Package ‘shrinkGPR’

January 30, 2025
Type Package

Title Scalable Gaussian Process Regression with Hierarchical Shrinkage
Priors

Version 1.0.0
Maintainer Peter Knaus <peter.knaus@wu.ac.at>

Description Efficient variational inference methods for fully Bayesian Gaussian
Process Regression (GPR) models with hierarchical shrinkage priors,
including the triple gamma prior for effective variable selection and
covariance shrinkage in high-dimensional settings. The package leverages normalizing
flows to approximate complex posterior distributions. For details on implementation,
see Knaus (2025) <doi:10.48550/arXiv.2501.13173>.

License GPL (>=2)

Encoding UTF-8

Depends R (>=4.0.0)

Imports gsl, progress, rlang, utils, methods, torch
RoxygenNote 7.3.2

Suggests testthat (>= 3.0.0)
Config/testthat/edition 3

SystemRequirements torch backend, for installation guide see
https://cran.r-project.org/web/packages/torch/vignettes/installation.html

NeedsCompilation no

Author Peter Knaus [aut, cre] (<https://orcid.org/0000-0001-6498-7084>)
Repository CRAN

Date/Publication 2025-01-30 19:00:02 UTC

Contents

calc_pred_moments L e e
eval_pred_dens
gen_posterior_samples Lo e

https://doi.org/10.48550/arXiv.2501.13173
https://orcid.org/0000-0001-6498-7084

calc_pred_moments

kernel_functions e e 5
LPDS . . e e e e 7
predict.shrinkGPR oL 8
shrinkGPR e 9
simGPR 14
SYIVESEEr e e e 15

Index 18

calc_pred_moments Calculate Predictive Moments
Description

calc_pred_moments calculates the predictive means and variances for a fitted shrinkGPR model at
new data points.

Usage

calc_pred_moments(object, newdata, nsamp = 100)

Arguments
object A shrinkGPR object representing the fitted Gaussian process regression model.
newdata Optional data frame containing the covariates for the new data points. If miss-
ing, the training data is used.
nsamp Positive integer specifying the number of posterior samples to use for the calcu-
lation. Default is 100.
Details

This function computes predictive moments by marginalizing over posterior samples from the fitted
model. If the mean equation is included in the model, the corresponding covariates are used.

Value

A list with two elements:

* means: A matrix of predictive means for each new data point, with the rows being the samples

and the columns the data points.

e vars: An array of covariance matrices, with the first dimension corresponding to the samples

and second and third dimensions to the data points.

eval_pred_dens 3

Examples

if (torch::torch_is_installed()) {
Simulate data
set.seed(123)
torch: :torch_manual_seed(123)
n <- 100
X <= matrix(runif(n * 2), n, 2)
y <= sin(2 * pi * x[, 1]1) + rnorm(n, sd = 0.1)
data <- data.frame(y =y, x1 = x[, 1], x2 = x[, 21)

Fit GPR model
res <- shrinkGPR(y ~ x1 + x2, data = data)

Calculate predictive moments
momes <- calc_pred_moments(res, nsamp = 100)

}

eval_pred_dens Evaluate Predictive Densities

Description

eval_pred_dens evaluates the predictive density for a set of points based on a fitted shrinkGPR
model.

Usage

eval_pred_dens(x, mod, data_test, nsamp = 100, log = FALSE)

Arguments
X Numeric vector of points for which the predictive density is to be evaluated.
mod A shrinkGPR object representing the fitted Gaussian process regression model.
data_test Data frame with one row containing the covariates for the test set. Variables in
data_test must match those used in model fitting.
nsamp Positive integer specifying the number of posterior samples to use for the evalu-
ation. Default is 100.
log Logical; if TRUE, returns the log predictive density. Default is FALSE.
Details

This function computes predictive densities by marginalizing over posterior samples drawn from
the fitted model. If the mean equation is included in the model, the corresponding covariates are
incorporated.

4 gen_posterior_samples

Value

A numeric vector containing the predictive densities (or log predictive densities) for the points in x.

