
Package ‘shiftR’
October 14, 2022

Type Package

Title Fast Enrichment Analysis via Circular Permutations

Version 1.5

Date 2019-03-21

Description Fast enrichment analysis for locally correlated statistics
via circular permutations.
The analysis can be performed at multiple significance thresholds
for both primary and auxiliary data sets with
efficient correction for multiple testing.

BugReports https://github.com/andreyshabalin/shiftR/issues

URL https://github.com/andreyshabalin/shiftR

License LGPL-3

Imports parallel

Suggests knitr, rmarkdown, pander

VignetteBuilder knitr

NeedsCompilation yes

Author Andrey A Shabalin [aut, cre] (<https://orcid.org/0000-0003-0309-6821>),
Edwin J C G van den Oord [aut]

Maintainer Andrey A Shabalin <andrey.shabalin@gmail.com>

Repository CRAN

Date/Publication 2019-03-22 09:50:03 UTC

R topics documented:
shiftR-package . 2
cramerV . 2
enrichmentAnalysis . 3
getOffsets . 5
matchDatasets . 6
shiftrPermBinary . 8

1

https://github.com/andreyshabalin/shiftR/issues
https://github.com/andreyshabalin/shiftR
https://orcid.org/0000-0003-0309-6821

2 cramerV

shiftrPrepare . 10
simulate . 11
singlePermutation . 12

Index 14

shiftR-package Fast Enrichment Analysis via Circular Permutations

Description

Fast enrichment analysis for locally correlated statistics via circular permutations. The analysis can
be performed at multiple significance thresholds for both primary and auxiliary data sets with with
efficient correction for multiple testing.

Details

Package: shiftR
Type: Package
License: LGPL-3
Depends: methods

Author(s)

Andrey A Shabalin <andrey.shabalin@gmail.com>

See Also

See the main function shiftrPermBinary for more info.

Run browseVignettes("shiftR") for the vignette.

cramerV Calculate Cramer’s V (phi) Coefficient

Description

This functions calculates Cramer’s V coefficient for overlap of two binary data sets.

Usage

cramerV(sum12, sum1, sum2, len)

enrichmentAnalysis 3

Arguments

len Total number of elements in each data set.

sum1 Number of active features in data set 1.

sum2 Number of active features in data set 1.

sum12 Number of simultaneously active features in the data sets.

Value

Returns the Cramer’s V coefficient.

Note

The parameters can be single values or vectors.

Author(s)

Andrey A Shabalin <andrey.shabalin@gmail.com>

Examples

Zero score for perfect independence
cramerV(100,10000,10000,1000000)

Positive score for increased overlap
cramerV(150,10000,10000,1000000)

Negative score for decreased overlap
cramerV(50,10000,10000,1000000)

We can input a vector for sum12
cramerV(99:101,10000,10000,1000000)

enrichmentAnalysis Fast Enrichment Testing via Circular Permutations on Non-Binary
Outcomes

Description

This function performs enrichment analysis on two sets of matching test statistics. The circular
permutation scheme accounts for possible local correlation of test statistcs. The testing is performed
using the quantile thresholds provided for each data set.

For every permutation the enrichment is measure with Cramer’s V coefficient. The maximum/minimum
coefficient across all considered thresholds is recorded. It is then compared with the maximum/minimum
coefficient observed without permuting the data.

For matching data sets calculated at different genomic locations please use matchDatasets.

4 enrichmentAnalysis

Usage

enrichmentAnalysis(
pvstats1,
pvstats2,
percentiles1 = NULL,
percentiles2 = NULL,
npermute,
margin = 0.05,
threads = 1)

Arguments

pvstats1 The vector of statistics for primary data set.
The statistics must be p-value like, i.e. smaller is better.

pvstats2 The vector of statistics for auxiliary data set.
The statistics must be p-value like, i.e. smaller is better.

percentiles1 These quantile thresholds are used to cut off top results in the primary data set
for matching with the top results in the auxiliary.
Can be omitted if the vector pvstats1 is binary.

percentiles2 Same as percentiles1, but for the other data set.

npermute Number of permutations to perform.

margin The minimum offset in the circular permutation to consider.
Can be a fraction of total number of values or an integer count of values.
Passed in the call of getOffsetsRandom for generation of offsets.

threads The number of CPU cores to use for calculations.
Set to TRUE to use all cores.
Multithreading is turned off by default.

