classes 'srcfilecopy', 'srcfile' <environment: 0x000002e
times : num [1:1001] 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 ...

..0

..0Q inputs : NULL

..0 solver : chr "lsoda"
..Q@ out : NULL

..Q@ initfunc : NULL

Now, we can delete f and fmain to have a clean workspace with only the necessary objects.

1.2. Different ways to store simObjects
One of the main advantages of simecol is, that model objects can be made persistent and that
it is easy to distribute and share simObjects over the internet.

The most obvious and simple form is, of course, to use the original source code of the objects,
i.e. the function call to new with all the slots which creates the S4-object (see section 1.1.2),
but there are also other possibilities.

simecol objects can be saved in machine readable form as S4-object binaries with the save
method of R, which stores the whole object with all its equations, initial values, parameters
etc. and also the simulation output if the model was simulated before saving.

R> save(upca, file="upca.Rdata") # persistent storage of the model object
R> load("upca.Rdata") # load the model

Conversion of the S4 object to a list is another possibility, that yields a representation that
is readable by humans and by R:

R> 1l.upca <- as.list(upca)

This method allows to get an alternative text representation of the simObj, that can be
manipulated by code parsing programs or dumped to the hard disk:

R> dput (1.upca, file="upca_list.R")
and this is completely reversible via:

R> 1.upca <- dget("upca_list.R")
R> upca <- as.sim0Obj(1.upca)

10 simecol-Howto

Sometimes it may be useful to store simObjects in an un-initialized form, in particular if they
are to be distributed in packages.

Let’s demonstrate this again with a simple Lotka-Volterra model. In the first step, we define
a function, that returns a simecol object:

R> genLV <- function() {

+ new("odeModel",

+ main = function (time, init, parms) {

+ x <- init

+ p <- parms

+ dx1 <- p["k1"] * x[1] - p["k2"] * x[1] * x[2]
+ dx2 <- - p["k3"] * x[2] + p["k2"] * x[1] * x[2]
+ list(c(dx1, dx2))

+ },

+ parms = c(k1=0.2, k2=0.2, k3=0.2),

+ times = c(from=0, to=100, by=0.5),

+ init = c(prey=0.5, predator=1),

+ solver = "lsoda'"

+)

+ }

Now, the function contains the instruction, how R can create a new instance of such a model.
The simecol object is not created yet, but a call to the creator function can bring it to live:

R> 1v1 <- genLV()
R> plot(sim(1v1))

This style is used in package simecolModels®, a collection of (mostly) published ecological
models.

1.3. Methods to work with S4 objects

The S4 scheme includes several utility functions which can be used to inspect objects and
their methods. As an example, showMethods can be used to list all different functions, that
are available for one method (here sim), depending on the object types involved:

R> showMethods ("sim")

Function: sim (package simecol)
obj="gridModel"
obj="indbasedModel"

(inherited from: obj="simObj")
obj="odeModel"
obj="sim0bj"

3simecolModels can be downloaded from the R-Forge server, https://simecol.r-forge.r-project.org/.

https://simecol.r-forge.r-project.org/

Thomas Petzoldt

Based on this information, it is now possible to inspect the source code of the particular
method, e.g. the sim-function for differential equation models (class odeModel):

R> getMethod("sim", "odeModel")

Method Definition:

function (obj, initialize = TRUE, ...)
{
if (initialize & !is.null(obj@initfunc))
obj <- initialize(obj)
times <- fromtoby(obj@times)
func <- objOmain
inputs <- obj@inputs
equations <- obj@equations
environment (func) <- environment ()
equations <- addtoenv(equations)
if (is.null(inputs)) {
out <- do.call(obj@solver, list(obj@init, times, func,

obj@parms, ...))
}
else {
out <- do.call(obj@solver, list(obj@init, times, func,
obj@parms, inputs = obj@inputs, ...))
}

obj@out <- out
invisible(obj)
b
<bytecode: 0x000002e¢06fb2b498>
<environment: namespace:simecol>

Signatures:

obj
target "odeModel"
defined "odeModel"

In addition to this, R has several other functions to inspect or manipulate objects, e.g.
hasMethod, findMethod, or setMethod, please see the documentation of these functions for
details.

