
seqimpute: Treating Missing Data in Categorical
Sequence Data Through Multiple Imputation

Kevin Emery
University of Geneva

Anthony Guinchard
University of Lausanne

Kamyar Taher
University of Lausanne

André Berchtold
University of Lausanne

Abstract

This article describes the tools available in the seqimpute package. It focuses on
the treatment of missing data in longitudinal categorical data. It mainly implements
two methods to handle missing data by multiple imputation, namely MICT and MICT-
timing. In addition, the package provides tools to visualise missing data in longitudinal
categorical data. In particular, this article provides a practical demonstration of the
imputation algorithms together on a typical sequence analysis workflow, namely deriving
a typology and then using it as a variable in a regression analysis.

Keywords: missing data, multiple imputation, categorical longitudinal data, MICT, MICT-
timing, sequence analysis.

1. Introduction
Missing data is a common issue that can significantly affect the results of statistical analyses.
For example, Lall (2016) reanalysed quantitative studies published in two leading political
science journals over a five-year period where missing values were initially handled by deleting
all cases with missing values. When multiple imputation was applied, the statistical signifi-
cance of the results changed in almost half of the studies, with some analyses even producing
opposite conclusions. This highlights the strong influence that the method chosen to deal
with missing data can have on research results.
While the simple approach of excluding cases with missing values may seem attractive, it
is often inadequate. This method can result in a significant reduction in the number of
cases available, thereby reducing the statistical power (King, Honaker, Joseph, and Scheve
2001) and hence the ability to detect effects. The problem is particularly pronounced for
categorical sequence data, where even a single missing value can result in the removal of an
entire trajectory. Furthermore, retaining only complete cases can introduce bias and lead to
incorrect inferences. Perkins, Cole, Harel, Tchetgen Tchetgen, Sun, Mitchell, and Schisterman
(2018) illustrated this by showing how removing cases with missing data incorrectly suggested
a protective effect of smoking on the risk of spontaneous abortion.

https://orcid.org/

2 Multiple imputation with the seqimpute package

Multiple imputation is a versatile approach for addressing missing values. It creates multi-
ple complete datasets by replacing missing values with plausible values. Multiple complete
datasets are created, rather than just one, to account for the inherent uncertainty associated
with missing data. Statistical analysis is then performed independently on each complete
dataset, and the results of these statistical analyses are finally combined (Rubin 1987). A
critical step in this process is determining how to generate plausible values to replace the
missing ones. Various methods exist, implemented in packages such as VIM (Kowarik and
Templ 2016) and Hmisc (Harrell Jr 2024) in R.
However, few approaches apply to longitudinal categorical data. For instance, jomo (Quartagno
and Carpenter 2023) and Amelia (Honaker, King, and Blackwell 2011) rely on multivariate
normal joint modeling, which assumes that the data structure can be adequately represented
by a multivariate normal distribution. This approach can be extended to categorical data
by decomposing it into multiple binary variables. However, this strategy has significant
drawbacks: the number of model parameters grows rapidly, leading to overfitting, and the
covariance matrix becomes non-invertible when collinearity exists between binary variables
(Audigier, Husson, and Josse 2017)—a scenario that is particularly likely in longitudinal
data. The mice package (Van Buuren and Groothuis-Oudshoorn 2011), which applies mul-
tiple imputation through Fully Conditional Specification (FCS), is highly flexible, supports
a wide range of data types. Additionally, it includes tools to perform statistical analysis on
multiple imputed datasets. Despite its versatility, mice does not explicitly account for the
unique patterns of missingness commonly observed in longitudinal categorical data, such as
gaps—consecutive missing values. The PST package (Gabadinho and Ritschard 2016) en-
ables imputations using variable-length Markov Chain models. However, a Markovian model
can be overly simplistic for complex longitudinal data, such as life-course trajectories. In
particular, Markovian models rely solely on previous information to impute missing values,
overlooking the potential benefits of incorporating future information to improve imputation
quality.
To address these limitations, the seqimpute package introduces two methods specifically de-
signed for longitudinal categorical data: the MICT algorithm (Halpin 2012) and the MICT-
timing algorithm (Emery, Studer, and Berchtold 2024). These methods take a recursive
approach to impute gaps of missing data, starting from the edges and working inward.
This document provides a practical demonstration of the imputation algorithms implemented
in the package, together with some visualisation tools. The illustrative example shows a typi-
cal sequence analysis workflow: construction of a typology by cluster analysis and subsequent
use of this typology in a regression analysis (Piccarreta and Studer 2019). For a general
overview of sequence analysis, see Liao, Bolano, Brzinsky-Fay, Cornwell, Fasang, Helske, Pic-
carreta, Raab, Ritschard, Struffolino et al. (2022). Practical guidance for studying sequences
in R is available in Gabadinho, Ritschard, Müller, and Studer (2011), while Studer (2013)
more specifically focus on clustering. However, the imputation methods presented here are not
limited to this specific application of sequence analysis, nor to sequences. They are broadly
applicable to a wide range of statistical analyses involving longitudinal categorical data.
The rest of this document follows the following structure.

• Section 2 discusses the challenges posed by missing data and highlights the flexibility
of multiple imputation as a treatment.

• Section 3 introduces the two algorithms implemented in the seqimpute package: MICT

Journal of Statistical Software 3

and MICT-timing.

• Section 4 describes the dataset used for illustration.

• Section 5 outlines the four steps involved in using clustering in a regression analysis
when data are incomplete.

1. Description and visualization of missing data (subsection 5.1)
2. Multiple imputation (subsection 5.2)
3. Typology construction (subsection 5.3)
4. Regression (subsection 5.4)

• Section 6 provides guidelines tailored to the imputation algorithms implemented in this
package.

• Section 7 highlights additional features of the package, including parallel computing
and the use of random forest imputation models.

• Section 8 focuses on additional functionalities available in the package.

• Section 9 concludes the document with a brief summary.

2. Missing data issues and treatment
This section provides a broad overview of missing data challenges and the principles of mul-
tiple imputation. For a more comprehensive discussion on missing data, including detailed
statistical explanations, refer to Little and Rubin (2019) or Molenberghs, Fitzmaurice, Ken-
ward, Tsiatis, and Verbeke (2014), and for an in-depth treatment of multiple imputation, see
Van Buuren (2018).
This section covers the following key points, illustrated with an example:

• The issues posed by the deletion of missing data, called “complete case analysis”.

• A brief introduction to multiple imputation.

• The application of clustering with multiple imputation.

• The scenarios in which multiple imputation is applicable.

To illustrate these concepts, we use a synthetic dataset composed of categorical sequence data
measured across ten time points, with each measurement coded as either “state A” or “state
B.”
This dataset includes missing values, presenting a challenge for analysis, since many statistical
methods, such as regression and cluster analysis, are designed to operate on complete datasets.

Complete case analysis
The straightforward approach, often the default in many software packages such as lm()
and glm() in R for linear and logistic regression, respectively, is to discard observations with
missing values. This method is known as complete case analysis.

4 Multiple imputation with the seqimpute package

Figure 1: Dataset composed of 10 trajectories used for illustration.

This approach has two main issues (Little and Schenker 1995). First, it reduces the amount
of information available. In the example, only 6 trajectories remain in the dataset (Figure 2).
Even if a trajectory has only one missing value, such as the first trajectory, it is completely
removed from the analysis. This can reduce statistical power and hinder the detection of
effects.