Value

Returns a list with:

overallPV The p-values for the overall test across all thresholds.
The p-values are for enrichment, depletion, and two-sided test for both.

byThresholdPV The p-values for tests for each individual threshold.
The p-values provided for enrichment, depletion, and two-sided test.

Author(s)

Andrey A Shabalin <andrey.shabalin@gmail.com>

Examples

Data size
n = 1e5

Generate vectors of test statistics with local correlation

getOffsets 5

window = 1000
pvstats1 = diff(cumsum(runif(n+window)), lag = window)
pvstats2 = diff(cumsum(runif(n+window)), lag = window)

Add a bit of dependence
pvstats1 = pvstats1 + 0.5 * pvstats2

test top 0.1, 1, 3, 5, and 10 percent

percentiles1 = c(0.001, 0.01, 0.03, 0.05, 0.1)
percentiles2 = c(0.001, 0.01, 0.03, 0.05, 0.1)

The offset margin

margin = 0.05

Set the number of permutations
to the maximum

npermute = 1e3

enr = enrichmentAnalysis(
pvstats1,
pvstats2,
percentiles1,
percentiles2,
npermute,
margin ,
threads = 2)

View the results
enr

getOffsets Generate Random or Uniformly Spaced Permutation Offsets

Description

This functions generate offsets for permutation analysis with shiftrPermBinary. Random, uni-
formly spaced, and complete sets are available via getOffsetsRandom, getOffsetsUniform, and
getOffsetsAll functions respectively.
The function getNOffestsMax calculates the maximum number of permutations (given the margin).

Usage

getOffsetsRandom(n, npermute, margin = 0.05)
getOffsetsUniform(n, npermute, margin = 0.05)
getOffsetsAll(n, margin)

getNOffsetsMax(n, margin)

6 matchDatasets

Arguments

n Number of features in the permuted sets.
npermute The number of offsets to be generated (number of permutations).
margin Offsets by less than margin*n or more than (1-margin)*n are not generated.

Value

Returns a set of permutation offsets for use in shiftrPermBinary function.
The set of offsets is

1. random for getOffsetsRandom,
2. uniformly spaced for getOffsetsUniform, or
3. all possible for getOffsetsAll.

The function getNOffestsMax returns the maximum number of permutations (given the margin).

Author(s)

Andrey A Shabalin <andrey.shabalin@gmail.com>

Examples

Number of features, permutations, and margin
n = 100
npermute = 20
margin = 0.1

Maximum number of permutations
Should be 81 (from 10 to 90)
getNOffsetsMax(n, margin)

Random offsets
getOffsetsRandom(n, npermute, margin)

Uniformly spaced offsets
getOffsetsUniform(n, npermute, margin)

All possible offsets
getOffsetsAll(n, margin)

matchDatasets Match Two Data Sets by Location

Description

The goal of this function is to match records in the data sets for subsequent enrichment analysis.

For each record in the primary data set (data1) it finds the record in the auxiliary data set (data1)
which overlap with it or lie within the flanking distance (flank). If multiple such auxiliary record
are found, we select the one with the center closest to the center of the primary record. If no such
record is available, no matching is made for the primary record.

matchDatasets 7

Usage

matchDatasets(data1, data2, flank = 0)

Arguments

data1 A data frame with the primary data set, must have at least 4 columns:

1. Chromosome name.
2. Start position.
3. End position.
4. P-value or test statistic.
5. Optional additional columns.

data2 A data frame with the auxiliary data set.
Must satisfy the same format criteria as the primary data set.

flank Allowed distance between matched records.
Set to zero to require overlap.

Value

Returns a list with matched data sets.

data1 The primary data sets without unmatched records.

data2 The auxiliary data set records matching those in data1 above.
Note that some auxiliary records can get duplicated if they are the best match
for multiple records in the primary data.

Note

For a technical reason, the chromosome positions are assumed to be no greater than 1e9.