2. Fitting Parameters

The preferred method to obtain model parameters is direct measurement of process rates. This
can be done in own controlled experiments or by taking results from the literature. However,
not all processes are accessible by direct measurement. In such cases process parameters can
be identified indirectly by calibration from observed data.

11

12 simecol-Howto

2.1. Example model and data

In order to demonstrate parameter fitting we use a simple ODE model with two coupled
differential equations:

dx
X -DX 1
7 = H (1)
ds 1

22 D(Sy—8) — —uX 9
o (So = 8) = 31 (2)

with Monod functional response:

and:

X = abundance or biomass concentration
S = substrate concentration
D = dilution rate
Y = yield constant (i.e. conversion factor between S and X)
D = dilution rate
mu = growth rate
Uy, = maximum growth rate

k., = half saturation constant

2.2. Load the model and assign a solver

The chemostat model is one of the standard examples in package simecol, that can be loaded
like a data set.

In the following, instead of the default solver lsoda an explicit solver adams can be used,
because the problem is not stiff. However, package deSolve only contains dedicated functions
for the most common solvers like 1soda or rk4, while other solvers like adams (for non-stiff)
or bdf (for stiff systems) are specified by calling ode with an appropriate method-option.

R> data(chemostat)
R> solver(chemostat) # shows which solver we have

[1] "lsoda"

R> ## assign an alternative solver
R> solver(chemostat) <- function(y, times, func, parms, ...) {
+ ode(y, times, func, parms, method = "adams", ...)

+ }

Thomas Petzoldt

Now, we create two working copies cs1 and cs2 for further usage:
R> cs1 <- c¢s2 <- chemostat
Let’s also assume we have the following test data:

R> obstime <- seq(0, 20, 2)
R> yobs <- data.frame(

+ X = c(10, 26, 120, 197, 354, 577, 628, 661, 654, 608, 642),
+ S = c(9.6, 10.2, 9.5, 8.2, 6.4, 4.9, 4.2, 3.8, 2.5, 3.8, 3.9)
+)

Note that in this example, yobs contains two columns (and only two) with exactly the same
column names as the state variables.

2.3. Parameter estimation in simecol

Package simecol has a basic function for fitting parameters of ODE models (fit0deModel)
built in. This function is a wrapper that uses existing optimization functions of R, currently
nlminb with the “PORT” algorithm, newuoa and bobyqga from package minga (Powell 2009;
Bates, Mullen, Nash, and Varadhan 2014) and optim with “Nelder-Mead”, “BFGS”, “CG”,
“L-BFGS-B” and “SANN?” (cf. R Core Team 2015; Nash 1990, and others). Among these only
“PORT”, “bobyqa” and “L-BFGS-B” support constrained optimization natively, whereas for
the others fitOdeModel tries to emulate box constraints (more or less successfully) using an
arctan-transformation (see p.constrain).

In order to save computation time it is suggested to use an efficient variable time step algo-
rithm (e.g. adams od bdf, depending on the system) and to set external time steps of the
model to the time steps contained in the observational data:

R> times(csl) <- obstime

For the most basic call to the parameter fitting function we need only the model object, the
time steps and the observational data:

R> res <- fitOdeModel(cs1, obstime = obstime, yobs=yobs)

In this case, all parameters are fitted by least squares between all state variables and their
corresponding observations. The start values for parameter estimation are taken from the
simObject. Sum of squares of the individual state variables is weighted by the inverse standard
deviation of the observations and the Nelder-Mead algorithm is used by default.