Examples

if (torch::torch_is_installed()) {
Simulate data
set.seed(123)
torch: :torch_manual_seed(123)
n <- 100
x <= matrix(runif(n * 2), n, 2)
y <- sin(2 * pi * x[, 11) + rnorm(n, sd = 0.1)
data <- data.frame(y =y, x1 = x[, 1], x2 = x[, 21)

Fit GPR model
res <- shrinkGPR(y ~ x1 + x2, data = data)

Create point at which to evaluate predictive density
data_test <- data.frame(x1 = 0.8, x2 = 0.5)
eval_points <- c(-1.2, -1, @)

eval_pred_dens(eval_points, res, data_test)

Is vectorized, can also be used in functions like curve

curve(eval_pred_dens(x, res, data_test), from = -1.5, to = -0.5)
abline(v = sin(2 * pi *x 0.8), col = "red")
}

gen_posterior_samples Generate Posterior Samples

Description

gen_posterior_samples generates posterior samples of the model parameters from a fitted shrinkGPR
model.

Usage

gen_posterior_samples(mod, nsamp = 1000)

Arguments
mod A shrinkGPR object representing the fitted Gaussian process regression model.
nsamp Positive integer specifying the number of posterior samples to generate. Default

is 1000.

kernel functions 5

Details

This function draws posterior samples from the latent space and transforms them into the parameter
space of the model. These samples can be used for posterior inference or further analysis.

Value
A list containing posterior samples of the model parameters:

* thetas: A matrix of posterior samples for the inverse lengthscale parameters.
* sigma2: A matrix of posterior samples for the noise variance.
* lambda: A matrix of posterior samples for the global shrinkage parameter.

* betas (optional): A matrix of posterior samples for the mean equation parameters (if included
in the model).

* lambda_mean (optional): A matrix of posterior samples for the mean equation’s global shrink-
age parameter (if included in the model).

Examples

if (torch::torch_is_installed()) {
Simulate data
set.seed(123)
torch: :torch_manual_seed(123)
n <- 100
x <= matrix(runif(n * 2), n, 2)
y <= sin(2 * pi * x[, 11) + rnorm(n, sd = 0.1)
data <- data.frame(y =y, x1 = x[, 11, x2 = x[, 21)

Fit GPR model
res <- shrinkGPR(y ~ x1 + x2, data = data)

Generate posterior samples
samps <- gen_posterior_samples(res, nsamp = 1000)

Plot the posterior samples
boxplot(samps$thetas)
}

kernel_functions Kernel Functions for Gaussian Processes

Description

A set of kernel functions for Gaussian processes, including the squared exponential (SE) kernel
and Matérn kernels with smoothness parameters 1/2, 3/2, and 5/2. These kernels compute the
covariance structure for Gaussian process regression models and are designed for compatibility
with the shrinkGPR function.

Usage

kernel functions

kernel_se(thetas, tau, x, x_star = NULL)

kernel_matern_12(thetas, tau, x, x_star = NULL)

kernel_matern_32(thetas, tau, x, x_star = NULL)

kernel_matern_52(thetas, tau, x, x_star = NULL)

Arguments

thetas

tau
X

X_star

Details

A torch_tensor of dimensions n_latent x d, representing the latent length-
scale parameters.

A torch_tensor of length n_latent, representing the latent scaling factors.
A torch_tensor of dimensions N x d, containing the input data points.

Either NULL or a torch_tensor of dimensions N_new x d. If NULL, the kernel is
computed for x against itself. Otherwise, it computes the kernel between x and
x_star.

These kernel functions are used to define the covariance structure in Gaussian process regression
models. Each kernel implements a specific covariance function:

* kernel_se: Squared exponential (SE) kernel, also known as the radial basis function (RBF)
kernel. It assumes smooth underlying functions.

* kernel_matern_12: Matérn kernel with smoothness parameter v = 1/2, equivalent to the
absolute exponential kernel.

* kernel_matern_32: Matérn kernel with smoothness parameter v = 3/2.

* kernel_matern_52: Matérn kernel with smoothness parameter v = 5/2.

The sqdist helper function is used internally by these kernels to compute squared distances be-

tween data points.

Note that these functions perform no input checks, as to ensure higher performance. Users should
ensure that the input tensors are of the correct dimensions.

Value

A torch_tensor containing the batched covariance matrices (one for each latent sample):

e If x_star = NULL, the output is of dimensions n_latent x N x N, representing pairwise covari-
ances between all points in x.

 If x_star is provided, the output is of dimensions n_latent x N_new x N, representing pair-
wise covariances between x_star and x.

