Package ‘seqmon’

May 18, 2024

Type Package

Title Group Sequential Design Class for Clinical Trials
Version 2.5

Date 2024-05-06

Author David A Schoenfeld and Hui Zheng
Maintainer Hui Zheng <hzhengl@mgh.harvard.edu>

Description S4 class object for creating and managing group sequential designs. It calculates the effi-
cacy and futility boundaries at each look. It allows modifying the design and tracking the de-
sign update history.

License MIT + file LICENSE

Depends methods

Suggests roxygen2

NeedsCompilation no

Repository CRAN

Date/Publication 2024-05-17 23:50:08 UTC
RoxygenNote 7.3.1

R topics documented:

segmon-package L. L. e e e 2
alphaspend 3
alphaspendf 3
betaspend L e e e e e 4
betaspendf 5
calcBoundaries L 5
curtail . . . L e 6
curtailDesign oL 7
getProbabilities 7
plotBoundaries 8
printDesign e e e 8
SEAMON .+ ¢ v v e et e e e e e e e e e e e e e e e e e e e 9

2 seqmon-package
sequential.design L L e e e 10
sequential.design-class e 11
setAlphaspendfString 12
setBaseAlphaspendf 13
setBaseBetaspendf L 13
setBetaspendfString oL 14
setCurrentLook L e 15
setDatestamp 15
setNoncentrality L e e e 16
setTimes e 17
summaryDesign 17
updateDesign 18

Index 20

segmon-package seqmon

Description

a package for creating, monitoring and modifying a group sequential design
Details
The DESCRIPTION file: DESCRIPTION
Author(s)
David A Schoenfeld, PhD and Hui Zheng, PhD
References
Proschan, MA, Lan, KKG, Wittes, JT, Statistical Monitoring of Clinical Trials: A Unified Ap-
proach, Springer, 2006
Schoenfeld DA, "A Simple Algorithm for Designing Group Sequential Clinical Trials", Biometrics.
2001 Sep;57(3):972-4.
Examples

designi<-sequential.design()
designi<-calcBoundaries(design1)
printDesign(design1)
summaryDesign(design1)

alphaspend

alphaspend Function that calculates the upper boundaries for efficacy

Description

Calculates the upper boundaries for efficacy at each look time

Usage
alphaspend(levels, t, int = rep(500, length(t)), tol = 0.005)

Arguments
levels The cumulative alpha spending at each look time
t Normalized look times
int The number of intervals the solution space is partitioned into
tol Tolerance of the solution using uniroot
Value
numeric
Examples

f<- function(t) 0.025%t"4

t<-c(0.33,0.67,1)

cum_probs<-f(t)

alphaspend(levels=cum_probs,t,int=rep(500, length(t)),tol=0.005)

alphaspendf The default alpha spending function

Description

The default alpha spending function

Usage
alphaspendf (t)

Arguments

t The normalized look times

4 betaspend

Value

numeric

Examples

t<-c(0.33,0.67,1)
alphas<-alphaspendf(t)

The function is currently defined as
function (t)
0.025 x t*4

betaspend Function that calculates the lower boundaries for futility

Description

Calculates the lower boundaries for futility at each look

Usage

betaspend(levels, upperboundary, t, int = rep(500, length(t)), noncent, tol = 0.005)

Arguments

levels The cumulative beta spending at each look time

upperboundary The upper efficacy boundaries at each look

t Normalized look times
int The numbers of intervals the solution space is partitioned into
noncent The noncentrality parameter
tol Tolerance of the solution using uniroot
Value
numeric
Examples

f<- function(t) 0.025xt"4

g<- function(t) 0.15%t*3

t<-c(0.33,0.67,1)

cum_alphas<-f(t)

cum_betas<-g(t)

noncent<-gnorm(@.975)+gnorm(@.85)

upper_boundaries<-alphaspend(cum_alphas,t,int=rep(500, length(t)),tol=0.005)
lower_boundaries<-betaspend(cum_betas, upper_boundaries, t, int = rep(500,3), noncent, tol = 0.005)

betaspendf

betaspendf The default beta spending function

Description

The default beta spending function

Usage
betaspendf(t)

Arguments

t The normalized look times

Value

numeric

Examples

t<-c(0.33,0.67,1)
betas<-betaspendf(t)

The function is currently defined as
function (t)
0.15 x t*3

calcBoundaries Function for calculating the efficacy and futility boundaries

Description

Calculates the efficacy and futility boundaries. This only needs to be done once for a new design.