Many options are available to control the parameter fitting, e.g. to fit only a subset of
parameters (whichpar), to control the amount of information displayed (debuglevel, trace),
weighting of state variables (sd.yobs) or individual data points (weights), or the algorithm
used (method).

In the following, we fit only v, ky, and Y with the PORT algorithm, that is in many cases
faster than the other methods, especially if the range of parameters is known (constrained
optimization, e.g. to avoid negative values for k,,). It as also a good idea to assign reasonable
start values to the simObject. For interactive use it is recommended to set trace=TRUE.

13

14 simecol-Howto

R> whichpar <- c("vm", "km", "Y")

R> lower <- c(vm=0, km=0, Y=0)

R> upper <- c¢(vm=100, km=500, Y=200)

R> parms(cs1) [whichpar] <- c(vm=5, km=10, Y=100)

R> res <- fitOdeModel(csl1, whichpar = whichpar,

+ lower = lower, upper=upper,

+ obstime = obstime, yobs = yobs, method = "PORT",
+ control=list(trace = FALSE))

relative convergence (4)

The results are now stored in a list structure res, from which parameters, objective (sum of
squares) or information about convergence can be extracted:

R> res

An object of class "modelFit"
Slot "par":
vm km Y
2.086042 4.816842 102.185717

Slot "message":
[1] "relative convergence (4)"

Slot "value":
[1] 0.3357725

Slot "list":
$par
vm km Y
2.086042 4.816842 102.185717

$objective
[1] 0.3357725

$convergence
(11 0

$iterations
[1] 28

$evaluations
function gradient
57 118

$message
[1] "relative convergence (4)"

Thomas Petzoldt 15

$value
[1] 0.3357725

Future versions of simecol will probably contain specific functions to extract this information
in a more user-friendly style.

The success of parameter estimation can now be controlled numerically and graphically. First
we assign the new parameters to a copy of the model object:

R> parms(cs2) [whichpar] <- res$par
We get 2 for both state variables with:

R> times(cs2) <- obstime
R> ysim <- out(sim(cs2))
R> 1 - var(ysim$X - yobs$X) / var(yobs$X)

[1] 0.9929356
R> 1 - var(ysim$S - yobs$S) / var(yobs$S)
[1] 0.9738984

Note that time steps in data and model must be the same. However, for producing a smooth
figure it is recommended to use a smaller time step. We will need this figure also for further
examples, so it makes sense to define a function:

R> plotFit <- function() {
times(cs2) <- c(from=0, to=20, by=.1)
ysim <- out(sim(cs2))
par (mfrow=c(1,2))
plot(obstime, yobs$X, ylim = range (yobs$X, ysim$X))
lines(ysim$time, ysim$X, col="red")
plot(obstime, yobs$S, ylim= range(yobs$S, ysim$S))
lines(ysim$time, ysim$S, col="red")
}
R> plotFit()

+ + + + + + + +

2.4. Estimation of initial values

In the example above, we assumed that the initial values are were known and in fact, we used
the built-in initial values from the default example. In many cases, however, initial values
must be estimated from observed data because they are either completely unknown or known
with a certain error.

In order to estimate initial values from data, we have to add them to the list of parameters
in a technical sense.

16 simecol-Howto

6} o [.o
S _ o = o
©
_ o
o
X o)]
g v 2
o — o ©
> >
o
8 —
1 o ¥ 2 o
o 4 o)
| I I I | | I I I |
0 5 10 15 20 0 5 10 15 20
obstime obstime

Figure 5: Observed data and fitted model.

R> parms(cs1) <- c(parms(csl), init(cs1))
R> parms(cs1)

vm km Y D SO X S
5.0 10.0 100.0 0.9 10.0 10.0 10.0

The second step is to assign these parameters back to the vector of initial values, at the
beginning of a new simulation, i.e. to initialize the model object with new start values
determined by the optimization algorithm before simulation and calculation of sum of squares.
For such purposes, simecol objects have a special function slot initfunc and the only thing
we have to do is to assign an appropriate function which copies the appropriate values from
parms to init.