LPDS 7

Examples

if (torch::torch_is_installed()) {
Example inputs
torch: :torch_manual_seed(123)
n_latent <- 3
d<-2
N <-5
thetas <- torch::torch_randn(n_latent, d)$abs()
tau <- torch::torch_randn(n_latent)$abs()
x <- torch::torch_randn(N, d)

Compute the SE kernel
K_se <- kernel_se(thetas, tau, x)
print(K_se)

Compute the Matérn 3/2 kernel
K_matern32 <- kernel_matern_32(thetas, tau, x)
print(K_matern32)

Compute the Matérn 5/2 kernel with x_star

x_star <- torch::torch_randn(3, d)

K_matern52 <- kernel_matern_52(thetas, tau, x, x_star)
print(K_matern52)

LPDS Log Predictive Density Score

Description

LPDS calculates the log predictive density score for a fitted shrinkGPR model using a test dataset.

Usage
LPDS(mod, data_test, nsamp = 100)

Arguments
mod A shrinkGPR object representing the fitted Gaussian process regression model.
data_test Data frame with one row containing the covariates for the test set. Variables in
data_test must match those used in model fitting.
nsamp Positive integer specifying the number of posterior samples to use for the evalu-
ation. Default is 100.
Details

The log predictive density score is a measure of model fit that evaluates how well the model predicts
unseen data. It is computed as the log of the marginal predictive density of the observed responses.

8 predict.shrinkGPR

Value

A numeric value representing the log predictive density score for the test dataset.

Examples

if (torch::torch_is_installed()) {
Simulate data
set.seed(123)
torch: :torch_manual_seed(123)
n <- 100
x <= matrix(runif(n x 2), n, 2)
y <= sin(2 * pi * x[, 11) + rnorm(n, sd = 0.1)
data <- data.frame(y =y, x1 = x[, 11, x2 = x[, 21)

Fit GPR model
res <- shrinkGPR(y ~ x1 + x2, data = data)

Calculate true y value and calculate LPDS at specific point
xT_new <- 0.8

x2_new <- 0.5

y_true <- sin(2 * pi * x1_new)

data_test <- data.frame(y = y_true, x1 = x1_new, X2 = x2_new)
LPDS(res, data_test)

}

predict.shrinkGPR Generate Predictions

Description

predict.shrinkGPR generates posterior predictive samples from a fitted shrinkGPR model at spec-
ified covariates.

Usage
S3 method for class 'shrinkGPR'
predict(object, newdata, nsamp = 100, ...)
Arguments
object A shrinkGPR object representing the fitted Gaussian process regression model.
newdata Optional data frame containing the covariates for the prediction points. If miss-
ing, the training data is used.
nsamp Positive integer specifying the number of posterior samples to generate. Default
is 100.

Currently ignored.

shrinkGPR 9

Details

This function generates predictions by sampling from the posterior predictive distribution. If the
mean equation is included in the model, the corresponding covariates are incorporated.

Value

A matrix containing posterior predictive samples for each covariate combination in newdata.

Examples

if (torch::torch_is_installed()) {
Simulate data
set.seed(123)
torch: :torch_manual_seed(123)
n <- 100
X <= matrix(runif(n * 2), n, 2)
y <= sin(2 * pi * x[, 1]1) + rnorm(n, sd = 0.1)
data <- data.frame(y =y, x1 = x[, 1], x2 = x[, 21)

Fit GPR model

res <- shrinkGPR(y ~ x1 + x2, data = data)
Example usage for in-sample prediction
preds <- predict(res)

Example usage for out-of-sample prediction
newdata <- data.frame(x1 = runif(10), x2 = runif(10))
preds <- predict(res, newdata = newdata)

}

shrinkGPR Gaussian Process Regression with Shrinkage and Normalizing Flows

Description

shrinkGPR implements Gaussian process regression (GPR) with a hierarchical shrinkage prior for
hyperparameter estimation, incorporating normalizing flows to approximate the posterior distribu-
tion. The function facilitates model specification, optimization, and training, including support for
early stopping, user-defined kernels, and flow-based transformations.

