Package 'secrdesign'

June 13, 2025

Type Package

Title Sampling Design for Spatially Explicit Capture-Recapture

Version 2.10.0

Date 2025-06-13

Description Tools for designing spatially explicit capture-recapture studies of animal populations. This is primarily a simulation manager for package 'secr'. Extensions in version 2.5.0 include costing and evaluation of detector spacing.

Depends R (>= 3.5.0), secr (>= 4.2.0)

Imports abind, kofnGA, parallel, sf, Rcpp (>= 0.12.14)

LinkingTo BH, Rcpp, RcppArmadillo

Suggests secrilinear, ipsecr (>= 1.4.0), testthat (>= 0.11.0)

License GPL (≥ 2)

URL https://www.otago.ac.nz/density/,

https://github.com/MurrayEfford/secrdesign/

NeedsCompilation yes

Author Murray Efford [aut, cre] (ORCID: <https://orcid.org/0000-0001-5231-5184>), Ian Durbach [ctb] (ORCID: <https://orcid.org/0000-0003-0769-2153>)

Maintainer Murray Efford <murray.efford@otago.ac.nz>

Repository CRAN

Date/Publication 2025-06-13 04:50:02 UTC

Contents

secrdesign-package .			•	 		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	2
costing				 																									4
count				 																									6
estimateSummary				 																									7
expand.arg				 																									11
GAoptim	 			 		•		•	•						•		•	•	•	•	•								12

getdetectpar
Internal
Lambda
make.array
make.scenarios
minsimRSE
optimalSpacing
plot.optimalSpacing
predict.fittedmodels
rbind.estimatetables
run.scenarios
saturation
scenariosFromStatistics
scenarioSummary
select.stats
simOU.capthist
summary.secrdesign
transformOutput
validate
52

Index

secrdesign-package Spatially Explicit Capture–Recapture Study Design

Description

Tools to assist the design of spatially explicit capture-recapture studies of animal populations.

Details

Package:secrType:PackageVersion:2.10.0Date:2025-06-13License:GNU General Public License Version 2 or later

The primary use of **secrdesign** is to predict by Monte Carlo simulation the precision or bias of density estimates from different detector layouts, given pilot values for density and the detection parameters lambda0/g0 and sigma.

Tools are also provided for predicting the performance of detector layouts without simulation, and for optimising layouts to meet various criteria, particularly expected counts.

The simulation functions in **secrdesign** are:

make.scenarios

generate dataframe of parameter values etc.

```
run.scenariosperform simulations, with or without model fittingfit.modelsfit SECR model(s) to rawdata output from run.scenariospredict.fittedmodelsinfer 'real' parameter estimates from fitted modelsselect.statscollect output for a particular parametersummary.selectedstatisticsnumerical summary of resultsplot.selectedstatisticshistogram or CI plot for each scenario
```


Fig. Core simulation functions in **secrdesign** (yellow) and their main inputs and outputs. Output from the simulation function run.scenarios() may be saved as whole fitted models, predicted values (parameter estimates), or selected statistics. Each form of output requires different subsequent handling. The default path is shown by solid blue arrows.

Other functions not used exclusively for simulation are:

Enrm	expected numbers of individuals n , re-detections r and movements m
En2	expected number of individuals detected at two or more detectors
minnrRSE	approximate RSE(D-hat) given sample size (n, r) (Efford and Boulanger 2019)
GAoptim	optimization of detector placement using genetic algorithm (Durbach et al. 2021)
costing	various cost components
saturation	expected detector saturation (trap success)
scenarioSummary	applies Enrm, minnrRSE, and other summaries to each scenario in a dataframe

optimalSpacing optimal detector spacing by rule-of-thumb and simulation RSE(D-hat)

A vignette documenting the simulation functions is available at secretesign-vignette.pdf. An Appendix in that vignette has code for various examples that should help get you started.

Documentation for expected counts is in secrelsign-Enrm.pdf. Another vignette secrelsign-tools.pdf demonstrates other tools. These include the optimalSpacing function, for finding the detector spacing that yields the greatest precision for a given detector geometry, number of sampling occasions, density and detection parameters.

Help pages are also available as .../doc/secrdesign-manual.pdf.