Figure 2: Remaining trajectories after a complete case analysis.

The second problem of missing data relates to the reasons for non-response, which are often
specific to certain individuals or circumstances. For example, individuals in vulnerable sit-
uations such as unemployment, migrant background or poor health are more likely to drop

Journal of Statistical Software 5

out of longitudinal studies (Rothenbühler and Voorpostel 2016). As a result, these vulnerable
situations may be under-represented in the subsample, leading to potential biases in vari-
ous statistical measures of vulnerability. Similarly, trajectories with higher transition rates
are more prone to missing values (Müller, Sapin, Gauthier, Orita, and Widmer 2012). This
behaviour is observed in trajectories 3 and 4 of the example.

Imputation

Imputation is based on the idea of replacing missing values with some reasonable values. This
is appealing because it would result in a dataset with no more missing values. However, the
problem with imputing missing values once, which is called “single imputation,” is that it
treats missing values as if they were observed and overlooks the inherent uncertainty associ-
ated with missing data. To address this limitation, multiple imputation is used. As illustrated
in Figure 3, the process involves three main steps:

1. Creation of completed datasets: Missing values are replaced with values multiple
times, generating several complete datasets.

2. Statistical analysis: The statistical analysis that would have been applied if the
data had been complete is usually carried out independently on each of the completed
datasets.

3. Combination of results: In the final step, the results of the statistical analysis com-
puted on each completed dataset are combined into a single result. Rubin (1987) for-
mulated rules for this.

For example, we might be interested in the relative risk of moving to state B versus staying
in state A while in state A. After multiple imputations, we would estimate this relative risk
and its variance on each of the completed datasets. We would then combine these estimates
and their variance into a single relative risk and its variance. The calculated variance would
typically be useful in testing the hypothesis of whether or not this risk is significantly different
from 1.

Clustering and multiple imputation

While the standard multiple imputation framework is well suited to most statistical analy-
ses, clustering presents unique challenges. Unlike parameter estimation, clustering involves
grouping observations on the basis of similarity, which complicates the pooling of results
across multiple imputed datasets. Even small variations in the data can lead to significant
differences in the resulting clusters and their number.
Several approaches have been proposed to overcome this challenge. One method, proposed by
Halpin (2012), involves stacking all completed datasets together and clustering this stacked
dataset. Observations are then assigned to clusters based on their frequency among the
imputed replications.
Alternatively, consensus clustering methods attempt to reconcile differences between clus-
terings obtained from multiple imputed datasets. For example, Basagaña, Barrera-Gómez,
Benet, Antó, and Garcia-Aymerich (2013) suggests first determining the number of clusters
by identifying the most frequently observed count across imputed datasets and then assigning

6 Multiple imputation with the seqimpute package

(෠𝑄1 , ෠𝑉1) (෠𝑄2 , ෠𝑉2) (෠𝑄M , ෠𝑉𝑀)

(෠𝑄 , ෠𝑉)

…

1. Multiple imputation

2. Statistical analysis

3. Pooling

Figure 3: Illustration of three steps of a multiple imputation. The missing data are imputed
several times, yielding M completed datasets. The estimated parameter and its variance is
computed. These estimated parameters are then pooled in a single estimate and its variance.

each sequence to the cluster to which it most frequently belongs, while Faucheux, Resche-
Rigon, Curis, Soumelis, and Chevret (2021) suggests identifying common clustering patterns
across the multiple clusterings generated to build a single clustering.
In our illustrative example, we use the stacking method. However, consensus clustering is
a promising alternative that may address some of the limitations of the stacking approach.
Further research is required to fully evaluate the most appropriate alternative.

Scenarios where multiple imputation is applicable

Not all missing data are equivalent. At least two distinctions can be made. First, it is
important to differentiate between structural missing data and genuine missing data. Second,
the underlying mechanisms driving the missingness must be considered.
Structural missing data refer to values that are supposed to be missing and can be further
categorized into two categories: cases where no value is meaningful and cases where the value
can be determined with certainty. An example of the first category is a missing occupation
for individuals who are still in education. An example of the second is individuals who have
died and have missing values for subsequent health states. In such cases, it is appropriate to
predefine a specific state, such as "dead," for these missing values.
The suitability of a method for dealing with missing data depends on the underlying mecha-
nism causing the missing data. Rubin (1976) identified three mechanisms of missing data:

• Missing Completely at Random (MCAR): Data are missing entirely by chance. For
example, individuals forgetting to report their situation for no apparent reason.

Journal of Statistical Software 7

• Missing At Random (MAR): Data are missing for reasons explained by observed vari-
ables. For instance, if women are more likely to have missing data, or if the probability
of missing at time t depends on the state observed at time t-1 (e.g., unemployment at
time t-1 increases the likelihood of missing data at t).

• Missing Not at Random (MNAR): Data are missing due to reasons related to the missing
value itself, such as systematically omitting periods of unemployment.

Multiple imputation produces unbiased results under MCAR and MAR conditions (Little
1992). However, addressing MNAR data remains challenging, as most methods, including
multiple imputation, are prone to bias in such cases.
Since these mechanisms depend on unobserved data, identifying the mechanism with certainty
is generally impossible. MCAR is rarely a realistic assumption, and real-world datasets often
involve a mix of MAR and MNAR mechanisms. Research by Gomer and Yuan (2023) suggests
that multiple imputation can still be a viable approach in such scenarios.
When MNAR mechanisms are suspected, a common strategy, as described by Van Buuren
(2018), is to include additional explanatory variables in the imputation models to account for
relationships that might explain the missingness. Another approach is sensitivity analysis,
which assesses how results change under different MNAR assumptions.

3. Description of the imputation algorithms
As discussed in the previous section, multiple imputation begins with the imputation process
itself. The seqimpute package implements two methods specifically designed for categorical
sequence data, where missing values often appear as gaps rather than isolated time points.
This section provides an overview of the principles underlying the two algorithms—MICT and
MICT-timing. Readers seeking detailed explanations can refer to Halpin (2012) for MICT
and to section 4.2 of Emery et al. (2024) for MICT-timing.
The MICT algorithm introduced by Halpin (2012) handles gaps by iteratively imputing
missing values from their edges. However, it assumes homogeneous transition probabilities
throughout a trajectory, which may not hold in real-world data. For example, in life course
analysis, transition rates between education and work vary over time: transitions to work are
rare in childhood but common between the ages of 16 and 30. This can lead to implausi-
ble imputations, such as transitions to work in childhood. The MICT-timing algorithm was
developed to account for such temporal variations.
We first describe the MICT algorithm, before outlining what distinguishes MICT-timing from
MICT.

MICT

We describe the main features of the MICT algorithm. We first consider the order in which
missing values are imputed, starting at the dataset level, before focusing on individual gaps.
Then, we examine the variables included in the imputation model for a given missing value
and consider the construction of the data used to fit an imputation model. Next, we discuss
how an imputed value is concretely obtained from the imputation model. Finally, we discuss

8 Multiple imputation with the seqimpute package

the special considerations required for handling beginning and ending gaps due to their unique
edge structure, and outline the process of creating multiple complete datasets.