Usage

shrinkGPR(
formula,
data,
a=20.5,
c =20.5,
formula_mean,

10 shrinkGPR

a_mean = 0.5,
c_mean = 0.5,
sigma2_rate = 10,
kernel_func = kernel_se,
n_layers = 10,

n_latent = 10,
flow_func = sylvester,
flow_args,

n_epochs = 1000,
auto_stop = TRUE,
cont_model,

device,

display_progress = TRUE,

optim_control

)
Arguments

formula object of class "formula": a symbolic representation of the model for the co-
variance equation, as in 1m. The response variable and covariates are specified
here.

data optional data frame containing the response variable and the covariates. If not
found in data, the variables are taken from environment(formula). No NAs
are allowed in the response variable or covariates.

a positive real number controlling the shrinkage prior for the covariance structure.
The default is 0.5.

c positive real number controlling the tail behavior of the shrinkage prior for the

formula_mean

covariance structure. The default is 0.5.

optional formula for the mean equation. If provided, the response variable and
covariates for the mean structure are specified separately from the covariance
structure.

a_mean positive real number controlling the shrinkage prior for the mean structure. The
default is 0.5.
c_mean positive real number controlling the tail behavior of the shrinkage prior for the

sigma2_rate

kernel_func

mean structure. The default is 0.5.

positive real number controlling the prior rate parameter for the residual vari-
ance. The default is 10.

function specifying the covariance kernel. The default is kernel_se, a squared
exponential kernel. For guidance on how to provide a custom kernel function,
see Details.

n_layers positive integer specifying the number of flow layers in the normalizing flow.
The default is 10.

n_latent positive integer specifying the dimensionality of the latent space for the normal-
izing flow. The default is 10.

flow_func function specifying the normalizing flow transformation. The defaultis sylvester.

For guidance on how to provide a custom flow function, see Details.

shrinkGPR 11

flow_args optional named list containing arguments for the flow function. If not provided,
default arguments are used. For guidance on how to provide a custom flow
function, see Details.

n_epochs positive integer specifying the number of training epochs. The default is 1000.

auto_stop logical value indicating whether to enable early stopping based on convergence.
The default is TRUE.

cont_model optional object returned from a previous shrinkGPR call, enabling continuation

of training from the saved state.
device optional device to run the model on, e.g., torch_device("cuda") for GPU or
torch_device("cpu”) for CPU. Defaults to GPU if available; otherwise, CPU.
display_progress
logical value indicating whether to display progress bars and messages during
training. The default is TRUE.

optim_control optional named list containing optimizer parameters. If not provided, default
settings are used.

Details

This implementation provides a computationally efficient framework for GPR, enabling flexible
modeling of mean and covariance structures. Users can specify custom kernel functions, flow trans-
formations, and hyperparameter configurations to adapt the model to their data.

The shrinkGPR function combines Gaussian process regression with shrinkage priors and normaliz-
ing flows for efficient and flexible hyperparameter estimation. It supports custom kernels, hierarchi-
cal shrinkage priors for mean and covariance structures, and flow-based posterior approximations.
The auto_stop option allows early stopping based on lack of improvement in ELBO.

Custom Kernel Functions

Users can define custom kernel functions for the covariance structure of the Gaussian process by
passing them to the kernel_func argument. A valid kernel function must follow the same structure
as the provided kernel_se (squared exponential kernel). The function should:

1. Accept the following arguments:
* thetas: A torch_tensor of dimensions n_latent x d, representing latent length-scale
parameters.
* tau: A torch_tensor of length n_latent, representing latent scaling factors.
* x: A torch_tensor of dimensions N x d, containing the input data points.
» x_star: Either NULL or a torch_tensor of dimensions N_new x d. If NULL, the kernel is
computed for x against itself. Otherwise, it computes the kernel between x and x_star.
2. Return:
e If x_star = NULL, the function must return a torch_tensor of dimensions n_latent x N
x N, representing pairwise covariances between all points in x.
 If x_star is provided, the function must return a torch_tensor of dimensions n_latent
x N_new x N, representing pairwise covariances between x_star and x.
3. Requirements:

* The kernel must compute a valid positive semi-definite covariance matrix.

12 shrinkGPR

* It should use efficient tensor operations from the Torch library (e.g., torch_bmm, torch_sum)
to ensure compatibility with GPUs or CPUs.

Testing a Custom Kernel Function

To test a custom kernel function:

1. Verify Dimensions:
e When x_star = NULL, ensure the output is n_latent x N x N.
e When x_star is provided, ensure the output is n_latent x N_new x N.

2. Check Positive Semi-Definiteness: Validate that the kernel produces a positive semi-definite
covariance matrix for valid inputs.