R> initfunc(csl) <- function(obj) {

+ init(obj) <- parms(obj) [c("X", "S")]
+ obj

+ }

Note that initfunc gets an object as input which is then modified and returned. Note also,
that number and order of initial values must be consistent with main.

R> whichpar <- c("vm”, "km”, nxn, MSH)
R> lower <- c¢(vm=0, km=0, X=0, S=0)

Thomas Petzoldt

o [o
S - o -
©
_ o
o
X o)]
g v 2
o — o ©
> >
o
8 —
_ o) Dl N 0O
o 4 o)
| I I I | | I I I |
0 5 10 15 20 0 5 10 15 20
obstime obstime

Figure 6: Observed data and fitted model (ky,, vy, and initial values were estimated).

R> upper <- c¢(vm=100, km=500, X=100, S=100)

R> parms(csl1) [whichpar] <- c(vm=10, km=10, X=10, S=10)
R> res <- fitOdeModel(csl, whichpar = whichpar,

+ lower = lower, upper=upper,

+ obstime = obstime, yobs = yobs, method = "Nelder",
+ control=list (trace = FALSE))

Assigning fitted parameters and a new simulation now results in:

R> initfunc(cs2) <- initfunc(csl1)
R> parms(cs2) [whichpar] <- res$par
R> plotFit()

Note that the model object cs2 should have a copy of the initfunc too, otherwise it is
necessary to assign the initial values manually.
2.5. Scaling and weighting

Appropriate scaling of observational variables is crucial. On one hand, scaling is necessary
because variables may be of different order of magnitude or have different measurement units

17

18 simecol-Howto

(comparing apples and oranges), but on the other hand estimated parameters heavily depend
on this decision.

Weighting is related to scaling. It may be required to weight individual data points,
depending on their accuracy or the number of measurements they rely on.

A third type of scaling is sometimes necessary for numerical reasons if parameters have very
different order of magnitude. Some algorithms (e.g. PORT) try to do this automatically but
sometimes even for this, an optional scaling argument is required.

2.6. Scaling of variables

The default scaling method used in simecol is division by the standard deviation of obser-
vational values (per variable, i.e. per column), but sometimes it is necessary to provide
user-specified scaling. Depending on the question and kind of the data, different assumptions
may be appropriate, for example mean, median, range, an appropriate conversion constant
or kind of “expert judgement” that helps to make state variables comparable.

The following example uses default scaling (standard deviations of observations):

R> whichpar <- c("vm", "km")

R> parms(csl1) [whichpar] <- c(vm = 5, km = 2)

R> res <- fitOdeModel(csl, whichpar = whichpar,

+ obstime = obstime, yobs = yobs, method = "Nelder")

R> res$value
[1] 0.3432354
R> res$par

vm km
2.045580 4.561685

and in the second example, we set scaling for both variables to one (i.e. divide both variables
by 1). This means that no scaling is applied at all and the original dimensions remain:

R> res <- fitOdeModel(csl, whichpar = whichpar,
+ obstime = obstime, yobs = yobs, method = "Nelder",
+ sd.yobs = c(1, 1))

R> res$value

[1] 4984.078

Thomas Petzoldt

R> res$par

vm km
2.073279 4.645150

It is obvious that the resulting sum of squares and also the estimated parameters of these two
approaches are different.

2.7. Weighting of observations

Weighting of observations (i.e. per row or per individual value) can be useful in different
circumstances, e.g. if measurements have different precision, if variance is not constant over
the range of observations (violation of homoscdasticity) or if data points represent multiple
measurements.