1. Order of imputation
The order in which the missing data are imputed is shown in Figure 4. Let’s highlight
two characteristics. First, the missing gaps are imputed recursively from the edges. This
approach serves two purposes: missing data near the edges of the gap are generally easier
to impute because they are adjacent to observations, and by imputing from the edges
inwards we maintain longitudinal consistency between the imputed values. Then only
the position of a missing value in a gap is important, not its position in the sequence.
For example, both missing values labelled “2” are imputed at the same time by the
same imputation model, even though they do not occur at the same time, because once
“1” is imputed, they are both the last value of a gap of length 2.

1 3 2

3 2

3

4 5 6 7

Figure 4: Order of the imputation for the MICT algorithm.

2. Information from the trajectory used to determine an imputed value
Let’s focus on the imputation of the first missing value of the third sequences:

The goal is to ensure consistency between the imputed values and the other observed
values within the trajectory. Therefore, at least the preceding and subsequent observa-
tions around a gap are integrated in the determination of an imputed value. For the

Journal of Statistical Software 9

first missing value of sequence 3, the individual was in state B (indicated by the blue
arrow) just before the gap and in state A three time points after (indicated by the green
arrow):

1 3 2

The values immediately before and after a gap represent the minimum information to
be included in the prediction model. However, additional predictors, both before and
after the gap, may be included if relevant. In addition, covariates related to the missing
data mechanism or variables intended for subsequent statistical analysis should also
be included. Section 6 provides guidelines for selecting the appropriate information to
include in the imputation model.

3. Build the training dataset
To construct the data used to fit the imputation model for the first missing value in
sequence 3, the algorithm identifies instances where both the previous state and the
state three time points later are observed.
For example, in the case of the first sequence, the second time point is the first occurrence
where both the preceding state and the state three time points after are observed:

The time 3 has a missing value three time points later and is hence not included:

The fourth time point is also included:

10 Multiple imputation with the seqimpute package

and finally the fifth one:

The sixth time point is missing and is therefore not included, while subsequent time
points have no value that occurs three time points later. In summary, the first sequence
contains three observed patterns similar to the one we want to impute.
This process is applied to all sequences in the dataset, resulting in 44 observations used
to fit the imputation model.

4. Determine an imputed value
A logistic model, or a multinomial model for cases with more than two categories, is
then fitted to these data. This model is used to determine the probabilities of belonging
to state "A" or "B." Finally, a value is assigned to the missing observation based on
these probabilities. We examine each step in details.

(a) Fitting the logistic model A logistic model is fitted to the data extracted in point
(a). The dependent variable is t and the two independent variables are t-1 and
t+3.

(b) Probability of belonging to each state Given that the previous state for the missing
value to be imputed was "A" and that three time points later there is a state "B",
the probabilities of being in state "A" or "B" are determined.

(c) Imputed value A value is drawn at random based on the derived probabilities.

5. Starting and ending gaps
Because these gaps have only one edge, imputations start from the far right to the left
for start gaps and from the far left to the right for end gaps.

Journal of Statistical Software 11

For example, the imputation order for the end gap in the eighth sequence is:

Then, in a similar way to the imputation of middle gaps, the algorithm looks in each
sequence for each time that an observed state also has the previously observed state.
A logistic or multinomial model is fitted, probabilities are estimated and an imputed
value is drawn.

6. Multiple imputed datasets
Imputed values are drawn based on probabilities computed from logistic or multinomial
models, which introduces a random element into the imputation process. As a result,
the imputation process is repeated several times to generate multiple imputed records.
Choosing the appropriate number of imputed datasets is discussed in Section 6.

MICT-timing

The MICT-timing algorithm is an extension of the MICT algorithm designed to address a
key limitation of the latter: its assumption that position in the trajectory is irrelevant. We go
back to the different points that were described previously for the MICT algorithm in order
to highlight the differences between MICT-timing and MICT.

1. Order of imputation
A key difference between the MICT and MICT-timing algorithms is illustrated in Figure
5, which shows the order in which missing values are imputed. We have seen previously
that the third missing value in sequence 3 and the second missing value in sequence 4
(both labelled "2") are imputed at the same stage and by the same imputation model
by the MICT algorithm. For MICT, it does not matter that they occur at different
times. In contrast, the MICT-timing algorithm differentiates between these values, and
impute them with two different models.

2. Information from the trajectory used to determine an imputed
Similarly to MICT, at least the time points preceeding and following the gaps are
included in the prediction model.

3. Build the training dataset
As noted above, the MICT algorithm identifies similar configurations in all sequences,
regardless of their position, and fits a model using these data. In contrast, the MICT-
timing algorithm only considers observations that occur at the same time in other
sequences. Thus, unlike MICT, each sequence contributes at most one observation.

12 Multiple imputation with the seqimpute package

1 3 2

3 2

3

4 5 6 7

1 4 2

6 3

5

7 8 9 10

Figure 5: Comparison of the order of the imputation for the MICT algorithm (left) and the
order of the imputation of the MICT-timing algorithm (right).

If we focus on the imputation of the first missing value of sequence 3, any other sequence
that does not have missing time points 2, 3 and 6 is included, which is the case for every
sequence except the first:

.

t-1 t

t-1 t

t+3

t+3

Note that in this case the imputation is based on eight observations, whereas with the
MICT algorithm it was 44. Since the performance of the logistic and multinomial models
depends on the sample size, it may be necessary to include not only the observations
that occur at the same time, but also the previous and subsequent observations if there
are very few sequences in the dataset. This is discussed in Section 6.

4. Determine an imputed value
This part are similar to MICT. A logistic (or multinomial if there are more than two
categories) model is fitted, probability are estimated, and an imputed value is drawn.

Journal of Statistical Software 13

5. Starting and ending gaps
The order of imputation of starting and ending gaps is the same as for MICT, but as
for middle gaps only consider the observations that occur at the same time points in
other sequences to fit the logistic or multinomial imputation model.

6. Creation of multiple imputed datasets
As with MICT, the whole process of imputation is repeated several times to produce
multiple complete datasets.

4. Sample application
The illustrative analysis detailed in section 5 aims to cluster the dataset and use the resulting
clustering as a dependent variable in a regression analysis. This is a typical application in
sequence analysis (Piccarreta and Studer 2019).
We assume that the reader is familiar with the TraMineR package (Gabadinho et al. 2011), a
widely used tool for analysing sequence data. Importantly, many of the visualisation features
in seqimpute extend and build upon the capabilities of TraMineR.
We use a dataset tracking the transition from education to employment within a cohort in
Northern Ireland (McVicar and Anyadike-Danes 2002). This dataset, which is available in
the TraMineR package, originally has no missing data. We deliberately introduce missing
data to illustrate MICT and MICT-timing.
We begin by retrieving the dataset from the TraMineR package and creating a state sequence
object, which is the format of sequences in TraMineR. We then introduce missing data using
a dedicated function in the seqimpute package. Finally, we briefly discuss the limitations
of relying solely on complete case analysis as a strategy for dealing with missing data. The
statistical analysis itself is carried out in Section 5.

1. Preparation of the dataset

We load the TraMineR package and then fetch the data set named mvad. Using the seqdef()
function from the TraMineR package, we create a state sequence object by specifying the
columns containing the trajectories with the var argument, defining the possible states (the
alphabet), and setting the interval between tick marks and labels in the plots with the xtstep
argument.

