Package ‘shinybrowser’

October 14, 2022

Title Find Out Information About a User's Web Browser in 'Shiny'
Version 1.0.0

Description
Sometimes it's useful to know some information about your user in a 'Shiny' app. The available
information is: browser name (such as 'Chrome' or 'Safari') and version, device type
(mobile or desktop), operating system (such as "Windows' or 'Mac' or 'Android’) and version,
and browser dimensions.

URL https://github.com/daattali/shinybrowser

https://daattali.com/shiny/shinybrowser-demo/

BugReports https://github.com/daattali/shinybrowser/issues
Depends R (>=3.1.0)

Imports shiny (>=1.0.4)

Suggests shinydisconnect

License MIT + file LICENSE

Encoding UTF-8

RoxygenNote 7.1.2

NeedsCompilation no

Author Dean Attali [aut, cre] (<https://orcid.org/0000-0002-5645-3493>)
Maintainer Dean Attali <daattali@gmail.com>

Repository CRAN

Date/Publication 2022-05-18 16:40:02 UTC

R topics documented:

detect L e e e e e e
get_all_info
GELDTOWSET o i i i e e e e e e e e e e
get_device L e e e e
BEELOS . o e
get_user_agent L e e e e e e e e

https://github.com/daattali/shinybrowser
https://daattali.com/shiny/shinybrowser-demo/
https://github.com/daattali/shinybrowser/issues
https://orcid.org/0000-0002-5645-3493

2 detect

get_width e e 10
is_browser_chrome e e 11
1s_browser _firefox e 12
IS DrOWSEr 1€ o o o o e 12
is_device_desktop L 13
is_device_mobile e 14
IS_OS_IMAC &« v v v e v e 15
1S_0S_WINAOWS o o e e e e 15
SUPPORTED_BROWSERS 16
SUPPORTED_DEVICES e et 16
SUPPORTED_OPERATING_SYSTEMS, 16

Index 17

detect Detect a user’s browser information
Description

This function must be called somewhere in a Shiny app’s Ul in order to use any other {shiny-
browser} functions.
Usage

detect()

Value

Scripts that are automatically inserted into the Ul in order to use this package.

Accuracy
It’s important to understand there is no reliable way to detect the information in {shinybrowser}

with 100% accuracy.

{shinybrowser} makes a best effort at identifying the most accurate information, but some browser/operating
system combinations may be difficult to identify. Users can also use a variety of tools to deliberately
spoof this information.

With that in mind, {shinybrowser} should detect the correct information in most cases.

Supported values

Only major browsers and operating systems are supported, which means that the RStudio Viewer
may result in an "UNKNOWN" browser, and unpopular operating systems may also result in "UN-
KNOWN".

For a list of values that can be detected, sese SUPPORTED_BROWSERS, SUPPORTED_DEVICES,
and SUPPORTED_OPERATING_SYSTEMS.

get_all_info 3

Mobile vs desktop vs tablet

{shinybrowser} attempts to detect whether a device is "mobile" or "desktop". The distinction be-
tween mobile and desktop is not always clear, so if what you actually care about is the size of the
device, it might be better to use get_width().

Tablets return ambiguous results; some tablets self-report as mobile devices while others as desktop.

Width and height

The width and height of the browser window are only reported once, when the detect () function
is initially called. If the user resizes the browser window, the new dimensions are not reported until
the page is refreshed.

See Also

get_all_info(), get_browser(), get_os(), get_device(), get_width()

Examples

if (interactive()) {
library(shiny)

ui <- fluidPage(
shinybrowser: :detect(),
"Your browser information:",
verbatimTextOutput("browser_info")

)

server <- function(input, output, session) {
output$browser_info <- renderPrint({

shinybrowser: :get_all_info()

»

}

shinyApp(ui, server)

get_all_info Get all information about user’s browser

Description

Get a list with all the information detected about the user’s browser.

The list is reactive, therefore it must be accessed inside a reactive context (such as an observe
or reactive).

{shinybrowser} must be initialized with a call to detect() in the app’s ui.

4 get_all_info

Usage
get_all_info()

Value

List with all information detected about the user’s browser: device, browser, os, dimensions,
user_agent

Accuracy

It’s important to understand there is no reliable way to detect the information in {shinybrowser}
with 100% accuracy.

{shinybrowser} makes a best effort at identifying the most accurate information, but some browser/operating
system combinations may be difficult to identify. Users can also use a variety of tools to deliberately
spoof this information.

With that in mind, {shinybrowser} should detect the correct information in most cases.