Usage

calcBoundaries(theObject)

Arguments

theObject The sequential design object

Value

numeric

6 curtail

Examples

designi<-sequential.design()
designi<-calcBoundaries(design1)
designi@lower.boundary
designl@upper.boundary

curtail Generic function that calculates the probability to declare efficacy at
the end of study given the Z value at the current look

Description

Calculates the probability to declare efficacy at the end of study given the Z value at the current
look

Usage

curtail (lower.boundary,upper.boundary,look,t,noncen,current=lower.boundary[look])

Arguments

lower.boundary lower boundaries

upper.boundary upper boundaries

look current look number
t time of looks
noncen noncentrality parameter
current current Z statistic
Value
numeric
Examples

t<-c(0.33,0.67,1)

f<- function(t) 0.025xt"4
g<-function(t) 0.20xt"3

a<-f(t)

b<-g(t)
noncen<-pnorm(@.975)+pnorm(@.8)
curtail(b,a,1,t,noncen)

curtailDesign 7

curtailDesign Function for calculating the probability for efficacy given known in-
formation

Description

calculates the probability for efficacy given the Z value

Usage

curtailDesign(theObject, current®)

Arguments

theObject The sequential design object

current® The current Z value

Value

numeric

Examples

designi<-sequential.design()
designi<-calcBoundaries(designi)
designi<-setCurrentLook(design1,1)
probl<-curtailDesign(design1,1.5)

getProbabilities Function that calculates the cumulative probabilities to declare effi-
cacy and futility

Description
Calculates the cumulative probabilities to declare efficacy and futility under the null hypothesis and
the alternative hypothesis. It also returns the p-values for declaring efficacy and futility.

Usage

getProbabilities(theObject)

Arguments

theObject The sequential design object

8 printDesign

Value

numeric

Examples

designi<-sequential.design()
probs<-getProbabilities(design1)

plotBoundaries Function that plots the efficacy and futility boundaries

Description

Plots the efficacy and futility boundaries

Usage

plotBoundaries(theObject)

Arguments

theObject The sequential design object

Examples

designi<-sequential.design()
designl<-calcBoundaries(designl)
plotBoundaries(designl)

printDesign Function that displays the features of the design

Description

Displays the look times, the base alpha and beta spending functions, and the noncentrality parameter

Usage
S4 method for signature 'sequential.design'
printDesign(theObject)

Arguments

theObject An object of class sequential.design.

seqmon 9

Value

Prints the details to the console.

Examples

designi<-sequential.design()
designi<-calcBoundaries(design1)
designi<-setAlphaspendfString(designl,"0.025%t"4")
designi<-setBetaspendfString(designl,"@.15%t*3")

printDesign(design1)
segmon Generic function that calculates boundary crossing probabilities used
for monitoring clinical trials
Description
Finds the probability that a sequence of standard normal random variables 21, 29, . . ., 2, derived
from a normal stochastic process with independent increments will cross a lower and and upper
boundary.
Usage

segmon(a, b, t, int = rep(500, length(t)))

Arguments
a Lower boundary as a numeric vector of length m
b Upper boundary as a numeric vector of length m
t Information times as a numeric vector of length m
int number of intervals that the Z-space is partitioned into for calculation purposes,
increasing this will improve accuracy, this is also a numeric vector of length m
Value

Produces a numeric vector of length 2m the first m components are the probability that the z;, will
be less than ay, for some k < ¢ and be less than by, for all £ < <. The second m components are the
probability that the z;, will be greater than by, for some k < ¢ and be greater than ay, for all k& < 4.