Let’s assume that we want to downweight the last three values (9...11) for any reason to one
third, we simply define a data frame with the same structure as the observational data (yobs)
and assign appropriate weights:

R> weights <- data.frame(X = rep(1, nrow(yobs)),

+ S = rep(1, nrow(yobs)))

R> weights[9:11,] <- 1/3

R> res <- fitOdeModel(csl1, whichpar = whichpar,

+ obstime = obstime, yobs = yobs, method = "Nelder",
+ weights = weights)

R> res$value
[1] 0.217263
R> res$par

vm km
2.066341 4.689334

2.8. Scaling of parameters

If the parameters to be fitted have very different order of magnitude (e.g. one is 0.1 and
some other is 107), then it is possible that optimization fails due to numerical problems. One
possibility to avoid this is to reformulate the problem that way, that the size of parameters do
not differ “not too much”. Depending on the algorithm used, it may be also possible to let the
optimizer do this rescaling of parameters, e.g. via argument scale for the PORT algorithm
or with control = list(parscale = ...) for the algorithms in optim. Please consult the
original help pages for details.

Normally, the PORT algorithm (in function nlminb) does automatic rescaling, but if required

scaling by scale = 1/paryq, may help (see http://netlib.bell-labs.com/cm/cs/cstr/
153.pdf):

19

http://netlib.bell-labs.com/cm/cs/cstr/153.pdf
http://netlib.bell-labs.com/cm/cs/cstr/153.pdf

20 simecol-Howto

R> res <- fitOdeModel(csl1, whichpar = whichpar,
+ obstime = obstime, yobs = yobs, method = "PORT",
+ scale = 1/c(vm = 2, km = 5))

relative convergence (4)
R> res$value

[1] 0.343234

R> res$par

vm km
2.046093 4.564152

2.9. Parameter estimation with FME

FME (Flexible Modeling Environment, Soetaert and Petzoldt 2010) is a package that contains
functions to perform complex applications of models, consisting of differential equations,
especially fitting models to data, sensitivity analysis and Markov chain Monte Carlo.

The essential principles of model fitting with FME are quite similar to the above, including
fine-tuning of the underlying optimization algorithms. However, in contrast to fit0OdeModel,
FME’s modFit is much more powerful. It allows to use several additional optimizers
and gives more detailed output, especially standard errors and covariances (correlations) of
parameter estimates. Other advantages are the flexible way to define own minimization
criteria (cost functions), the existence of summary functions to extract the outputs and the
availability of an advanced Markov chain Monte Carlo (MCMC) algorithm.

In the following we give a full example to demonstrate its use with the same model and data as
above. We use the chemostat model again, together with the test data set. The user defined
cost function (Cost) contains simulation and comparison between simulated and observed
data (function modCost) as last statement in the function. Note that modCost requires that
both simulated and observed data contain a time column. This is already available in ysim
(returned by the solver), but we have to add it also to yobs. As above, appropriate scaling
(resp. weighting) of variables is also an important point. Here, setting weight="std" does
the same as the default sd.yobs in the former example, other possibilities are described in
the respective online help pages.

R> library(FME)

R> library(simecol)

R> data(chemostat)

R> cs1 <- chemostat

R> obstime <- seq(0, 20, 2)

R> yobs <- data.frame(

+ X = c¢(10, 26, 120, 197, 354, 577, 628, 661, 654, 608, 642),
+ S =c(9.6, 10.2, 9.5, 8.2, 6.4, 4.9, 4.2, 3.8, 2.5, 3.8, 3.9)

Thomas Petzoldt

+)
R> Cost <- function(p, simObj, obstime, yobs) {
whichpar <- names(p)
parms (sim0Obj) [whichpar] <- p
times(sim0Obj) <- obstime
ysim <- out(sim(sim0Obj))
modCost (ysim, yobs, weight="std")
}
R> yobs <- cbind(time=obstime, yobs)
R> Fit <- modFit(p = c(vm=10, km=10), f = Cost, simObj=csl,
+ obstime=obstime, yobs=yobs, method="Nelder", control=list(trace=FALSE))

+ + + + + +

Setting trace = TRUE in interactive sessions helps to observe how minimization proceeds.
Moreover, it is of course also possible to use other optimization algorithms or to constrain
the parameters within sensible ranges.