Supported values

Only major browsers and operating systems are supported, which means that the RStudio Viewer
may result in an "UNKNOWN" browser, and unpopular operating systems may also result in "UN-
KNOWN".

For a list of values that can be detected, sese SUPPORTED_BROWSERS, SUPPORTED_DEVICES,
and SUPPORTED_OPERATING_SYSTEMS.

Mobile vs desktop vs tablet

{shinybrowser} attempts to detect whether a device is "mobile" or "desktop". The distinction be-
tween mobile and desktop is not always clear, so if what you actually care about is the size of the
device, it might be better to use get_width().

Tablets return ambiguous results; some tablets self-report as mobile devices while others as desktop.

Width and height

The width and height of the browser window are only reported once, when the detect () function
is initially called. If the user resizes the browser window, the new dimensions are not reported until
the page is refreshed.

See Also

detect(), get_browser(), get_browser_version(), get_os(), get_os_version(), get_device(),
get_width(), get_height(), get_user_agent(), SUPPORTED_BROWSERS, SUPPORTED_DEVICES,
SUPPORTED_OPERATING_SYSTEMS

get_browser 5

Examples

if (interactive()) {
library(shiny)

ui <- fluidPage(
shinybrowser: :detect(),
"Your browser information:",
verbatimTextOutput("browser_info")

)

server <- function(input, output, session) {
output$browser_info <- renderPrint({

shinybrowser::get_all_info()

»

}

shinyApp(ui, server)

get_browser Get user’s browser

Description

Get the user’s browser name (such as "Chrome" or "Firefox") and version.

The value is reactive, therefore it must be accessed inside a reactive context (such as an observe
or reactive).

{shinybrowser} must be initialized with a call to detect () in the app’s ui.

Usage

get_browser()

get_browser_version()

Value

User’s detected browser type

User’s detected browser version

Accuracy

It’s important to understand there is no reliable way to detect the information in {shinybrowser}
with 100% accuracy.

{shinybrowser} makes a best effort at identifying the most accurate information, but some browser/operating
system combinations may be difficult to identify. Users can also use a variety of tools to deliberately
spoof this information.

6 get_device

With that in mind, {shinybrowser} should detect the correct information in most cases.

Supported values

Only major browsers and operating systems are supported, which means that the RStudio Viewer
may result in an "UNKNOWN" browser, and unpopular operating systems may also result in "UN-
KNOWN".

For a list of values that can be detected, sese SUPPORTED_BROWSERS, SUPPORTED_DEVICES,
and SUPPORTED_OPERATING_SYSTEMS.

See Also

detect(),get_all_info(), is_browser_ie(), is_browser_chrome(), is_browser_firefox(),
SUPPORTED_BROWSERS

Examples

if (interactive()) {
library(shiny)

ui <- fluidPage(
shinybrowser: :detect(),
"Your browser:",
textOutput("browser_info")
)
server <- function(input, output, session) {
output$browser_info <- renderText({
paste(shinybrowser: :get_browser(), "version”, shinybrowser::get_browser_version())
»
}

shinyApp(ui, server)

get_device Get user’s device (mobile or desktop)

Description

The value is reactive, therefore it must be accessed inside a reactive context (such as an observe or
reactive).

{shinybrowser} must be initialized with a call to detect () in the app’s ui.

Usage

get_device()

get_device

Value

User’s detected decive type ("Mobile" or "Desktop")

Accuracy

It’s important to understand there is no reliable way to detect the information in {shinybrowser}
with 100% accuracy.

{shinybrowser} makes a best effort at identifying the most accurate information, but some browser/operating
system combinations may be difficult to identify. Users can also use a variety of tools to deliberately
spoof this information.

With that in mind, {shinybrowser} should detect the correct information in most cases.

Mobile vs desktop vs tablet

{shinybrowser} attempts to detect whether a device is "mobile" or "desktop". The distinction be-
tween mobile and desktop is not always clear, so if what you actually care about is the size of the
device, it might be better to use get_width().

Tablets return ambiguous results; some tablets self-report as mobile devices while others as desktop.

See Also

detect(),get_all_info(), is_device_mobile(), is_device_desktop(), get_width(), get_height()

Examples

if (interactive()) {
library(shiny)

ui <- fluidPage(
shinybrowser: :detect(),
"Your device:",
textOutput(”device_info")
)
server <- function(input, output, session) {
output$device_info <- renderText({
shinybrowser: :get_device()
»
}

shinyApp(ui, server)

8 get_os

get_os Get user’s operating system

Description

Get the user’s operating system (such as "Windows" or "Mac" or "Android") and version (such as
"10" for Windows or "OS X" for Mac).

The value is reactive, therefore it must be accessed inside a reactive context (such as an observe
or reactive).