Note that the last probability in the sequence is the overall significance level of a sequential design
that uses a and b as upper and lower boundaries. To get power you subtract the u\ﬂt) from a and
b where p is the mean of z,,, under the alternative hypothesis.

References

Schoenfeld, David A. "A simple algorithm for designing group sequential clinical trials." Biomet-
rics 57.3 (2001): 972-974.

10 sequential.design

Examples

seqgmon(a=c(0,0,0), b=c(gnorm(1-0.005),qnorm(1-0.005),2.025),
t=c(.33,.66,1), int = rep(500, 3))

t=c(.33,.66,1)

u=(gnorm(.8)+gnorm(1-0.025))

seqgmon(a=c(0,0,0)-uxsqrt(t), b=c(gnorm(1-0.005),gnorm(1-0.005),2.025)-u*sqrt(t),
t=c(.33,.66,1), int = rep(500, 3))

sequential.design The sequential design class

Description

The S4 sequential design class

Usage

sequential.design(...)

Arguments

Additional arguments passed to the methods.

Details

The sequential design class stores the information of a sequential design, including revision history.

Value

an object of the class "sequential.design"

Author(s)
David A. Schoendfeld, PhD and Hui Zheng, PhD

References

Proschan, MA; Lan, KKG; Wittes JT,"Statistical Monitoring of Clinical Trials: A Unified Ap-
proach", Chapter 6, Springer 2006.

Schoenfeld DA, "A Simple Algorithm for Designing Group Sequential Clinical Trials", Biometrics.
2001 Sep;57(3):972-4.

Examples

designi<-sequential.design()

sequential.design-class 11

sequential.design-class
Class "sequential.design”

Description

The sequential design class

Objects from the Class

Objects can be created by calls of the form sequential.design(...).

Slots

lower.boundary: Object of class "numeric”
upper.boundary: Object of class "numeric”

times: Object of class "numeric”

noncentrality: Object of class "numeric”
base.alpha.spend: Object of class "function”
base.beta.spend: Object of class "function”
base.alpha.spend.string: Object of class "character”
base.beta.spend.string: Object of class "character”
current.look: Object of class "numeric”
current.alpha.spend: Object of class "numeric”
current.beta.spend: Object of class "numeric”
times.history: Object of class "numeric”
alpha.spent.history: Object of class "numeric”
beta.spent.history: Object of class "numeric”
alpha.func.history: Object of class "numeric”
beta.func.history: Object of class "numeric”
date.stamp: Object of class "POSIXct"”

Methods

calcBoundaries signature(theObject = "sequential.design”): ...
curtailDesign signature(theObject = "sequential.design”): ...
getProbabilities signature(theObject = "sequential.design”): ...
plotBoundaries signature(theObject = "sequential.design”): ...
printDesign signature(theObject = "sequential.design”): ...

summaryDesign signature(theObject = "sequential.design”): ...

12 setAlphaspendtString

setAlphaspendfString signature(theObject = "sequential.design”): ...
setBaseAlphaspendf signature(theObject = "sequential.design”): ...
setBaseBetaspendf signature(theObject = "sequential.design”): ...
setBetaspendfString signature(theObject = "sequential.design”): ...
setCurrentLook signature(theObject = "sequential.design”): ...
setDatestamp signature(theObject = "sequential.design”): ...
setNoncentrality signature(theObject = "sequential.design"): ...
setTimes signature(theObject = "sequential.design”): ...

updateDesign signature(theObject = "sequential.design”): ...

Examples

showClass("sequential.design")

setAlphaspendfString Function that Sets the expression of the base alpha spending function
as a string

Description

Sets the expression of the base alpha spending function as a string. This function is only used if
one needs to display the base alpha spending function as a string. This function DOES NOT update
the base alpha spending function. One can use setBaseAlphaspendf() to change the base alpha
spending function. The spending functions and their string expressions should be defined only once
per object. They should not be updated during any interim update to the design.