Author(s)

Murray Efford <murray.efford@otago.ac.nz>

References

Durbach, I., Borchers, D., Sutherland, C. and Sharma, K. (2021) Fast, flexible alternatives to regular grid designs for spatial capture–recapture. *Methods in Ecology and Evolution* **12**, 298–310. doi:10.1111/2041210X.13517

Efford, M. G., and Boulanger, J. (2019) Fast evaluation of study designs for spatially explicit capture–recapture. *Methods in Ecology and Evolution*, **10**, 1529–1535. doi:10.1111/2041210X.13239

See Also

make.grid, sim.popn, sim.capthist, secr.fit

costing

Cost of SECR design

Description

The cost of implementing a spatially explicit capture–recapture design depends on the detector layout, the number of detections and the various unit costs.

Usage

```
costing(traps, nr, noccasions, unitcost = list(), nrepeats = 1, routelength = NULL,
    setupoccasion = TRUE)
```

costing

Arguments

traps	traps object for detector array
nr	numeric vector with $E(n)$ and $E(r)$ as first two elements
noccasions	integer number of sampling occasions
unitcost	list with unit costs (see Details)
nrepeats	integer number of repeated arrays
routelength	numeric route length (km)
setupoccasion	logical; if TRUE then the cost of a setup visit is included (noccasions+1)

Details

nr is a vector with the expected sample sizes (numbers of individuals and recaptures), usually the output from Enrm.

unitcost should be a list with at least one of the components 'perkm', 'perarray', 'perdetector', 'pervisit' and 'perdetection'.

The number of occasions (noccasions) is incremented by 1 if setupoccasion is TRUE.

Component	Unit cost	Costing
Arrays	perarray	perarray x nrepeats
Detectors	perdetector	perdetector x nrow(traps) x nrepeats
Travel	perkm	perkm x routelength x noccasions x nrepeats
Visits	pervisit	sum(pervisit x trapcost) x noccasions x nrepeats
Detections	perdetection	perdetection x total detections $(E(n) + E(r))$

'Travel' and 'Visits' are alternative ways to cost field time. The variable 'routelength' represents the length of a path followed to visit all detectors; if not specified it is approximated by the sum of the nearest-trap distances. The variable 'trapcost' is a vector of length equal to the number of detectors. By default it is a vector of 1's, but detector- specific values may be provided as trap covariate 'costpervisit'. In the latter case the value of 'pervisit' should probably be 1.0.

'Arrays' and 'Detectors' represent one-off costs.

'Detections' includes costs such as handling time and laboratory DNA analysis.

See .../doc/secrdesign-tools.pdf for more.

Value

A named numeric vector

See Also

Enrm, scenarioSummary

count

Examples

```
tr <- make.grid(8, 8, spacing = 25)
msk <- make.mask(tr, buffer = 100, type = 'trapbuffer')
nrm <- Enrm(D = 5, tr, msk, list(lambda0 = 0.2, sigma = 20), 5)
costing (tr, nrm, 5, unitcost = list(pervisit = 5, perdetection = 15))</pre>
```

Count

Extract Summaries

Description

Reshape results from run.scenarios(..., extractfn = summary) so that they may be passed to the usual summary functions of **secreting**.

Usage

```
count(object, ...)
```

```
## S3 method for class 'summary'
predict(object, ...)
## S3 method for class 'summary'
coef(object, ...)
## S3 method for class 'summary'
count(object, ...)
```

Arguments

object	summary simulation output from run.scenarios
	other arguments (not used)

Details

The aim is to extract numerical results from simulations performed using run.scenarios(..., extractfn = summary). The results may then be passed to the summary method for 'secretary' objects, possibly via select.stats (see Examples).

Value

An object of class c("estimatetables", "secrdesign", "list") in which the output component for each scenario is a list of dataframes, one per replicate. The structure of each dataframe is indicated in the following table (parameters may vary with model); 'parameters' and 'statistics' correspond to arguments of select.stats.