The output can now be extracted with appropriate methods:
R> summary(Fit)

Parameters:

Estimate Std. Error t value Pr(>|t])
vm 2.04569 0.06292 32.52 < 2e-16 *x*x
km 4.56202 0.35542 12.84 4.1e-11 *x*x

Signif. codes: O 'sxxx' 0.001 'x' 0.01 'x' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.131 on 20 degrees of freedom
Parameter correlation:
vm km
vm 1.0000 0.9796
km 0.9796 1.0000
R> deviance (Fit)
[1] 0.3432358

R> coef(Fit)

vm km
2.045692 4.562017

You may also test the following, but we omit its output here to save space:
R> residuals(Fit)

R> df.residual (Fit)
R> plot(Fit)

21

22 simecol-Howto

3. Implementing Models in Compiled Languages

Compilation of model code can speed up simulations considerably and there are several ways
to call compiled code from R; so it is possible to use functions written in C/C++ or Fortran
in the ordinary way described in the “Writing R Extensions” manual (R Development Core
Team 2006). This can speed up computations, but still a certain amout of communication
overhead is needed because the control is given back to R in every simulation step.

In addition to this basic method, it is also possible to enable direct communication between
integration routines and the model code if both are available in compiled languages and if
the direct call of a compiled model is supported by the integrator. All integrators of package
deSolve support this, see the deSolve documentation for details.

3.1. An Example in C

Now, let’s inspect an example. We firstly provide our model as described in the deSolve
vignette “Writing Code in Compiled Language”, here again the Lotka-Volterra-model:

/* file: clotka.c */
#include <R.h>

static double parms[3];

#define k1 parms[0]
#define k2 parms[1]
#define k3 parms[2]

/* It is possible to define global variables here */
static double aGlobalVar = 99.99; // for testing only

/* initializer: same name as the dll (without extension) */
void clotka(void (* odeparms) (int *, double *)) {

int N = 3;

odeparms (&N, parms);

Rprintf ("model parameters succesfully initialized\n");

3

/* Derivatives */
void dlotka(int *neq, double *t, double *y,
double *ydot, double *yout, int *ip) {

// sanity check for the 2 'additional outputs'
if (ip[0] < 2) error("nout should be at least 2");

// derivatives
ydot[0] = k1 * y[O0] - k2 x y[0] * y[1];
ydot[1] = k2 * y[0] * y[1] - k3 * y[1];

Thomas Petzoldt 23

// the 2 additional outputs, here for demo purposes only
yout [0] = aGlobalVar;
yout[1] = ydot[0];

}

Using #define macros are a typical C-trick to get readable names for the parameters. This
method is simple and efficient and of course, there are more elaborate possibilities. One
alternative is using dynamic variables, another is doing call-backs to R.

The C code can now be compiled into a so-called shared library (on Linux) or a DLL on
Windows, that can be linked to R.

Compilation requires an installed C compiler (gec) and some other tools that are quite stan-
dard on Linux, and which are also available for the Macintosh or, form of the R-Tools collec-
tion* provided by Duncan Murdoch for Windows.

If the tools are installed, compilation can be done directly from R with:
R> system("R CMD SHLIB clotka.c")

The result, a shared library or DLL, can now be linked to the current R session with dyn.load,
that we show here for Windows, and which is quite similar for Linux (see R Development Core
Team 2006, , Writing R Extensions for details). Note that you set the working directory of
R to the path where the DLL resides or use the full path in the call to dyn.load.

R> modeldll <- dyn.load("clotka.dll")
You can now call the derivatives dlotka of the model in the main function of a simecol-object.