Usage
setAlphaspendfString(theObject, string0)

Arguments
theObject The sequential design object
string@ The string of the expression of the base alpha spending function. Its argument
need to be ’t’.
Value

an object of class "sequential.design’

Examples

designi<-sequential.design()
designi<-setAlphaspendfString(designl, '0.025xt*4")

setBaseAlphaspendf 13

setBaseAlphaspendf Function that sets the base alpha spending function

Description

Sets the base alpha spending function.

Usage

setBaseAlphaspendf (theObject, funct®)

Arguments
theObject The sequential design object
functo The base alpha spending function. It needs to be defined before this method is
called.
Value

an object of class "sequential.design"

Examples

designi<-sequential.design()
fi1<-function (t) 0.025%t*3.5
designi<-setBaseAlphaspendf(designl,f1)

setBaseBetaspendf Function that sets the base beta spending function

Description

Sets the base beta spending function.

Usage

setBaseBetaspendf (theObject, funct@)

Arguments
theObject The sequential design object
functo The base beta spending function. It needs to be defined before this method is

called.

14 setBetaspendfString

Value

an object of class "sequential.design"

Examples

designi<-sequential.design()
f2<-function (t) 0.15%t*2.5
designi<-setBaseBetaspendf (designl,f2)

setBetaspendfString Function that sets the expression of the base beta spending function as
a string

Description

Sets the expression of the base beta spending function as a string. This function is only used if one
needs to display the base beta spending function as a string. This function DOES NOT update the
base beta spending function. One can use setBaseBetaspendf() to change the base beta spending
function. The spending functions and their string expressions should be defined only once per
object. They should not be updated during any interim update to the design.

Usage

setBetaspendfString(theObject, string0)

Arguments
theObject The sequential design object
string@ The string of the expression of the base beta spending function. Its argument
need to be ’t’.
Value

an object of class "sequential.design'

Examples

designi<-sequential.design()
designi<-setBetaspendfString(designl,'0.15*xt*3.5")

setCurrentLook 15

setCurrentLook Function that sets the current look number

Description

Sets the current look number. The curent look is the one that last took place.

Usage
setCurrentLook(theObject, look®)

Arguments
theObject The sequential design object
look®@ The curent look number
Details

The curent look is the one that last took place. One can only set the current look forward. If the new
current look number attempted is less than the old current look number, no action will take place
and the current look number will not be updated.

Value

an object of class "sequential.design"

Examples

designi<-sequential.design()
designi<-setCurrentLook(design1,2)

setDatestamp Function that sets the date stamp of the design object

Description

Sets the date stamp of the design object

Usage

setDatestamp(theObject, date®)

Arguments

theObject The sequential design object
dateo The date value.

16

Value

an object of class "sequential.design"

Examples

designi<-sequential.design()
designi<-setDatestamp(designl,as.POSIXct("2018-10-30"))

setNoncentrality

setNoncentrality Function that sets the noncentrality parameter

Description

Sets the noncentrality parameter.

Usage

setNoncentrality(theObject, noncent)

Arguments
theObject The sequential design object
noncent The noncentrality parameter
Details

The noncentrality paraeter is the expected drift at the end of the study. For example, if the study
has a power of 80% using a one sided Z-test with 2.5% type 1 error, the noncentrality parameter is
q(0.975)+q(0.8), where q() is the percentile function of the standard normal distribution.

Value

an object of class "sequential.design"

Examples

designi<-sequential.design()
noncent<-qnorm(@.975,0,1)+gnorm(0.8,0,1)
designi<-setNoncentrality(designi,noncent)

setTimes 17

setTimes Function that sets the look times

Description

Sets the look times. It is to be called only for the inital design, not for updating the design.

Usage

setTimes(theObject, timed)

Arguments
theObject The sequential design object
time@ The look times.

Value

an object of class "sequential.design"

Examples

designi<-sequential.design()
designi<-setTimes(designl,c(1,2,3))

summaryDesign Function that shows the cumulative probabilities for efficacy and fu-
tility

Description
Shows the cumulative probability for efficacy and futility under the null and alternative hypotheses,
the corresponding p-values, and the boundaries for Z at each look.
Usage
S4 method for signature 'sequential.design'
summaryDesign(theObject)
Arguments

theObject An object of class sequential.design.