R> library("TraMineR")
R> data(mvad)
R> mvad.alphab <- c("employment", "FE", "HE", "joblessness", "school", "training")
R> mvadseq <- seqdef(mvad, var=17:86, alphabet=mvad.alphab, xtstep=6,)

We visualize the cross-sectional state frequency at each time point with a state distribution
plot (seqdplot() function of the TraMineR package):

R> seqdplot(mvadseq, border=NA)

14 Multiple imputation with the seqimpute package

R
el

. F
re

q.
 (

n=
71

2)

Sep.93 Sep.94 Sep.95 Sep.96 Sep.97 Sep.98

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

employment
FE

HE
joblessness

school
training

We observe that at the beginning of the trajectories, the majority of individuals are engaged
in education (school, training or further education), while towards the end of the trajectories,
a large proportion have moved into employment. In particular, 13.1% of individuals are
unemployed at the end of the trajectories.

3. Generation of missing data

We introduce small gaps of missing data into the mvad dataset, especially during periods of
unemployment, reflecting real-world situations.
To achieve this, we load the seqimpute package and use the seqaddNA() function to simulate
missing values. This function generates missing data following a Markovian logic, where the
states.high argument specifies the states with a higher probability of the subsequent state
being missing. In this example, we use the default parameters of the function. A detailed
discussion of the seqaddNA() function is provided in Section 8.
As the process of simulation implies some randomness, we set a seed for reproducibility.
Moreover, the var argument is used to specify the columns of the dataset that contain the
trajectories.

R> library("seqimpute")
R> set.seed(2)

Journal of Statistical Software 15

R> mvad.miss <- seqaddNA(mvad, var=17:86, states.high="joblessness")

We have generated small gaps of missing data, which are more likely to occur after unem-
ployment. In the next section, we examine these missing values in more detail.

4. Limitations of complete case analysis

To illustrate the limitations of complete case analysis, we examine the state distribution at
each time point of the complete trajectories. The seqcomplete() function allows to extract
all the trajectories without missing data:

R> mvadseq.miss <- seqdef(mvad.miss, 17:86, xtstep=6, alphabet=mvad.alphab,
+ right=NA)
R> mvadseq.cca <- seqcomplete(mvadseq.miss)
R> seqdplot(mvadseq.cca, border=NA)

R
el

. F
re

q.
 (

n=
38

2)

Sep.93 Sep.94 Sep.95 Sep.96 Sep.97 Sep.98

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

employment
FE

HE
joblessness

school
training

Unemployment is underrepresented in the trajectories with no missing data. For example,
we observe 3.1% of jobless situations at the last time point, while it is 13.1% in the original
dataset. Although these differences are clearly amplified by the way we generated missing
values, they illustrate the kind of results that can emerge from a complete case analysis.

16 Multiple imputation with the seqimpute package

5. Step-by-step analysis
In this section, we illustrate the steps taken to cluster data, where missing data are treated
by multiple imputation using the MICT algorithm, and then used in a subsequent regression
analysis. We examine the social reproduction of unemployment.
The four main steps we follow, along with their objectives, are as follows:

1. Description and visualization of missing data

The goal here is multifaceted. First, we want to assess the magnitude of the missing
data problem, focusing in particular on the proportion of missing data, its patterns, and
the mechanism governing missing data. In addition, this step helps to identify values
that should not be imputed, either because these values could be known with certainty
or because no value makes sense.

2. Imputation

This is the first step in a multiple imputation process. We create multiple complete
datasets, using MICT algorithm as the imputation method.

3. Typology creation

We extract a typology of typical patterns of transition from education to employment
from the several complete datasets built in the previous step. In addition, we aim to
identify the cluster that captures trajectories leading to unemployment.

4. Regression

In this step, we use logistic regression to study the social reproduction of unemployment.
Specifically, the dependent variable is the cluster membership that captures trajectories
leading to unemployment, while the father’s unemployment serves as the independent
variable.

We provide detailed explanations of how to carry out each of these steps.

5.1. Description and visualization of missing data

We begin by demonstrating the use of various visual tools available in the TraMineR package,
as well as those developed for seqimpute, to assess the prevalence of the missing data problem
and to identify values that are best left unimputed. We then discuss specific methods for
assessing the mechanisms underlying missing data, which is critical for evaluating the impact
of any data handling method on the resulting analyses.
To get an initial overview of the proportion of missing data across the trajectories, the state
distribution plot can be constructed with the seqdplot() function of the TraMineR package.
This visualization provides the distribution of states at each time point.

R> seqdplot(mvadseq.miss, border=NA, with.missing=TRUE)

Journal of Statistical Software 17

R
el

. F
re

q.
 (

n=
71

2)

Sep.93 Sep.94 Sep.95 Sep.96 Sep.97 Sep.98

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

employment
FE
HE

joblessness
school
training

missing

We observe that missing data increases slightly over time, but the proportion of missing values
remains below 5% at each time point.

Some visualization tools are provided in the seqimpute package to better examine the patterns
of missing data. These plotting functions are based on the seqplot() function from the
TraMineR package.

To display all patterns of missing data among the trajectories, one can use the seqmissIplot()
function.

R> seqmissIplot(mvadseq.miss, border=NA)

18 Multiple imputation with the seqimpute package

71
2

se
q.

 (
n=

71
2)

Sep.93 Sep.94 Sep.95 Sep.96 Sep.97 Sep.98

1
87

20
1

32
9

45
7

58
5

not missing
missing

This plot highlights that missing data tends to occur in the form of very short gaps.

seqmissIplot() also facilitates a closer examination of late entry and attrition patterns,
thanks to its sortv argument. For example, by setting sortv="from.end", the trajectories
are organized according to when the last missing value occurs.

R> seqmissIplot(mvadseq.miss, sortv="from.end")

Journal of Statistical Software 19

71
2

se
q.

 (
n=

71
2)

, s
or

te
d

Sep.93 Sep.94 Sep.95 Sep.96 Sep.97 Sep.98

1
87

20
1

32
9

45
7

58
5

not missing
missing

In this example, we do not observe anything systematic in terms of attrition. Patterns such as
attrition need careful consideration. For example, in health trajectories, patterns of attrition
may signal the death of an individual, making imputation inappropriate. Such cases need to
be addressed before imputations are considered.

The seqmissfplot() shows the most frequent patterns of missing data within a sequence:

R> seqmissfplot(mvadseq.miss, border=NA)

20 Multiple imputation with the seqimpute package

C
um

. %
 fr

eq
. (

n=
71

2)

Sep.93 Sep.94 Sep.95 Sep.96 Sep.97 Sep.98

0%
58

.3
%

not missing
missing

We observe that the most common pattern is to have no missing value. This pattern makes it
difficult to see the plot. Therefore, we can have a clearer view by displaying only trajectories
with at least one missing value by setting the with.complete argument to FALSE.

R> seqmissfplot(mvadseq.miss, with.complete=FALSE, border=NA)

Journal of Statistical Software 21

C
um

. %
 fr

eq
. (

n=
33

0)

Sep.93 Sep.94 Sep.95 Sep.96 Sep.97 Sep.98

0%
10

.9
%

not missing
missing

We do not observe any systematic patterns of missing data, since the 10 most frequent patterns
of missing data account for only 10% of all patterns.