3. Integrate: Use the custom kernel with shrinkGPR to confirm its compatibility.

Examples of kernel functions can be found in the kernel_funcs.R file in the package source code,
which are documented in the kernel_functions help file.

Custom Flow Functions

Users can define custom flow functions for use in Gaussian process regression models by following
the structure and conventions of the provided sylvester function. A valid flow function should be
implemented as a nn_module in torch and must meet the following requirements:

Structure of a Custom Flow Function

1. Initialization (initialize):
* Include all required parameters as nn_parameter or nn_buffer, and initialize them ap-
propriately.
* Parameters may include matrices for transformations (e.g., triangular matrices), biases,
or other learnable components.
2. Forward Pass (forward):

* The forward method should accept an input tensor z of dimensions n_latent x D.

¢ The method must:
— Compute the transformed tensor z.
— Compute the log determinant of the Jacobian (log|det J|).

¢ The method should return a list containing:
— zk: The transformed samples after applying the flow (n_latent x D).
— log_diag_j: A tensor of size n_latent containing the log determinant of the Jaco-

bian for each sample.
3. Output Dimensions:

* Input tensor z: n_latent x D.
e Qutputs:

— zk: n_latent x D.

— log_diag_j: n_latent.

An example of a flow function can be found in the sylvester.R file in the package source code,
which is documented in the sylvester help file.

shrinkGPR 13

Value

A list object of class shrinkGPR, containing:

model The best-performing trained model.

loss The best loss value (ELBO) achieved during training.

loss_stor A numeric vector storing the ELBO values at each training iteration.
last_model The model state at the final iteration.

optimizer The optimizer object used during training.

model_internals

Internal objects required for predictions and further training, such as model ma-
trices and formulas.

Author(s)

Peter Knaus <peter.knaus@wu.ac.at>

Examples

if (torch::torch_is_installed()) {
Simulate data
set.seed(123)
torch: :torch_manual_seed(123)
n <- 100
X <= matrix(runif(n * 2), n, 2)
y <= sin(2 * pi * x[, 1]1) + rnorm(n, sd = 0.1)
data <- data.frame(y =y, x1 = x[, 1], x2 = x[, 21)

Fit GPR model
res <- shrinkGPR(y ~ x1 + x2, data = data)

Check convergence
plot(res$loss_stor, type = "1", main = "Loss Over Iterations")

Check posterior
samps <- gen_posterior_samples(res, nsamp = 1000)
boxplot(samps$thetas) # Second theta is pulled towards zero

Predict

x1_new <- seq(from = @, to = 1, length.out = 100)

x2_new <- runif(100)

y_new <- predict(res, newdata = data.frame(x1 = x1_new, x2 = x2_new), nsamp = 2000)

Plot
quants <- apply(y_new, 2, quantile, c(0.025, 0.5, 0.975))
plot(x1_new, quants[2,], type = "1", ylim = c(-1.5, 1.5),
xlab = "x1", ylab = "y", lwd = 2)
polygon(c(x1_new, rev(xl_new)), c(quants[1, 1, rev(quants[3, 1)),
col = adjustcolor(”skyblue”, alpha.f = 0.5), border = NA)
points(x[,1], y)
curve(sin(2 * pi * x), add = TRUE, col = "forestgreen”, lwd = 2, 1ty = 2)

14

simGPR

simGPR

Simulate Data for Gaussian Process Regression

Description

simGPR generates simulated data for Gaussian Process Regression (GPR) models, including the true
hyperparameters used for simulation.

Usage

simGPR(
N = 200,
d = 3,
d_mean =
sigma2 =
tau = 2,
kernel_func =

o,
0.1,

kernel_se,

perc_spars = 0.5,

theta,
beta,
device

Arguments

N

d_mean

sigma2
tau
kernel_func

perc_spars
theta
beta

device

Positive integer specifying the number of observations to simulate. Default is
200.

Positive integer specifying the number of covariates for the covariance structure.
Default is 3.

Positive integer specifying the number of covariates for the mean structure. De-
fault is 0.

Positive numeric value specifying the noise variance. Default is 0.1.
Positive numeric value specifying the global shrinkage parameter. Default is 2.
Function specifying the covariance kernel. Default is kernel_se.

Numeric value in [0, 1] indicating the proportion of elements in theta and beta
to sparsify. Default is 0.5.

Optional numeric vector specifying the true inverse length-scale parameters. If
not provided, they are randomly generated.