Function	Row(s)	Columns
	(parameters)	(statistics)

6

estimateSummary

count	Number	Animals, Detections, Moves
coef	D, g0, sigma	estimate, SE.estimate, lcl, ucl
predict	D, g0, sigma	estimate, SE.estimate, lcl, ucl

See Also

predict.secr, coef.secr,

Examples

estimateSummary Direct summary of estimate tables

Description

An alternative approach to summarising output from run.scenarios (cf summary.estimatetables). estimateSummary is especially useful when extractfn = predict or extractfn = coef, and all scenarios have group structure.

countSummary summarises the raw data when the default extractfn is used with a fitted model (counts are then stored as an attribute of the 'predict' output). The same results may be obtained by running the simulations without fitting a model and using summary(..., fields = c('n', 'mean', 'se', 'sd', 'min', 'max

Usage

```
estimateArray(object)
```

```
estimateSummary(object, parameter = "D", statistics = c("true", "nvalid",
        "EST", "seEST", "RB", "seRB", "RSE", "RMSE", "rRMSE", "COV"), true,
```

```
validrange = c(0, Inf), checkfields = c('estimate', 'SE.estimate'),
format = c('data.frame', 'list'), cols = NULL)
```

```
countSummary(object, verbose = FALSE, dec = 3)
```

Arguments

object	secreding object of class "estimatetables"
parameter	character name of parameter (row in estimate table)
statistics	character choice of outputs
true	numeric vector of true values, one per scenario and group
validrange	numeric allowed for estimates or other checkfields
checkfields	character choice of columns in each estimate table that will be checked against validrange
format	character choice of output
cols	indices of scenario columns to include when format = "data.frame"
verbose	logical; if TRUE then the mean, SD, minimum and maximum are tabulated
dec	integer number of decimal places in output (verbose only)

Details

When 'predict(fittedmodel)' in run.scenarios generates more than one estimate table (i.e. when the model uses groups, mixture classes or multiple sessions), the default extract function retains only the first. This is often OK, but it can be frustrating if you care about group- or session-specific estimates.

The alternative is to use 'predict' as the run.scenarios extractfn, which retains all estimate tables. This requires a different function for summarisation; estimateSummary will suffice for many purposes.

estimateSummary internally calls estimateArray to pre-process the output from run.scenarios.

The code should be examined for the precise definition of each statistic.

True parameter values are required for RB, RMSE and COV, and these are computed even if later dropped from the output. If provided, the argument true should have length equal to the number of parameter tables in each replicate, i.e. (number of scenarios) * (number of groups), ordered by scenario. Otherwise, true values will be taken from rows of the data frame object\$scenarios.

Replicates are rejected (set to NA) if any checkfields falls outside validrange.

Output statistics 'EST', 'RB', and 'RSE' are means across replicates, and 'seEST', 'seRB' the corresponding standard errors.

The output list may optionally be formatted as a data.frame with pre-pended columns from object\$scenarios. Set cols to 0 or NULL for no scenario columns.

cols defaults to c("scenario", "group") if groups are present and "scenario" otherwise.

estimateSummary

Value

estimateArray – array with dimensions (Parameter, statistic, Group, Scenario, Replicate) estimateSummary –

If groups present and format = "list" - a list of matrices (group x scenario), one for each statistic:

true.X	true value of parameter (X)
nvalid	number of valid replicates used in later summaries
EST	mean of parameter estimates
seEST	standard error of estimates (across replicates)
RB	relative bias
seRB	standard error of replicate-specific RB (across replicates)
RSE	relative standard error (SE.estimate/estimate)
RMSE	root mean squared error
rRMSE	RMSE/true.X
COV	coverage of confidence intervals (usually 95% intervals).

If groups absent and format = "list" - a list of vectors (one element per scenario) with statistics as above.

If format = "data.frame" - a data frame with rows corresponding to group x scenario (or session x scenario) combinations and columns corresponding to statistics as above.

countSummary -

A matrix (verbose = FALSE) or list of matrices, one per scenario (verbse = TRUE).

Columns are defined as

n	number of individuals detected
r	number of recaptures (total detections - n)
nmov	number of movements
dpa	detectors per animal
rse	approximate $RSE(\hat{D})$ from 1 / sqrt(min(n,r))
rpsv	spatial variance computed with RPSV, CC = TRUE

Note

These functions were introduced in version 2.8.1. They may change in later versions. The default format was changed to 'data.frame' in 2.8.3.

Results may be confusing when scenarios have group structure and groups are not used in the fitted model.

It is assumed that all scenarios (and all models in a multi-model fit) report the same parameters.