Frequent patterns of missing data should be considered. For example, when considering
educational trajectories, it may appear that missing data occur systematically in the summer
months when individuals are in transition between two situations. Therefore, it may be
appropriate to treat these cases systematically before considering imputations.

The amount of missing data and the patterns are a first indicator to gauge how pervasive the
issue of missing data is, but it is not enough. Along this line, the concept of mechanism of
missing data is crucial.

A tool available in the package that helps to grasp the mechanism is the seqmissimplic()
function, which is based on the seqimplic() function of the TraMineRextras package (Ritschard,
Studer, Buergin, Liao, Gabadinho, Fonta, Muller, and Rousset 2024). It allows to display the
states that better characterize, at each time point, sequences with missing data vs. sequences
without missing data.

R> imp <- seqmissimplic(mvadseq.miss)
R> plot(imp, legend.prop=0.22, cex.axis=0.65, cex.legend=0.8, cex.lab=0.8)

22 Multiple imputation with the seqimpute package

missing

Im
pl

ic
at

io
n

Sep.93 Sep.94 Sep.95 Sep.96 Sep.97 Sep.98

0
2

4
6

8

Conf. 0.95

not missing

Im
pl

ic
at

io
n

Sep.93 Sep.94 Sep.95 Sep.96 Sep.97 Sep.98

0
2

4
6

8

Conf. 0.95

employment
FE

HE
joblessness

school
training

In the left panel, we observe that trajectories with at least one missing value are characterized
by unemployment at almost every time point. Indeed, we observe that the implication statistic
for the unemployment situation, shown in yellow, is above, and thus outside, the 95% confi-
dence interval. On the other hand, the observed trajectories are characterized (right panel)
by employment in the later time points, as we see that the value of the implication statistic
is outside the 95% confidence interval. This allows us to highlight that the mechanism is not
MCAR and that there tends to be an overrepresentation of employment in complete trajec-
tories and, conversely, an overrepresentation of unemployment in trajectories with missing
values.

5.2. Multiple imputation

The second step is to handle missing data through multiple imputation. We describe in detail
how this step can be carried out with this package and, once imputation has been carried
out, we briefly examine the imputed datasets.
During the implementation of this process, several decisions need to be made regarding the
specification of the imputation model. For illustrative purposes, we use a simplified impu-
tation method with default arguments. However, this model may prove to be too simplistic
for real applications. In section 6 we provide comprehensive guidelines on how to choose
an appropriate imputation model. In particular, we focus on the number of previous and
subsequent time points to include, the number of multiple imputations, and the covariates
to include. In addition, in section 7 we discuss additional functionalities: parallel comput-
ing to speed up computations and the use of random forest imputation models instead of

Journal of Statistical Software 23

multinomial models.
The imputation process introduces an element of randomness. Running the imputation pro-
cess multiple times will result in different imputed datasets and consequently may lead to
different clusterings. This variability is particularly pronounced when a small number of im-
putations are used, as in this example. In order to reproduce the same results presented here,
a seed value should be set before starting the imputation process.
We set a seed value before generating complete datasets with the seqimpute() function. The
argument var specifies which columns of the datasets contain the trajectories to be imputed
(here 17 to 86), the argument np specifies how many previous observations to include in
the imputation models, nf specifies how many subsequent observations to include, and the
argument m specifies the number of multiple imputations.

R> set.seed(1)
R> imputed <- seqimpute(mvad.miss, var=17:86, np=1, nf=1, m=2)

5.3. Typology creation

The next step is to derive the clustering from these multiple imputed datasets. In this
document, we follow the strategy of stacking all the imputed datasets, then identifying the
clustering, and finally redistributing it among the imputed datasets in order to apply the
regression analysis to each imputed dataset. This is not the only strategy available. Consensus
clustering may be a very promising approach in this respect.
The clustering of sequences follows three steps: first, a dissimilarity is computed between each
pair of sequences, then different groupings are computed with a clustering algorithm based
on these dissimilarities, and finally the best one is selected based on cluster quality indices.
For this illustration we follow the procedure of the WeightedCluster vignette (Studer 2013).
The pairwise dissimilarities are computed using Hamming distance (see Studer and Ritschard
(2016) for recommendations on choosing dissimilarity measures), hierarchical clustering with
Ward’s linkage is applied, and the best clustering is selected based on ASWw, HG, PBC and
HC.

1. The fromseqimp() function allow to transform the seqimp object obtained with the
seqimpute() function into various formats. In particular, by stating format to "stacked",
we obtain a dataset where the imputed datasets are stacked vertically, which is the form
needed to apply Halpin’s clustering strategy.

R> stackedimp <- fromseqimp(imputed, format="stacked")
R> stackedimpseq <- seqdef(stackedimp, xtstep=6)

2. The dissimilarity matrix is computed using the Hamming distance.

R> ham <- seqdist(stackedimpseq, method = "HAM")

3. The hierarchical clustering with Ward linkage is computed.

R> wardCluster <- hclust(as.dist(ham), method="ward.D")

24 Multiple imputation with the seqimpute package

4. The partition is chosen with the help of clustering quality measures, which can be done
with the WeightedCluster library.

R> library("WeightedCluster")
R> wardRange <- as.clustrange(wardCluster, diss=ham, ncluster=15)
R>
R> plot(wardRange, stat=c("ASWw", "HG", "PBC", "HC"))

2 4 6 8 10 12 14

0.
2

0.
4

0.
6

0.
8

N clusters

In
di

ca
to

rs

ASWw (0.22 / 0.39)
HG (0.44 / 0.87)
PBC (0.35 / 0.55)
HC (0.1 / 0.3)

The clustering in eight groups is a local extremum for each of the clustering quality
measures.

5. After performing hierarchical clustering and selecting eight clusters, we proceed to assign
these clusters to the seqimp object with the addcluster() function.
The resulting cluster labels are stored as an additional column called cluster within
the imputed datasets, setting the stage for the subsequent regression analysis.

R> imputed <- addcluster(imputed, clustering=wardRange$clustering$cluster8)

Journal of Statistical Software 25

Now that the clustering has been determined, we visualize the eight groups that comprise it:

R> seqdplot(stackedimpseq, group = wardRange$clustering$cluster8,
+ border = NA, with.legend=FALSE)

1

R
el

. F
re

q.
 (

n=
33

0)

Sep.93 Mar.95 Sep.96 Mar.98

0.
0

0.
6

2

R
el

. F
re

q.
 (

n=
12

8)

Sep.93 Mar.95 Sep.96 Mar.98

0.
0

0.
6

3

R
el

. F
re

q.
 (

n=
11

2)

Sep.93 Mar.95 Sep.96 Mar.98

0.
0

0.
6

4
R

el
. F

re
q.

 (
n=

20
8)

Sep.93 Mar.95 Sep.96 Mar.98

0.
0

0.
6

5

R
el

. F
re

q.
 (

n=
24

8)

Sep.93 Mar.95 Sep.96 Mar.98

0.
0

0.
6

6

R
el

. F
re

q.
 (

n=
12

8)

Sep.93 Mar.95 Sep.96 Mar.98

0.
0

0.
6

7

R
el

. F
re

q.
 (

n=
84

)

Sep.93 Mar.95 Sep.96 Mar.98

0.
0

0.
6

8

R
el

. F
re

q.
 (

n=
18

6)

Sep.93 Mar.95 Sep.96 Mar.98

0.
0

0.
6

Unemployment trajectories are mostly captured by the sixth group. We also observe some
trajectories with unemployment in other groups, such as the fourth, but focus only on the
sixth group for the sake of illustration.