{shinybrowser} must be initialized with a call to detect () in the app’s ui.

Usage

get_os()

get_os_version()

Value

User’s detected operating system

User’s detected operating system version

Accuracy

It’s important to understand there is no reliable way to detect the information in {shinybrowser}
with 100% accuracy.

{shinybrowser} makes a best effort at identifying the most accurate information, but some browser/operating
system combinations may be difficult to identify. Users can also use a variety of tools to deliberately
spoof this information.

With that in mind, {shinybrowser} should detect the correct information in most cases.

Supported values

Only major browsers and operating systems are supported, which means that the RStudio Viewer
may result in an "UNKNOWN" browser, and unpopular operating systems may also result in "UN-
KNOWN".

For a list of values that can be detected, sese SUPPORTED_BROWSERS, SUPPORTED_DEVICES,
and SUPPORTED_OPERATING_SYSTEMS.

See Also
detect(),get_all_info(), is_os_windows(), is_os_mac(), SUPPORTED_OPERATING_SYSTEMS

get_user_agent 9

Examples

if (interactive()) {
library(shiny)

ui <- fluidPage(
shinybrowser: :detect(),
"Your operating system:",
textOutput("os_info")
)
server <- function(input, output, session) {
output$os_info <- renderText({
paste(shinybrowser::get_os(), "version”, shinybrowser::get_os_version())
»
}

shinyApp(ui, server)

get_user_agent Get user agent string from the browser

Description

This function exposes the user agent that is reported by the browser, but it should only be used for
troubleshooting purposes.

The value is reactive, therefore it must be accessed inside a reactive context (such as an observe
or reactive).

{shinybrowser} must be initialized with a call to detect () in the app’s ui.

Usage

get_user_agent()

Value

User’s user-agent string

See Also

detect(), get_all_info()

Examples

if (interactive()) {
library(shiny)

ui <- fluidPage(
shinybrowser: :detect(),

10 get_width

"Your user agent:",
textOutput("ua_info")
)
server <- function(input, output, session) {
output$ua_info <- renderText({
shinybrowser: :get_user_agent()
»
}
shinyApp(ui, server)

}

get_width Get user’s browser dimensions (in pixels)

Description

The value is reactive, therefore it must be accessed inside a reactive context (such as an observe or
reactive).

{shinybrowser} must be initialized with a call to detect () in the app’s ui.

Usage

get_width()

get_height()

Value

User’s detected browser width in pixels

User’s detected browser height in pixels

Width and height

The width and height of the browser window are only reported once, when the detect () function
is initially called. If the user resizes the browser window, the new dimensions are not reported until
the page is refreshed.

See Also

detect(), get_all_info()

Examples

if (interactive()) {
library(shiny)

ui <- fluidPage(
shinybrowser: :detect(),

is_browser _chrome 11

"Your browser dimensions:",
textOutput("browser_dim")
)
server <- function(input, output, session) {
output$browser_dim <- renderText({
paste@(shinybrowser::get_width(), "x

”

, shinybrowser::get_height())

D
}
shinyApp(ui, server)
3
is_browser_chrome Is the user using Chrome?
Description

Convenience function that checks if the user’s browser is detected as Chrome. See get_browser ()
for details.

Usage

is_browser_chrome()

Value

Whether or not this user using Chrome

Examples

if (interactive()) {
library(shiny)

ui <- fluidPage(
shinybrowser: :detect(),
"Are you using Chrome?",
textOutput("result”)

)

server <- function(input, output, session) {
output$result <- renderText({

shinybrowser: :is_browser_chrome()

»

}

shinyApp(ui, server)

12 is_browser _ie

is_browser_firefox Is the user using Firefox?

Description

Convenience function that checks if the user’s browser is detected as Firefox. See get_browser()
for details.

Usage

is_browser_firefox()

Value

Whether or not this user using Firefox

Examples

if (interactive()) {
library(shiny)

ui <- fluidPage(
shinybrowser: :detect(),
"Are you using Firefox?",
textOutput("result”)

)

server <- function(input, output, session) {
output$result <- renderText({

shinybrowser: :is_browser_firefox()

»

}

shinyApp(ui, server)

is_browser_ie Is the user using Internet Explorer?

Description

Convenience function that checks if the user’s browser is detected as Internet Explorer. See get_browser ()
for details.