See Also

run.scenarios, header, summary.estimatetables, summary.selectedstatistics

Examples

```
# 2-scenario, 2-group simulation
scen8 <- make.scenarios (D = 8, g0 = 0.3, sigma = 30,</pre>
   noccasions = c(4,8), groups = c('F', 'M')
# replace density and sigma values of males to make it interesting
male <- scen8$group == 'M'</pre>
scen8$D[male] <- 4</pre>
scen8$sigma[male] <- 40</pre>
grid <- make.grid(8, 8, spacing = 30)</pre>
mask <- make.mask(grid, buffer = 160, type = 'trapbuffer')</pre>
old <- options(digits = 3)</pre>
setNumThreads(2)
#-----
# run a few simulations
# model groups
sims <- run.scenarios(10, scen8, trapset = grid, fit = TRUE,</pre>
   fit.args = list(model = list(D~g, g0~1, sigma~g), groups = 'group'),
   extractfn = predict, maskset = mask)
# format as list, selecting statistics
# default summary uses true = c(8,4,8,4)
estimateSummary(sims, 'D', c("true", "nvalid", "EST", "RB", "seRB"))
# format as data.frame by scenario and group, all statistics
estimateSummary(sims, 'D', format = 'data.frame')
#-----
# try with default extractfn (single table per replicate, despite groups)
sims2 <- run.scenarios(10, scen8, trapset = grid, fit = TRUE,</pre>
    maskset = mask)
# Fails with "Error in estimateSummary(sims2, "D") : incongruent 'true'""
# estimateSummary(sims2, 'D')
# OK if manually provide scenario-specific true density
estimateSummary(sims2, 'D', true = c(12,12))
# reformat by scenario
estimateSummary(sims2, 'D', true = c(12,12), format = 'data.frame')
# compare standard summary
summary(sims2)$OUTPUT
```

expand.arg

```
# multiple estimate tables also arise from multi-session simulations
# argument 'true' must be specified manually
# interpret with care: sessions are (probably) not independent
# this example uses the previous grid and mask
scen9 <- make.scenarios (D = 8, g0 = 0.3, sigma = 30, noccasions = 5)</pre>
poparg <- list(nsessions = 3, details = list(lambda = 1.2)) # for sim.popn</pre>
detarg <- list(renumber = FALSE)</pre>
                                                          # for sim.capthist
fitarg <- list(model = D~Session)</pre>
                                                          # for secr.fit
sims3 <- run.scenarios(5, scen9, trapset = grid, fit = TRUE,</pre>
   maskset = mask, pop.args = poparg, det.args = detarg,
   fit.args = fitarg, extractfn = predict)
estimateSummary(sims3, parameter = 'D', format = 'data.frame',
   true = 8 \times 1.2^{(0:2)}
#-----
# extractfn = coef results in a single estimate table per replicate,
# so the usual summary method is sufficent. For completeness we show
# that estimateSummary can also be used. Coefficients are often negative,
# so relative values (e.g., RB, RSE) may be meaningless.
sims4 <- run.scenarios(5, scen9, trapset = grid, fit = TRUE,</pre>
   maskset = mask, pop.args = poparg, det.args = detarg,
   fit.args = fitarg, extractfn = coef)
estimateSummary(sims4, parameter = 'D', c("nvalid", "EST", "seEST", "RMSE", "COV"),
   format = 'data.frame', true = log(8), checkfields = 'beta',
   validrange = log(c(2,20)))
estimateSummary(sims4, parameter = 'D.Session', c("nvalid", "EST", "seEST",
   "RMSE", "COV"), format = "data.frame", true = log(1.2), checkfields = "beta",
   validrange = log(c(0.5,2)))
                             _____
#-----
```

options(old)

expand.arg

Expand Argument List

Description

Generate a list of lists from vectors of argument values.

Usage

expand.arg(..., sublist = list())

Arguments

•••	named vectors of argument values
sublist	named list of character vectors

Details

The full 'pop.args', 'det.args' and 'fit.args' arguments of run.scenarios are lists of lists corresponding to the popindex, detindex and fitindex columns in scenarios.

expand.arg constructs such lists from all possible combinations of specified arguments, with invariant arguments appended.

sublist may be specified to shift one or more named subsets of ... arguments to a sub-list such as 'detectpar' (see Examples).