5.4. Regression analysis on clustered trajectories
The final step in the analysis is to run the regression analysis separately on each completed
dataset and pool the results.
The sixth cluster is the one that mostly captures trajectories with spells of unemployment.
Therefore, we apply a logistic regression where the dependent variable is the membership to

26 Multiple imputation with the seqimpute package

this cluster and the independent variable is father’s unemployment. We also use sex as a
control variable.
We use the mice package, which provides many tools for dealing with multiple imputed
datasets. We first transform the imputed datasets into an object that can be manipulated by
mice.

1. We transform the object containing the imputed datasets with the fromseqimp() func-
tion.

R> imputed.mids <- fromseqimp(imputed, format="mids")

2. We apply a logistic regression where the dependent variable indicates membership in the
sixth cluster, which represents trajectories involving unemployment. The independent
variables are sex and whether the respondent’s father was unemployment.
To fit the regression models within the multiple imputation framework, we use the
with() function of the mice (Van Buuren and Groothuis-Oudshoorn 2011) package.

R> library("mice")
R> fit <- with(imputed.mids, glm(I(cluster == 6) ~ mvad$male + mvad$funemp,
+ family = binomial))

3. To pool the results of the regression models, we use the pool() function, also coming
from the mice package.

R> summary(pool(fit))

term estimate std.error statistic df
1 (Intercept) -2.3649195 0.1968796 -12.012010 706.9327
2 mvad$maleyes -0.5755973 0.2722765 -2.114018 706.9327
3 mvad$funempyes 1.2762176 0.2829957 4.509671 706.9327

p.value
1 2.225536e-30
2 3.486334e-02
3 7.599971e-06

The interpretation of the regression model is similar as with standard regression.

Therefore, individuals who had an unemployed father are more likely to belong to the cluster
that captures unemployment trajectories.
Of course, this analysis is only an illustration of the functions in this package. It is oversim-
plified. No firm conclusions can be drawn from this analysis.

6. Guidelines related to the imputation model
In the illustrative example, we used MICT with a simple imputation model for illustrative
purposes. However, such a model proves too simplistic for most real-world applications.
In this section, we examine four crucial decisions in selecting imputation models: choosing

Journal of Statistical Software 27

between MICT and MICT-timing, determining the number of prior and subsequent time
points to include, considering the inclusion of covariates, and deciding on the number of
imputations.

1. MICT or MICT-timing
If the transitions may differ along the trajectories, MICT-timing should be used, while
if this is not the case, MICT is preferred.
For example, in the context of our example application, the majority of transitions occur
during the summer months. MICT does not discriminate between summer and other
months, resulting in a lack of transitions in summer and an excess of transitions in other
months. Conversely, MICT-timing makes this distinction, making it more appropriate
for this particular case.
To apply the MICT-timing algorithm with the seqimpute() function, the argument
timing must be set to TRUE. Otherwise, its use is similar to the MICT algorithm.
One must specify the number of previous observations (np), the number of subsequent
observations (nf), and the number of imputations (m).

R> imputed <- seqimpute(mvad.miss, var=17:86, np=1, nf=1, m=3,
+ timing=TRUE)

When the number of trajectories is very small (fewer than 200, based on our experience),
it can be advantageous to include not only observations from the same time point
across sequences but also those from adjacent time points. This can be achieved using
the frame.radius argument. For instance, setting frame.radius to 1 incorporates
observations from both the preceding and following time points into the imputation
models.

R> imputed <- seqimpute(mvad.miss, var=17:86, np=1, nf=1, m=3,
+ timing=TRUE, frame.radius=1)

2. Inclusion of covariates
Incorporating carefully chosen covariates can enhance the quality of imputations. We
elaborate on the specific covariates that should be included and the rationale behind
their selection. Additionally, we focus on the practical implementation of these covari-
ates within the seqimpute() function. Finally, we briefly discuss some open issues
related to the inclusion of covariates.
Guidance regarding the incorporation of covariates in imputation models suggests in-
cluding those that (see e.g. Van Buuren (2018)):

• Are subject to different trajectories. For example, career paths differ between men
and women, with men often working full-time and women more likely to work
part-time (see e.g. Widmer and Ritschard (2009)). Failure to include the gender
variable in the imputation process would result in imputed values that do not take
these notable differences into account. In the sample application of this article,
transitions may vary according to the type of secondary education.

28 Multiple imputation with the seqimpute package

• Potentially relate to the missing data mechanism. For example, several studies
have shown that less-educated individuals are more likely to have missing values
(e.g. Voorpostel 2010; Müller et al. 2012).

• Will be considered in the subsequent statistical analysis. This allows to maintain
the relations between the corresponding covariates after the imputation. In our
illustrative example, we included father unemployment and sex as covariates in
the statistical analysis. Hence, these variables should be incorporated into the
imputation models.

Covariates should be included by specifying the names of the columns in the data set that
contain the covariates we want to include. We are including gender, type of secondary
education, and whether the father was unemployed. These are in the columns named
male, Grammar and funemp.

R> imputed <- seqimpute(mvad.miss, var=17:86, np=5, nf=5, m=3,
+ timing=TRUE, covariates=c("male","Grammar","funemp"))

The seqimpute() function can also be provided with time-varying covariates, supplied
either as a list of sequence objects (each corresponding to a time-varying covariate) or
as a list of dataframes.
Note that the seqimpute() function exclusively handles covariates without missing
data.

3. Number of previous and subsequent predictors
In the example, we relied on only one observation in the past and one in the future
for the prediction. If long-term effects are suspected, it may be worth increasing the
number of past and future observations included.

R> imputed <- seqimpute(mvad.miss, var=17:86, np=5, nf=5,
+ m=3, timing=TRUE)

4. Number of imputations
With multiple imputation, we create multiple complete datasets with no missing data.
Therefore, one question is how many imputed datasets are needed. By increasing the
number of imputations, we reduce the variability introduced into the statistical results.
However, we may be limited by the computational burden, and the gain from a very
large number of imputations may be limited.
In practice, it is often recommended to use between 5 and 20, depending on the amount
of missing data (see e.g. Van Buuren (2018) for a discussion on the number of imputa-
tions). If the interest is in detecting small effects, it may be worth increasing the number
of imputations. It is important to strike a balance between the statistical benefits and
the computational constraints.

7. Other features of the imputation through seqimpute

Journal of Statistical Software 29

We delve into two other features available for seqimpute(), namely the application of random
forests as imputation models and parallel computing.