3.2. Enabling Direct Communication Between Model and Solver

Another, more efficient way, is to tell the solver (e.g. 1soda) directly where to find the model
in the DLL. This method circumvents the communication overhead that occurs normally for
every call from the solver to the model DLL and is especially effective if small models are
called many times, e.g. in case of small time steps or if a model is embedder in an optimization
routine.

The trick consists of two parts:

1. We write an almost empty main function that returns all the information that the ODE
solver needs in form of a list,

2. Instead of putting a character reference to an existing solver function into the solver
slot (e.g. "lsoda") we write a user-defined interface to the solver and assign it to the
solver-slot as shown in the example.

Now, we can simulate our model as usual, but avoid interpretation and communication over-
head of R during the integration.

“https://cran.r-project.org/bin/windows/Rtools/

https://cran.r-project.org/bin/windows/Rtools/

24 simecol-Howto

clotka <- new("odeModel",
note that 'main' does not contain any equations directly
but returns information where these can be found
'nout' is the number of 'additional outputs'
main = function(time, init, parms) {
a list with: dllname, func, [jacfunc], nout

list(1lib = "clotka",
func = "dlotka",
jacfunc = NULL,
nout =2)

+,
parms, times, init are provided as usual, enabling
scenario control like for 'ordinary' simecol models
parms = c(k1=0.2, k2=0.2, k3=0.2),
c(from=0, to=100, by=0.5),
init c(prey=0.5, predator=1),
special solver function that evaluates funclist
and passes its contents directly to the lsoda
in the 'compiled function' mode
solver = function(init, times, funclist, parms, ...) {
f <- funclist()
as.data.frame(lsoda(init, times, func=f$func,
parms = parms, dllname = f$1ib, jacfunc=f$jacfunc, nout = f$nout, ...)
)
}

times

clotka <- sim(clotka)

the two graphics on top are the states

the other are additional variables returned by the C code
(for demonstration purposes here)

plot(clotka)

Another simulation with more time steps
times(clotka) ["to"] <- 1000
plot(sim(clotka))

another simulation with intentionally reduced accuracy
for testing
plot(sim(clotka, atol=1))

dyn.unload(as.character (modeld11[2]))
You should note a considerable speed-up and you may ask if this is still a simecol object,

because the main parts are now in C and you may also ask, why one should still write models
in R if C or FORTRAN are so much faster

Thomas Petzoldt 25

The answer is that speed of computation is not the only factor. What counts is a good
compromise between execution speed and programming effort. Programming in scripting
languages like R is much more convenient than programming in compiled languages like C
or FORTRAN. Also, programming in compiled languages does only pay its effort required if
models are quite large or if a large number of model runs is performed. Even in such cases, a
mixed R and C approach can be efficient, because it is only necessary to implement the core
functionality of the model in C and most of data manipulation and scenario control can be
done in R.

simecol follows exactly this philosophy. Implementing everything in R is highly productive if
speed is of minor importance, but you may use C etc. whenever necessary, and even in that
case you still have the scenario management and data manipulation features of simecol.

4. Troubleshooting

This chapter lists the reasons of the most common problems and error messages. You can
contribute to these sections by submitting bug reports.

4.1. Error messages when creating simObj-ects

Message: Error in getClass(Class, where = topenv(parent.frame()))
"odeModel" is not a defined class

Instead of odeModel also other class names are possible.

Reasons: The most commmon reason is to forget loading the required simecol package.
Another reason may be, that you use a model class that is not contained in simecol
(e.g. mistakenly odemodel instead of odeModel).

Solution: Load the simecol package by library(simecol). If this does not help, check
spelling of the class name in new.

Message: Error in assign(nm, L[[nm]], p) : attempt to use
zero-length variable name

Solution: Use “=” instead of “<-” for the lists (e.g. function definition in equations) and
function arguments.

Message: "Warning: a final empty element has been omitted"

Solution: Look for obsolete commas after the last element in lists (e.g. params).