Value

A list of lists. A flat dataframe of combinations is returned as the attribute 'comb'.

See Also

run.scenarios

Examples

```
## generate some arguments for sim.capthist
## noccasions is constant
expand.arg(detectfn = c('HN','EX'), noccasions = 5)
## detectpar sub-list
expand.arg(lambda0 = c(0.1, 0.2), sigma = 20, detectfn = c('HHN','HEX'),
        sublist = list(detectpar = c('lambda0','sigma')))
```

SECR detector placement by maximisation of a simple criterion

GAoptim

Description

Implements the approach of Durbach et al. (2021) for optimization of detector placement using a genetic algorithm to maximize the lesser of E(n) and E(r), where *n* is the number of distinct individuals and *r* is the total number of recaptures. This criterion predicts the relative standard error of the density estimate (Efford and Boulanger 2019).

Users may choose the criterion to be maximised. The number of individuals detected at two or more detectors is an alternative of particular interest (Dupont et al. 2021).

Usage

```
GAoptim(mask, alltraps, ntraps, detectpar, noccasions,
    detectfn = c("HHN", "HHR", "HEX", "HAN", "HCG"), D = NULL,
    criterion = 4, penalty = NULL, seed = NULL, ...)
```

Arguments

mask	mask object
alltraps	traps object with all possible trap locations
ntraps	number of required trap locations
detectpar	list values of detection parameters lambd0, sigma etc.
detectfn	integer code or character string for shape of detection function - see detectfn
noccasions	integer number of sampling occasions
D	numeric density animals per hectare (0.01 km^2)
criterion	integer code for criterion to maximise, or function (see Details)
penalty	list defining penalty for layout in relation to reference grid (optional)
seed	set a random seed for reproducibility of GA
	other arguments passed to kofnGA

Details

detectpar is a named list with values of the detection parameters for the chosen detectfn. Usually this will be just lambda0 (baseline hazard of detection) and sigma (spatial scale of detection).

The genetic algorithm is provided by function kofnGA from package **kofnGA** (Wolters 2015). The first three arguments of kofnGA (i.e., n, k, OF) are set by GAoptim. Others may be adjusted by the user via the \ldots argument. Specifically,

Argument	Default	Description
ngen	500	number of generations to run
popsize	200	size of the population; equivalently, the number of offspring produced each generation
mutprob	0.01	mutation rate
verbose	0	integer controlling the display of progress during search. If a positive value, then the iteration number a
cluster	NULL	number of parallel cores or a prebuilt parallel cluster

а

The default for ngen may (or may not) be larger than is needed for routine use. Durbach et al. (2021) used ngen = 50, popsize = 1000 and mutprob = 0.01.

Density D may be a scalar or a vector of length equal to the number of mask cells. No value need be specified if the sole aim is to optimize trap placement, but D is required for predictions of E(n) and E(r).

Pathological detector layouts (sensu Efford and Boulanger 2019) may be avoided by adding a penalty to the objective. No penalty is applied by default. To apply a penalty, penalty should be a list with named components pen_wt>0 and pen_gridsigma). If a penalty is applied, the default compares the number of trap pairs with close spacing (2.5-3.5 sigma, 3.5-4.5 sigma) to the number in a compact sample from a regular grid with spacing sigma * pen_gridsigma (see internal functions GApenfn and compactSample and the vignette). An alternative penalty function may be supplied as component 'pen_fn' of penalty.

The default criterion is the minimum of E(n) and E(r) as used by Durbach et al. (2021). The full list of builtin possibilities is:

Code	Description	Note
1	E(n)	number of distinct individuals
2	E(r)	number of recaptures
3	E(m)	number of movement recaptures
4	$\min(E(n), E(r))$	minimum E(n), E(r)
5	E(n2)	expected number of animals detected at 2 or more sites (cf Qpm Dupont et al. 2021)
6	E(n) + E(n2)	(1) + (5) (cf Qpb Dupont et al. 2021)

Criteria 1–4 are computed with function Enrm (see also Efford and Boulanger 2019). Criteria 5–6 are computed with function En2. Any penalty is applied only when criterion = 4.

The criterion may also be a function that returns a single numeric value to be maximised. Arguments of the function should match those of En2, although ... may suffice for some or all (see Examples).