7.1. Random forests

The package offers the flexibility to employ random forests as an alternative to multinomial
imputation models. Random forests are a widely used method for handling missing data in
various domains (Burgette and Reiter 2010; Shah, Bartlett, Carpenter, Nicholas, and Hem-
ingway 2014; Doove, Van Buuren, and Dusseldorp 2014). They possess several advantageous
features such as the ability to capture non-linear relationships, interactions, and immunity to
irrelevant predictors (Friedman, Hastie, Tibshirani et al. 2001). These attributes are partic-
ularly valuable when dealing with longitudinal data, where specific state combinations can
trigger long-term effects. However, despite these theoretically appealing characteristics, the
suitability of random forests as imputation models still need to be demonstrated. We rec-
ommend users to apply by default multinomial imputation models unless they have specific
reasons to explore alternatives.
To apply the imputation model defined in the last section with random forests imputation
models, one needs to set the regr argument to "rf"

R> set.seed(2)
R> imputed.rf <- seqimpute(mvad.miss, var=17:86, np=5, nf=5, m=3,
+ covariates=c("male","Grammar","funemp"),regr="rf")

7.2. Parallel computing

Multiple imputation can be computationally intensive. To address this, the seqimpute()
function supports parallel computing. Since each imputation is completely independent of
the others, it is possible to run each of the imputations simultaneously in parallel, providing
a practical solution to reduce processing time.
To enable parallel computing, the ParExec argument must be set to TRUE, and the ncores
argument specifies the number of cores to use. If the number of cores is not specified, it is
set as the maximum number of available cores minus 1. For reproducibility, a seed should
be provided using the SetRNGSeed argument. Note that using set.seed() alone before
computations does not ensure reproducibility; the SetRNGSeed argument must be explicitly
set.

R> imputed.par <- seqimpute(mvad.miss,var=17:86, np=5, nf=5, m=3,
+ covariates=c("male","Grammar","funemp"), ParExec = TRUE, ncores=3,
+ SetRNGSeed = 2)

8. Additional Functions
This section outlines additional functionalities provided by the package. We focus on two
functions: seqaddNA(), which simulates missing data and seqQuickLook(), which provides
an overview of the number and sizes of different types of gaps in the original dataset.

30 Multiple imputation with the seqimpute package

8.1. Simulating missing data

The seqaddNA() function enables the simulation of missing data in sequences using a Marko-
vian approach, where the probability of a value being missing depends on the preceding time
point. The simulation process works as follows:

1. The first time point of a sequence has a p.low probability of being missing.

2. For subsequent time points:

(a) If the previous time point is missing, the current time point has a pcont probability
of being missing.

(b) If the previous time point is observed, the current time point has a p.high proba-
bility of being missing if the previous state belongs to the set of states specified in
the states.high argument. Otherwise, the probability of being missing is p.low.

The function also includes several additional arguments to customize the simulation:

• propdata: Specifies the proportion of trajectories on which missing data will be sim-
ulated, as a decimal between 0 and 1. By default, all sequences (propdata = 1) are
selected for simulation.

• maxgap: Defines the maximum length of a gap. If this limit is reached, the next time
point is automatically set as observed. The default value is 3.

• maxprop: Sets the maximum proportion of missing data allowed within a sequence. If
this limit is exceeded, the missing data simulation is repeated for that sequence. The
default value is 0.75.

8.2. Overview of the gaps of missing data

The function seqQuickLook() provides an overview of the number and size of the different
types of gaps spread in the original dataset. Note that both MICT and MICT-timing dif-
ferentiates between six different types of gaps. The definition of several of them depends
on the number of previous (np) and future (nf) observations that are set for the MICT and
MICT-timing algorithms.

• Internal gap have at least np observations before and nf after the gap

• Initial gap are situated at the very beginning of a trajectory

• Terminal gap are situated at the very end of a trajectory

• Left-hand side specifically located gap (SLG) have at least nf observations after
the gap, but less than np observation before it

• Right-hand side specifically located gap (SLG) have at least np observations
before the gap, but less than nf observation after it

• Both-hand side specifically located gap (SLG) have less than np observations
before the gap, and less than nf observations after it

Journal of Statistical Software 31

The function returns a data frame that summarizes the characteristics of each type of gap.
For each gap type, it provides the minimum and maximum lengths, the total number of gaps,
and the total number of missing values they contain.
For instance, consider the dataset with missing data generated in Section 4. Using an impu-
tation model with np=5 and nf=5, we have:

R> seqQuickLook(mvad.miss, var = 17:86, np = 5, nf = 5)

MinGapSize MaxGapSize numbOfGaps sumNAGaps
Internal Gaps 1 3 481 1028
Initial Gaps 1 3 7 16
Terminal Gaps 1 3 23 38
LEFT-hand side SLG 2 3 25 50
RIGHT-hand side SLG 1 3 44 81
BOTH-hand side SLG 0 0 0 0

Therefore, for example, we observe that internal gaps have a length between 1 and 3. There
are 481 such gaps, and they account for 1028 missing values.

9. Conclusion
This document describes the functionality of the seqimpute package, which mainly implements
two multiple imputation methods tailored to categorical sequence data: MICT and MICT-
timing. In addition, several functions for displaying patterns of missing data within sequences
are included. These tools are illustrated with an example focusing on a typical application in
sequence analysis, namely the use of a derived typology in a regression analysis.

10. Acknowledgements
This publication benefited from the support of the Swiss National Science Foundation (project
“Strengthening Sequence Analysis,” grant number: 10001A_204740). The authors are grate-
ful to the Swiss National Science Foundation for its financial assistance.

32 Multiple imputation with the seqimpute package

References

Audigier V, Husson F, Josse J (2017). “MIMCA: multiple imputation for categorical variables
with multiple correspondence analysis.” Statistics and computing, 27, 501–518.

Basagaña X, Barrera-Gómez J, Benet M, Antó JM, Garcia-Aymerich J (2013). “A framework
for multiple imputation in cluster analysis.” American journal of epidemiology, 177(7),
718–725.

Burgette LF, Reiter JP (2010). “Multiple imputation for missing data via sequential regression
trees.” American journal of epidemiology, 172(9), 1070–1076.

Doove LL, Van Buuren S, Dusseldorp E (2014). “Recursive partitioning for missing data
imputation in the presence of interaction effects.” Computational statistics & data analysis,
72, 92–104.

Emery K, Studer M, Berchtold A (2024). “Comparison of imputation methods for univariate
categorical longitudinal data.” Quality & Quantity.

Faucheux L, Resche-Rigon M, Curis E, Soumelis V, Chevret S (2021). “Clustering with
missing and left-censored data: A simulation study comparing multiple-imputation-based
procedures.” Biometrical Journal, 63(2), 372–393.

Friedman J, Hastie T, Tibshirani R, et al. (2001). The elements of statistical learning.
Springer.

Gabadinho A, Ritschard G (2016). “Analyzing state sequences with probabilistic suffix trees:
the PST R package.” Journal of statistical software, 72(1), 1–39.

Gabadinho A, Ritschard G, Müller NS, Studer M (2011). “Analyzing and visualizing state
sequences in R with TraMineR.” Journal of Statistical Software, 40(4), 1–37.

Gomer B, Yuan KH (2023). “A realistic evaluation of methods for handling missing data
when there is a mixture of MCAR, MAR, and MNAR mechanisms in the same dataset.”
Multivariate Behavioral Research, 58(5), 988–1013.

Halpin B (2012). “Multiple imputation for life-course sequence data.” Department of Sociology
Working Paper Series, University of Limerick.