Usage

is_browser_ie()

is_device_desktop 13

Value

Whether or not this user using Internet Explorer

Examples

if (interactive()) {
library(shiny)

ui <- fluidPage(
shinybrowser: :detect(),
"Are you using Internet Explorer?”,
textOutput("result”)

)

server <- function(input, output, session) {
output$result <- renderText({

shinybrowser::is_browser_ie()

»
}
shinyApp(ui, server)
}
is_device_desktop Is the user on a desktop device?
Description

Convenience function that checks if the user’s device is detected as desktop. See get_device() for
details.

Usage

is_device_desktop()

Value

Whether or not this user is on desktop

Examples

if (interactive()) {
library(shiny)

ui <- fluidPage(
shinybrowser: :detect(),
"Are you on desktop?”,
textOutput("result”)

)

server <- function(input, output, session) {
output$result <- renderText({

14 is_device_mobile

shinybrowser: :is_device_desktop()

»
3
shinyApp(ui, server)
3
is_device_mobile Is the user on a mobile device?
Description

Convenience function that checks if the user’s device is detected as mobile. See get_device() for
details.

Usage

is_device_mobile()

Value

Whether or not this user is on mobile

Examples

if (interactive()) {
library(shiny)

ui <- fluidPage(
shinybrowser: :detect(),
"Are you on mobile?”,
textOutput("result”)
)
server <- function(input, output, session) {
output$result <- renderText({
shinybrowser::is_device_mobile()
»
}

shinyApp(ui, server)

1S_0s_mac 15

is_os_mac Is the user on Mac?

Description

Convenience function that checks if the user’s operating system is detected as Mac. See get_os()
for details.

Usage

is_os_mac()

Value

Whether or not this user using MacOS

Examples

if (interactive()) {
library(shiny)

ui <- fluidPage(
shinybrowser: :detect(),
"Are you on Mac?"”,
textOutput("result”)
)
server <- function(input, output, session) {
output$result <- renderText({
shinybrowser::is_os_mac()
»
}

shinyApp(ui, server)

is_os_windows Is the user on Windows?

Description
Convenience function that checks if the user’s operating system is detected as Windows. See
get_os() for details.

Usage

is_os_windows()

16 SUPPORTED_OPERATING_SYSTEMS

Value

Whether or not this user using Windows

Examples

if (interactive()) {
library(shiny)

ui <- fluidPage(
shinybrowser: :detect(),
"Are you on Windows?",
textOutput("result”)

)

server <- function(input, output, session) {
output$result <- renderText({

shinybrowser::is_os_windows()

»

3

shinyApp(ui, server)

SUPPORTED_BROWSERS Browsers that can be detected with {shinybrowser}

Description

Browsers that can be detected with {shinybrowser}

SUPPORTED_DEVICES Devices that can be detected with {shinybrowser}

Description

Devices that can be detected with {shinybrowser}

SUPPORTED_OPERATING_SYSTEMS
Operating systems that can be detected with {shinybrowser}

Description

Operating systems that can be detected with {shinybrowser}

Index

+ datasets
SUPPORTED_BROWSERS, 16
SUPPORTED_DEVICES, 16
SUPPORTED_OPERATING_SYSTEMS, 16

detect, 2
detect(), 3-10

get_all_info, 3
get_all_info(), 3, 6-10
get_browser, 5
get_browser(), 3,4,11, 12
get_browser_version (get_browser), 5
get_browser_version(), 4
get_device, 6
get_device(), 3,4, 13, 14
get_height (get_width), 10
get_height(), 4,7
get_os, 8

get_os(),3, 4,15
get_os_version (get_os), 8
get_os_version(), 4
get_user_agent, 9
get_user_agent(), 4
get_width, 10
get_width(), 3, 4,7

is_browser_chrome, 11
is_browser_chrome(), 6
is_browser_firefox, 12
is_browser_firefox(), 6
is_browser_ie, 12
is_browser_ie(), 6
is_device_desktop, 13
is_device_desktop(), 7
is_device_mobile, 14
is_device_mobile(), 7
is_os_mac, 15
is_os_mac(), 8
is_os_windows, 15

17

is_os_windows(), 8
observe, 3, 5, 6, 8-10
reactive, 3, 5, 6, 8—10

SUPPORTED_BROWSERS, 2, 4, 6, 8, 16
SUPPORTED_DEVICES, 2,4, 6, 8, 16
SUPPORTED_OPERATING_SYSTEMS, 2,4, 6, 8, 16

	detect
	get_all_info
	get_browser
	get_device
	get_os
	get_user_agent
	get_width
	is_browser_chrome
	is_browser_firefox
	is_browser_ie
	is_device_desktop
	is_device_mobile
	is_os_mac
	is_os_windows
	SUPPORTED_BROWSERS
	SUPPORTED_DEVICES
	SUPPORTED_OPERATING_SYSTEMS
	Index