Author(s)

Andrey A Shabalin <andrey.shabalin@gmail.com>

Examples

data1 = read.csv(text =
"chr,start,end,stat
chr1,100,200,1
chr1,150,250,2
chr1,200,300,3
chr1,300,400,4
chr1,997,997,5
chr1,998,998,6
chr1,999,999,7")

data2 = read.csv(text =
"chr,start,end,stat
chr1,130,130,1

8 shiftrPermBinary

chr1,140,140,2
chr1,165,165,3
chr1,200,200,4
chr1,240,240,5
chr1,340,340,6
chr1,350,350,7
chr1,360,360,8
chr1,900,900,9")

Match data sets exactly.
matchDatasets(data1, data2, 0)

Match data sets with a flank.
The last records are now matched.
matchDatasets(data1, data2, 100)

shiftrPermBinary Fast Enrichment Testing on Binary Outcomes via Circular Permuta-
tions

Description

This function performs very fast feature enrichment permutation testing between two binary data
sets. Circular permutations are used instead of simple permutations to preserve local dependence of
test statistics. The input data sets can be preprocessed with shiftrPrepareLeft and shiftrPrepareRight
functions.

Usage

shiftrPermBinary(
left,
right,
offsets,
alsoDoFisher = TRUE,
returnPermOverlaps = FALSE)

Arguments

left The first vector of binary (0/1) outcomes.
For repeated use it can be preprocessed with shiftrPrepareLeft function.

right The second vector of binary (0/1) outcomes.
For repeated use it can be preprocessed with shiftrPrepareRight function.

offsets Vector of offsets, can be generated by getOffsetsRandom, getOffsetsUniform,
or getOffsetsAll.

alsoDoFisher If TRUE, also perform Fisher exact test (via fisher.test).
returnPermOverlaps

If TRUE return overlap counts under all tested permutations.

shiftrPermBinary 9

Value

Returns a list with:

nfeatures Number of features in input data sets.

lfeatures Number of active features in the left data set.

rfeatures Number of active features in the right data set.

overlap Number of features simultaneously active in both data sets.
overlapUnderNull

Expected value of overlap if input data sets were independent.

enrichment Enrichment ratio, equal to overlap / overlapUnderNull

permPVenrich Permutation p-value for enrichment (one-sided).

permPVdeplete Permutation p-value for depletion (one-sided).

permPV Permutation p-value for depletion (two-sided).

permZ Permutation z-statistic, calculated by fitting normal distribution to the overlap
values under permutations.
Positive values indicate enrichment.

fisherTest Fisher exact test, as output by fisher.test

fisherMat Input 2x2 matrix for Fisher exact test.

overlapsPerm Vector of length npermute with overlap values under permutations.

Author(s)

Andrey A Shabalin <andrey.shabalin@gmail.com>

See Also

This function essentially involves npermute calls of singlePermutation function and calculation
of summary statistics and p-values.

Examples

Number of features
nf = 1e6
npermute = 10000

Generate data sets
The vector of a few common active feature to create dependence
common = sample(c(0L,1L), size = nf, replace = TRUE, prob = c(0.999,0.001))

Left and right data sets with the common active features
lset = sample(c(0L,1L), size = nf, replace = TRUE, prob = c(0.8,0.2)) | common
rset = sample(c(0L,1L), size = nf, replace = TRUE, prob = c(0.8,0.2)) | common

offsets = getOffsetsUniform(n = nf, npermute = npermute)

show(head(offsets))
show(tail(offsets))

10 shiftrPrepare

z = shiftrPermBinary(lset, rset, offsets)

show(z)

shiftrPrepare Prepare Data for Fast Circular Permutation Analysis

Description

The concept of circular permutations is symmetric with respect to the input data sets. The algorithm
for circular permutation calculation is, however, not symmetric with respect to two datasets and
thus the required data preprocessing is also different. For simplicity, we call the data sets ’left’ and
’right’.

Usage

shiftrPrepareLeft(set)
shiftrPrepareRight(set)

Arguments

set A 0/1 vector defining selected (genomic) features. The ’left’ and ’right’ sets
must have equal length. The enrichment of their overlap can be assessed w ith
shiftrPermBinary function.

Value

Returns objects of class fcpLeft and fcpRight respectively. The returned objects are used in
singlePermutation and shiftrPermBinary functions.

Author(s)

Andrey A Shabalin <andrey.shabalin@gmail.com>

See Also

See codeshiftrPermBinary function and the respective example.