Harrell Jr FE (2024). Hmisc: Harrell Miscellaneous. R package version 5.1-3, URL https:
//CRAN.R-project.org/package=Hmisc.

Honaker J, King G, Blackwell M (2011). “Amelia II: a program for missing data.” Journal of
statistical software, 45(1), 1–47.

King G, Honaker J, Joseph A, Scheve K (2001). “Analyzing incomplete political science data:
An alternative algorithm for multiple imputation.” American political science review, 95(1),
49–69.

Kowarik A, Templ M (2016). “Imputation with the R Package VIM.” Journal of Statistical
Software, 74(7), 1–16. doi:10.18637/jss.v074.i07.

https://CRAN.R-project.org/package=Hmisc
https://CRAN.R-project.org/package=Hmisc
https://doi.org/10.18637/jss.v074.i07

Journal of Statistical Software 33

Lall R (2016). “How multiple imputation makes a difference.” Political Analysis, 24(4),
414–433.

Liao TF, Bolano D, Brzinsky-Fay C, Cornwell B, Fasang AE, Helske S, Piccarreta R, Raab
M, Ritschard G, Struffolino E, et al. (2022). “Sequence analysis: its past, present, and
future.” Social science research, 107, 102772.

Little RJ (1992). “Regression with missing X’s: a review.” Journal of the American statistical
association, 87(420), 1227–1237.

Little RJ, Rubin DB (2019). Statistical analysis with missing data, volume 793. John Wiley
& Sons.

Little RJ, Schenker N (1995). “Missing data.” In G Arminger, CC Clogg, ME Sobel (eds.),
Handbook of statistical modeling for the social and behavioral sciences, pp. 39–75. Springer.

McVicar D, Anyadike-Danes M (2002). “Predicting successful and unsuccessful transitions
from school to work by using sequence methods.” Journal of the Royal Statistical Society
Series A: Statistics in Society, 165(2), 317–334.

Molenberghs G, Fitzmaurice G, Kenward MG, Tsiatis A, Verbeke G (2014). Handbook of
missing data methodology. Chapman & Hall/CRC handbooks of modern statistical meth-
ods. CRC Press. URL http://cds.cern.ch/record/2018959.

Müller NS, Sapin M, Gauthier JA, Orita A, Widmer ED (2012). “Pluralized life courses? An
exploration of the life trajectories of individuals with psychiatric disorders.” International
Journal of Social Psychiatry, 58(3), 266–277.

Perkins NJ, Cole SR, Harel O, Tchetgen Tchetgen EJ, Sun B, Mitchell EM, Schisterman EF
(2018). “Principled approaches to missing data in epidemiologic studies.” American journal
of epidemiology, 187(3), 568–575.

Piccarreta R, Studer M (2019). “Holistic analysis of the life course: Methodological challenges
and new perspectives.” Advances in Life Course Research, 41, 100251.

Quartagno M, Carpenter J (2023). jomo: A package for Multilevel Joint Modelling Multiple
Imputation. URL https://CRAN.R-project.org/package=jomo.

Ritschard G, Studer M, Buergin R, Liao TF, Gabadinho A, Fonta PA, Muller NS, Rousset P
(2024). “Package ‘TraMineRextras’.”

Rothenbühler M, Voorpostel M (2016). “Attrition in the Swiss Household Panel: Are
Vulnerable Groups more Affected than Others?” In M Oris, C Roberts, D Joye,
M Ernst Stähli (eds.), Surveying Human Vulnerabilities across the Life Course, pp. 223–
244. Springer. ISBN 978-3-319-24157-9. doi:10.1007/978-3-319-24157-9_10. URL
https://doi.org/10.1007/978-3-319-24157-9_10.

Rubin DB (1976). “Inference and Missing Data.” Biometrika, 63(3), 581–592. doi:10.1093/
biomet/63.3.581.

Rubin DB (1987). Multiple Imputation for Nonresponse in Surveys. Wiley Series in Proba-
bility and Statistics. John Wiley & Sons.

http://cds.cern.ch/record/2018959
https://CRAN.R-project.org/package=jomo
https://doi.org/10.1007/978-3-319-24157-9_10
https://doi.org/10.1007/978-3-319-24157-9_10
https://doi.org/10.1093/biomet/63.3.581
https://doi.org/10.1093/biomet/63.3.581

34 Multiple imputation with the seqimpute package

Shah AD, Bartlett JW, Carpenter J, Nicholas O, Hemingway H (2014). “Comparison of
random forest and parametric imputation models for imputing missing data using MICE:
a CALIBER study.” American journal of epidemiology, 179(6), 764–774.

Studer M (2013). “WeightedCluster Library Manual: A practical guide to creating typologies
of trajectories in the social sciences with R.” LIVES Working papers, 24. ISSN 2296-
1658. doi:10.12682/lives.2296-1658.2013.24. Swiss National Centre of Competence in
Research LIVES, Geneva, URL https://doi.org/10.12682/lives.2296-1658.2013.24.

Studer M, Ritschard G (2016). “What matters in differences between life trajectories: A
comparative review of sequence dissimilarity measures.” Journal of the Royal Statistical
Society: Series A (Statistics in Society), 179(2), 481–511. doi:10.1111/rssa.12125.

Van Buuren S (2018). Flexible Imputation of Missing Data. Chapman & Hall/CRC Interdis-
ciplinary Statistics. CRC Press. ISBN 9781138588318. URL https://books.google.ch/
books?id=bLmItgEACAAJ.

Van Buuren S, Groothuis-Oudshoorn K (2011). “mice: Multivariate imputation by chained
equations in R.” Journal of statistical software, 45, 1–67.

Voorpostel M (2010). “Attrition patterns in the Swiss household panel by demographic
characteristics and social involvement.” Swiss Journal of Sociology, 36(2), 359–377.

Widmer ED, Ritschard G (2009). “The de-standardization of the life course: are men and
women equal?” Advances in Life Course Research, 14(1-2), 28–39.

Affiliation:
Kevin Emery
Swiss Centre of Expertise in Life Course Research LIVES
and
Faculty of Social Sciences
University of Geneva
Geneva, Switzerland
E-mail: kevin.emery@unige.ch

http://www.jstatsoft.org/
published by the Foundation for Open Access Statistics http://www.foastat.org/

MMMMMM YYYY, Volume VV, Issue II Submitted: yyyy-mm-dd
doi:10.18637/jss.v000.i00 Accepted: yyyy-mm-dd

https://doi.org/10.12682/lives.2296-1658.2013.24
https://doi.org/10.12682/lives.2296-1658.2013.24
https://doi.org/10.1111/rssa.12125
https://books.google.ch/books?id=bLmItgEACAAJ
https://books.google.ch/books?id=bLmItgEACAAJ
mailto:kevin.emery@unige.ch
http://www.jstatsoft.org/
http://www.foastat.org/
https://doi.org/10.18637/jss.v000.i00

	Introduction
	Missing data issues and treatment
	Description of the imputation algorithms
	Sample application
	Step-by-step analysis
	Description and visualization of missing data
	Multiple imputation
	Typology creation
	Regression analysis on clustered trajectories

	Guidelines related to the imputation model
	Other features of the imputation through seqimpute
	Random forests
	Parallel computing

	Additional Functions
	Simulating missing data
	Overview of the gaps of missing data

	Conclusion
	Acknowledgements