Value

Prints a summary matrix to the console.

18 updateDesign

Examples

design2 <- calcBoundaries(sequential.design())
Summarize the design
summaryDesign(design2)

updateDesign Function that updates the design

Description
Updates the design. This can be done in the process of the study, when the future look times need
to be changed from those originally planned.

Usage

updateDesign(theObject, futureTimes)

Arguments
theObject The sequential design object
futureTimes The future look times.
Details

The efficacy and futility boundaries will be updated according to the new future look times. If the
new final look is before the planned final look, the efficacy and futility boundaries will be updated,
but the alpha and beta spending functions need not be updated. If the new final look is after the
planned final look, the efficacy and futility boundaries will be updated, as well as the alpha and
beta spending functions. The details are given in Proschan, Lan, and Wittes(2006) and Schoenfeld
(2001). No historical information such as the past look times, the past alpha and beta spent, or the
baseline spending function is updated.

Value

an object of class "sequential.design"

Author(s)
David A Schoenfeld, PhD and Hui Zheng, PhD

References

Proschan, MA; Lan, KKG; Wittes JT,"Statistical Monitoring of Clinical Trials: A Unified Ap-
proach"”, Chapter 6, Springer 2006.

Schoenfeld DA, "A Simple Algorithm for Designing Group Sequential Clinical Trials", Biometrics.
2001 Sep;57(3):972-4.

updateDesign

Examples

designi<-sequential.design()
designi<-setTimes(designl,c(1,2))
designi<-calcBoundaries(design1)
designi<-setCurrentLook(design1,1)
design2<-updateDesign(designi,c(3))

19

Index

* classes
sequential.design-class, 11

alphaspend, 3
alphaspendf, 3

betaspend, 4
betaspendf, 5

calcBoundaries, 5

calcBoundaries, sequential.design-method
(sequential.design-class), 11

curtail, 6

curtailDesign, 7

curtailDesign,sequential.design-method
(sequential.design-class), 11

getProbabilities, 7
getProbabilities, sequential.design-method
(sequential.design-class), 11

plotBoundaries, 8

plotBoundaries, sequential.design-method
(sequential.design-class), 11

print,sequential.design-method
(sequential.design-class), 11

printDesign, 8

printDesign, sequential.design-method
(printDesign), 8

segmon, 9

segmon-package, 2

sequential.design, 10

sequential.design,sequential.design-class
(sequential.design-class), 11

sequential.design-class, 11

setAlphaspendfString, 12

setAlphaspendfString, sequential.design-method
(sequential.design-class), 11

setBaseAlphaspendf, 13

20

setBaseAlphaspendf, sequential.design-method
(sequential.design-class), 11

setBaseBetaspendf, 13

setBaseBetaspendf, sequential.design-method
(sequential.design-class), 11

setBetaspendfString, 14

setBetaspendfString, sequential.design-method
(sequential.design-class), 11

setCurrentLook, 15

setCurrentlLook, sequential.design-method
(sequential.design-class), 11

setDatestamp, 15

setDatestamp, sequential.design-method
(sequential.design-class), 11

setNoncentrality, 16

setNoncentrality, sequential.design-method
(sequential.design-class), 11

setTimes, 17

setTimes,sequential.design-method
(sequential.design-class), 11

summary, sequential.design-method
(sequential.design-class), 11

summaryDesign, 17

summaryDesign, sequential.design-method
(summaryDesign), 17

updateDesign, 18
updateDesign, sequential.design-method
(sequential.design-class), 11

	seqmon-package
	alphaspend
	alphaspendf
	betaspend
	betaspendf
	calcBoundaries
	curtail
	curtailDesign
	getProbabilities
	plotBoundaries
	printDesign
	seqmon
	sequential.design
	sequential.design-class
	setAlphaspendfString
	setBaseAlphaspendf
	setBaseBetaspendf
	setBetaspendfString
	setCurrentLook
	setDatestamp
	setNoncentrality
	setTimes
	summaryDesign
	updateDesign
	Index