Examples

Number of features
nf = 1e6

Generate left and right sets
lset = sample(c(0L,1L), size = nf, replace = TRUE)
rset = sample(c(0L,1L), size = nf, replace = TRUE)

Prepare binary sets:

simulate 11

lbin = shiftrPrepareLeft(lset)
rbin = shiftrPrepareRight(rset)

Check object sizes
Notice asymetry in binary object sizes

object.size(lset)
object.size(rset)
object.size(lbin)
object.size(rbin)

simulate Generate Artificial Data for Tests and Illustrations

Description

These functions generate two artificial data sets with local dependence of observations.

Usage

simulateNumeric(n, corWithin, corAcross = 0)
simulateBinary(n, corWithin, corAcross = 0)

Arguments

n Total number of elements in each data set.

corWithin Correlation of adjacent observations within each data set.

corAcross Correlation of observations across data sets.

Value

Returns the Cramer’s V coefficient.

Note

The simulateNumeric function generates two data sets with elements having standard normal dis-
tribution.

The simulateBinary function generates data sets with 0/1 values by thresholding the numeric data
sets from simulateNumeric.

The simulatePValues function generates data sets of p-values by applying pnorm to the data sets
from simulateNumeric.

Author(s)

Andrey A Shabalin <andrey.shabalin@gmail.com>

12 singlePermutation

Examples

n = 100000
sim = simulateNumeric(n, 0.5, 0.3)

Means should be close to 0 (zero)
mean(sim$data1)
mean(sim$data2)

Variances should be close to 1
var(sim$data1)
var(sim$data2)

Correlation of adjacent observations
should be close to 0.5
cor(sim$data1[-1], sim$data1[-n])
cor(sim$data2[-1], sim$data2[-n])

Correlation between data sets
should be close to 0.3
cor(sim$data1, sim$data2)

singlePermutation Count Feature Overlap Under a Permutation

Description

This function performs fast feature overlap count under a circular permutation. The input data sets
must be preprocessed with shiftrPrepareLeft and shiftrPrepareRight functions.

Usage

singlePermutation(left, right, offset)

Arguments

left Feature set prepared with shiftrPrepareLeft function.

right Feature set prepared with shiftrPrepareRight function.

offset Offset of one feature set relative to another. See the example below for clarity.
Zero indicate no offset, i.e. simply count feature overlap.

Value

Returns count of feature overlap under a circular permutation.

Author(s)

Andrey A Shabalin <andrey.shabalin@gmail.com>

singlePermutation 13

Examples

Number of features
nf = 1e6

Generate left and right sets
lset = sample(c(0L,1L), size = nf, replace = TRUE)
rset = sample(c(0L,1L), size = nf, replace = TRUE) | lset

Prepare binary sets:
lbin = shiftrPrepareLeft(lset)
rbin = shiftrPrepareRight(rset)

count feature overlap
R calculations
overlapS = sum(lset & rset)
Binary calculations
overlapF = singlePermutation(lbin, rbin, 0)

message("Feature overlap: ",
overlapS, " / ", overlapF,
" (slow/fast count)")

stopifnot(overlapS == overlapF)

Count overlap with offset
offset = 2017
R calculations
overlapOS = sum(lset[c((offset+1):nf, 1:offset)] & rset)
Binary calculations
overlapOF = singlePermutation(lbin, rbin, offset)

message("Feature overlap at offset: ",
overlapOS, " / ", overlapOF,
" (slow/fast count)")

stopifnot(overlapOS == overlapOF)

Index

∗ shiftR
shiftR-package, 2

cramerV, 2

enrichmentAnalysis, 3

fisher.test, 8, 9

getNOffsetsMax (getOffsets), 5
getOffsets, 5
getOffsetsAll (getOffsets), 5
getOffsetsRandom, 4
getOffsetsRandom (getOffsets), 5
getOffsetsUniform (getOffsets), 5

matchDatasets, 3, 6

pnorm, 11

shiftR-package, 2
shiftrPermBinary, 2, 5, 6, 8, 10
shiftrPrepare, 10
shiftrPrepareLeft, 8, 12
shiftrPrepareLeft (shiftrPrepare), 10
shiftrPrepareRight, 8, 12
shiftrPrepareRight (shiftrPrepare), 10
simulate, 11
simulateBinary (simulate), 11
simulateNumeric (simulate), 11
simulatePValues (simulate), 11
singlePermutation, 9, 10, 12

14

	shiftR-package
	cramerV
	enrichmentAnalysis
	getOffsets
	matchDatasets
	shiftrPermBinary
	shiftrPrepare
	simulate
	singlePermutation
	Index