Value

An object of class "GAoptim" that is a list with components

mask	saved input
alltraps	saved input
detectpar	saved input
noccasions	saved input
detectfn	saved input
D	saved input
penalty	saved input
criterion	saved input
des	kofnGA() output object
optimaltraps	traps object with optimized layout
optimalenrms	E(n), $E(r)$, $E(m)$ evaluated with optimized layout

14

GAoptim

Warnings

Spatial representativeness is not considered, so designs 'optimised' with GAoptim are not robust to unmodelled variation in density or detection parameters.

Author(s)

Ian Durbach and Murray Efford.

References

Dupont, G., Royle, J. A., Nawaz, M. A. and Sutherland, C. (2021) Optimal sampling design for spatial capture–recapture. *Ecology* **102** e03262.

Durbach, I., Borchers, D., Sutherland, C. and Sharma, K. (2021) Fast, flexible alternatives to regular grid designs for spatial capture–recapture. *Methods in Ecology and Evolution* **12**, 298–310. doi:10.1111/2041210X.13517

Efford, M. G., and Boulanger, J. (2019) Fast evaluation of study designs for spatially explicit capture–recapture. *Methods in Ecology and Evolution*, **10**, 1529–1535. doi:10.1111/2041210X.13239

Wolters, M. A. (2015) A genetic algorithm for selection of fixed-size subsets with application to design problems. *Journal of Statistical Software, Code Snippets*, **68**, 1–18. doi:10.18637/jss.v068.c01

See Also

Enrm, En2, minnrRSE, GApenfn, compactSample

Examples

```
# an artificial example
msk <- make.mask(type = 'rectangular', spacing = 10, nx = 30, ny = 20, buffer = 0)</pre>
alltrps <- make.grid(nx = 29, ny = 19, origin = c(10,10), spacing = 10)
set.seed(123)
# 50 generations for demonstration, use more in practice
opt <- GAoptim(msk, alltrps, ntraps = 20, detectpar = list(lambda0 = 0.5, sigma = 20),
    detectfn = 'HHN', D = 10, noccasions = 5, ngen = 50, verbose = 1)
plot(msk)
plot(opt$optimaltraps, add = TRUE)
minnrRSE(opt, distribution = 'binomial')
# Using a criterion function
# En2 is unsuitable as a criterion function as it returns 2 values
# This function selects the second as the (unique) criterion
fn <- function(...) En2(...)[2]</pre>
opt2 <- GAoptim(msk, alltrps, ntraps = 20, detectpar = list(lambda0 = 0.5, sigma = 20),
    detectfn = 'HHN', D = 10, noccasions = 5, ngen = 50, verbose = 1, criterion = fn)
```

getdetectpar

Description

Detection parameters for an animal population may be guessed from some basic inputs (population density, a coefficient of home-range overlap, and the expected number of detections on a given detector array). These values are useful as a starting point for study design. They are not 'estimates'.

Usage

getdetectpar(D, C, sigma = NULL, k = 0.5, ...)

Arguments

D	population density animals / hectare; may be scalar or vector of length nrow(mask)
С	integer expected total number of detections
sigma	numeric spatial scale parameter of chosen detection function, in metres (optional)
k	coefficient of overlap - typically in range 0.3 to 1.1
	named arguments passed to Enrm and Lambda (traps, mask, noccasions, detectfn)

Details

If sigma is missing and detect fn ='HHN' then sigma is first inferred from the relationship $\sigma = 100k\sqrt{D}$ (D in animals per hectare and σ in metres). Other detect fn give an error.

A numerical search is then conducted for the value of lambda0 that results in C expected detections for the given density and design. The calculation takes account of the detector array, the habitat mask and the number of sampling occasions (all specified in the ... argument - see example).

Only hazard detection functions are supported ('HHN', 'HHR', 'HEX', 'HAN', 'HCG'). The default is 'HHN'.

Value

A list with one component for each detection parameter.

See Also

Enrm, Lambda

Examples

```
tr <- traps(captdata)
detector(tr) <- "multi"
msk <- make.mask(tr, buffer = 100, type = 'trapbuffer')
getdetectpar(D = 5.48, C = 235, traps = tr, mask = msk, noccasions = 5)</pre>
```

Internal

Description

Functions that are called internally by **secrdesign**. These are exported and may be called separately for testing etc.