Optional numeric vector specifying the true regression coefficients for the mean
structure. If not provided, they are randomly generated.

Optional torch_device object specifying whether to run the simulation on CPU
or GPU. Defaults to GPU if available.

sylvester 15

Details

This function simulates data from a Gaussian Process Regression model. The response variable
y is sampled from a multivariate normal distribution with a covariance matrix determined by the
specified kernel function, theta, tau, and sigma2. If d_mean > @, a mean structure is included in
the simulation, with covariates x_mean and regression coefficients beta.

Value

A list containing:

» data: A data frame with y (response variable), x (covariates for the covariance structure), and
optionally x_mean (covariates for the mean structure).

* true_vals: A list containing the true values used for the simulation:

theta: The true inverse length-scale parameters.

sigma2: The true noise variance.

tau: The true global shrinkage parameter.

beta (optional): The true regression coefficients for the mean structure.

Examples

if (torch::torch_is_installed()) {
torch: :torch_manual_seed(123)

Simulate data with default settings
sim_data <- simGPR()

Simulate data with custom settings
sim_data <- simGPR(N = 100, d = 5, d_mean = 2, perc_spars = 0.3, sigma2 = 0.5)

Access the simulated data
head(sim_data$data)

Access the true values used for simulation
sim_data$true_vals

}

sylvester Sylvester Normalizing Flow

Description

The sylvester function implements Sylvester normalizing flows as described by van den Berg et
al. (2018) in "Sylvester Normalizing Flows for Variational Inference." This flow applies a sequence
of invertible transformations to map a simple base distribution to a more complex target distribution,
allowing for flexible posterior approximations in Gaussian process regression models.

16 sylvester

Usage

sylvester(d, n_householder)

Arguments

d An integer specifying the latent dimensionality of the input space.

n_householder An optional integer specifying the number of Householder reflections used to
orthogonalize the transformation. Defaults to d - 1.
Details

The Sylvester flow uses two triangular matrices (R1 and R2) and Householder reflections to construct
invertible transformations. The transformation is parameterized as follows:

2= QR1hQT Ryzk + b) + 2k,
where:

* Qs an orthogonal matrix obtained via Householder reflections.

* R1 and R2 are upper triangular matrices with learned diagonal elements.
* his a non-linear activation function (default: torch_tanh).

* b is a learned bias vector.

The log determinant of the Jacobian is computed to ensure the invertibility of the transformation
and is given by:

d
log |detJ| = Z log |diag: [i] - diags[i] - B (RQ™T zk + b) + 1],
i=1

where diag_1 and diag_2 are the learned diagonal elements of R1 and R2, respectively, and h\ ' is
the derivative of the activation function.

Value

An nn_module object representing the Sylvester normalizing flow. The module has the following
key components:

» forward(zk): The forward pass computes the transformed variable z and the log determinant
of the Jacobian.

* Internal parameters include matrices R1 and R2, diagonal elements, and Householder reflec-
tions used for orthogonalization.

References

van den Berg, R., Hasenclever, L., Tomczak, J. M., & Welling, M. (2018). "Sylvester Normalizing
Flows for Variational Inference." Proceedings of the Thirty-Fourth Conference on Uncertainty in
Artificial Intelligence (UAI 2018).

sylvester

Examples

if (torch::torch_is_installed()) {
Example: Initialize a Sylvester flow
d<-5
n_householder <- 4
flow <- sylvester(d, n_householder)

Forward pass through the flow
zk <- torch::torch_randn(10, d) # Batch of 10 samples
result <- flow(zk)

print(result$zk)
print(result$log_diag_j)

17

Index

calc_pred_moments, 2
eval_pred_dens, 3
gen_posterior_samples, 4

kernel_functions, 5, 12
kernel_matern_12 (kernel_functions), 5
kernel_matern_32 (kernel_functions), 5
kernel_matern_52 (kernel_functions), 5
kernel_se, 10

kernel_se (kernel_functions), 5

1m, 10
LPDS, 7

predict.shrinkGPR, 8

shrinkGPR, 9
simGPR, 14
sylvester, 10, 12, 15

18

	calc_pred_moments
	eval_pred_dens
	gen_posterior_samples
	kernel_functions
	LPDS
	predict.shrinkGPR
	shrinkGPR
	simGPR
	sylvester
	Index