4.2. Error messages during model simulations

26 simecol-Howto

Message: Error in lsoda(......
The number of derivatives returned by func() (3)
must equal the length of the initial conditions vector (2)

Reasons: The number of state variables of ODE systems must be consistent between the
input and the output of the derivative function that is called func in package deSolve
from which this error message is printed. In simecol this function is called main. The
other solvers of deSolve (e.g. rk4) or other compatible solver packages may issue similar
messages.

Solution: Check number of parms and also naming of:

e the init slot of the model definition,

o the usage of the second argument (commonly named init, x or y) in the main
function,

e the return value of main. The return value is a list whose first argument must be
a vector with the same length as init. Note that also the order of init and the
return value must be identical.

References

Bates D, Mullen KM, Nash JC, Varadhan R (2014). minqa: Derivative-free optimization
algorithms by quadratic approrimation. R package version 1.2.4, URL http://CRAN.
R-project.org/package=minqa.

Blasius B, Huppert A, Stone L (1999). “Complex Dynamics and Phase Synchronization in
Spatially Extended Ecological Systems.” Nature, 399, 354-359.

Nash JC (1990). Compact numerical methods for computers: linear algebra and function
manimisation. CRC Press.

Petzoldt T, Rinke K (2007). “simecol: An Object-Oriented Framework for Ecological
Modeling in R” Journal of Statistical Software, 22(9), 1-31. ISSN 1548-7660. URL
http://www. jstatsoft.org/v22/109.

Powell MJD (2009). “The BOBYQA algorithm for bound constrained optimization without
derivatives (Technical Report No. DAMTP 2009/NA06).” Technical report, Cambridge:
University of Cambridge, Department of Applied Mathematics and Theoretical Physics,
Centre for Mathematical Sciences.

R Core Team (2015). R: A Language and Environment for Statistical Computing. R Foun-
dation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/.

R Development Core Team (2006). Writing R Extensions. R Foundation for Statistical
Computing, Vienna, Austria. ISBN 3-900051-11-9, URL http://www.R-project.org.

http://CRAN.R-project.org/package=minqa
http://CRAN.R-project.org/package=minqa
http://www.jstatsoft.org/v22/i09
http://www.R-project.org/
http://www.R-project.org

Thomas Petzoldt

Soetaert K, Petzoldt T (2010). “Inverse Modelling, Sensitivity and Monte Carlo Analysis
in R Using Package FME.” Journal of Statistical Software, 33(3), 1-28. URL http:
//wuw. jstatsoft.org/v33/103/.

Soetaert K, Petzoldt T, Setzer RW (2010). “Solving Differential Equations in R: Package
deSolve.” Journal of Statistical Software, 33(9), 1-25. URL http://www.jstatsoft.org/
v33/109.

Affiliation:

Thomas Petzoldt

Institut fiir Hydrobiologie

Technische Universitdt Dresden

01062 Dresden, Germany

E-mail: thomas.petzoldt@tu-dresden.de

URL: https://tu-dresden.de/Members/thomas.petzoldt/

27

http://www.jstatsoft.org/v33/i03/
http://www.jstatsoft.org/v33/i03/
http://www.jstatsoft.org/v33/i09
http://www.jstatsoft.org/v33/i09
mailto:thomas.petzoldt@tu-dresden.de
https://tu-dresden.de/Members/thomas.petzoldt/

	The Basics
	Building simecol objects
	An example
	Transition to simecol
	Creating scenarios
	Debugging

	Different ways to store simObjects
	Methods to work with S4 objects

	Fitting Parameters
	Example model and data
	Load the model and assign a solver
	Parameter estimation in simecol
	Estimation of initial values
	Scaling and weighting
	Scaling of variables
	Weighting of observations
	Scaling of parameters
	Parameter estimation with FME

	Implementing Models in Compiled Languages
	An Example in C
	Enabling Direct Communication Between Model and Solver

	Troubleshooting
	Error messages when creating simObj-ects
	Error messages during model simulations

	References