Usage

```
compactSample (traps, n)
GApenfn(traps, sigma)
'outputtype<-'(object, value)</pre>
```

Arguments

traps	secr trapsobject
n	integer number in sample (0 $< n \leq n traps)$
sigma	numeric sparial scale parameter
object	object output from run.scenarios
value	replacement value for outputtype of object

Details

compactSample selects a detector at random and returns the a compact subset of surrounding detectors.

GApenfn is the default pen_fn used by GAoptim When called with a non-null penalty argument.

Values of outputtype map to class of the run.scenarios output as follows

Output type	Class
secrfit	c("fittedmodels", "secrdesign", "list")
ipsecrfit	c("fittedmodels", "secrdesign", "list")
predicted	c("estimatetables", "secrdesign", "list")
derived	c("estimatetables", "secrdesign", "list")
regionN	c("estimatetables", "secrdesign", "list")
coef	c("estimatetables", "secrdesign", "list")
user	c("estimatetables", "secrdesign", "list")
secrsummary	c("summary", "secrdesign", "list")
capthist	c("rawdata", "secrdesign", "list")
selectedstatistics	c("selectedstatistics", "secrdesign", "list")

Calling the replacement function automatically changes the class of the output object as appropriate. This determines how the output is handled by downstream functions such as summary. Using a custom extractfn or post-processing the output sometimes requires the outputtype to be set manually (see example in the Multi-model section of secretesign-vignette.pdf).

Value

GApenfn – a numeric vector with the number of trap pairs separated by 2.5-3.5 sigma and 3.5-4.5 sigma.

compactSample - an object like traps, but with only n rows.

References

Durbach, I., Borchers, D., Sutherland, C. and Sharma, K. (2021) Fast, flexible alternatives to regular grid designs for spatial capture–recapture. *Methods in Ecology and Evolution* **12**, 298–310. doi:10.1111/2041210X.13517

See Also

GAoptim,

Examples

```
CStraps <- compactSample(traps(captdata), n = 20)
plot(traps(captdata))
plot(CStraps, add = TRUE, detpar = list(fg = 'blue',pch = 16))</pre>
```

```
GApenfn(CStraps, sigma = 25)
```

Lambda

Expected Detections

Description

Compute the expected number of detections as a function of location (Lambda), and the expected total numbers of individuals n, recaptures r and movements m for a population sampled with an array of detectors (Enrm) or the number of individuals detected at two or more detectors (En2).

Usage

```
Lambda(traps, mask, detectpar, noccasions, detectfn = c("HHN", "HHR", "HEX",
    "HAN", "HCG", 'HN', 'HR', 'EX'))
Enrm(D, ...)
minnrRSE(D, ..., CF = 1.0, distribution = c("poisson","binomial"))
```

18

Lambda

```
En2(D, traps, mask, detectpar, noccasions, detectfn = c("HHN", "HHR", "HEX",
    "HAN", "HCG", "HN", "HR", "EX"))
Qpm(D, traps, mask, detectpar, noccasions, detectfn = c("HHN", "HHR", "HEX",
    "HAN", "HCG", "HN", "HR", "EX"))
```

Arguments

traps	traps object
mask	mask object
detectpar	a named list giving a value for each parameter of detection function
noccasions	integer number of sampling occasions
detectfn	integer code or character string for shape of detection function - see detectfn
D	population density animals / hectare; may be scalar or vector of length nrow(mask)
	arguments passed to Lambda
CF	numeric correction factor
distribution	character distribution of n

Details

The detector attribute of traps may be 'multi', 'proximity' or 'count'. It is assumed that detectpar and detector type do not differ among occasions.

The calculation is based on an additive hazard model. If detectfn is not a hazard function ('HHN', 'HEX', 'HHR', 'HAN' and 'HCG') then an attempt is made to approximate one of the hazard functions (HN -> HHN, HR -> HHR, EX -> HEX). The default is 'HHN'.

For hazard function $\lambda(d)$ and S occasions, we define $\Lambda(x) = \sum_{k} \sum_{k} \lambda(d_k(x))$.

Formulae for expected counts are given in secrdesign-Enrm.pdf.

minnrRSE has mostly the same inputs as Enrm but returns sqrt(CF/min(n,r)). The correction factor CF may be used to adjust for systematic bias (e.g., for a line of detectors CF = 1.4 may be appropriate). The default distribution = 'poisson' is for Poisson-distributed N and n. To adjust the prediction for fixed N (binomial n) use distribution = 'binomial' (see .../doc/secrdesign-tools.pdf Appendix 2).

From 2.7.0, the first argument of minnrRSE may also be the output from GAoptim.

En2 is defined for detectors 'multi', 'proximity' and 'count'.

Qpm returns the optimisation criteria Q_p and Q_{p_m} of Dupont et al. (2021), defined only for 'proximity' and 'count' detectors. The criteria are mask-dependent, and En2 is generally preferred. For 'proximity' and 'count' detectors the following expressions give the same result:

En2(D, trp, msk, dp)

Qpm(D, trp, msk, dp) * maskarea(msk) * D

given constant density 'D', detectors 'trp', mask 'msk' and detection parameters 'dp'.

Lambda – mask object with covariates 'Lambda' $(\Lambda(x))$, 'sumpk' and 'sumq2' (intermediate values for computation of expected counts - see . . /doc/expectedcounts.pdf)

Enrm – numeric vector of length 3, the values of E(n), E(r) and E(m)

minnrRSE – rule-of-thumb RSE(D-hat) Efford and Boulanger (2019)

En2 – numeric vector comprising the values E(n) and E(number of animals detected at 2 or more sites)

Qpm – numeric vector comprising the criteria Q_p and Q_{p_m} of Dupont et al. (2021)

References

Dupont, G., Royle, J. A., Nawaz, M. A. and Sutherland, C. (2021) Optimal sampling design for spatial capture–recapture. *Ecology* **102** e03262.

Efford, M. G., and Boulanger, J. (2019) Fast evaluation of study designs for spatially explicit capture–recapture. *Methods in Ecology and Evolution*, **10**, 1529–1535. doi:10.1111/2041210X.13239

See Also

getdetectpar, optimalSpacing, scenarioSummary, GAoptim

Examples

```
tr <- traps(captdata)
detector(tr) <- "multi"
msk <- make.mask(tr, buffer = 100, type = 'trapbuffer')
L <- Lambda(tr, msk, list(lambda0 = 0.2, sigma = 20), 5)
nrm <- Enrm(D = 5, tr, msk, list(lambda0 = 0.2, sigma = 20), 5)
nrm
En2(D = 5, tr, msk, list(lambda0 = 0.2, sigma = 20), 5)
plot(L, cov = "Lambda", dots = FALSE)
plot(tr, add = TRUE)
mtext(side = 3, paste(paste(names(nrm), round(nrm,1)), collapse = ", "))</pre>
```

make.array

Re-cast Simulated Statistical Output as Array

Description

This function is used internally by summary.secrdesign, and may occasionally be of general use.

Usage

make.array(object)

20

make.scenarios

Arguments

object	secretsign object containing numerical values for a particular parameter (i.e
	output from select.stats inheriting from 'selectedstatistics')

Details

make.array converts a particular simulated numerical output into an array with one dimension for each varying input.

Value

A numeric array with dimensions corresponding to the varying inputs.

See Also

run.scenarios

Examples

```
## collect raw counts
scen1 <- make.scenarios(D = c(5,10), sigma = 25, g0 = 0.2)
traps1 <- make.grid()
tmp1 <- run.scenarios(nrep1 = 50, trapset = traps1, scenarios = scen1,
    fit = FALSE)
make.array(tmp1)</pre>
```

make.scenarios Construct Scenario Data Frame

Description

This function prepares a dataframe in which each row specifies a simulation scenario. The dataframe is used as input to run.scenarios.

Usage

```
make.scenarios(trapsindex = 1, noccasions = 3, nrepeats = 1,
D, g0, sigma, lambda0, epsilon, tau, z,
detectfn = 0, recapfactor = 1, popindex = 1, detindex = 1, fitindex = 1,
groups, crosstraps = TRUE)
```

Arguments

trapsindex	integer vector determining the traps object to use
noccasions	integer vector for the number of sampling occasions
nrepeats	integer vector of multipliers for D (see Details)
D	numeric vector of values for the density parameter (animals / hectare)
g0	numeric vector of values for the g0 parameter
sigma	numeric vector of values for the sigma parameter (m)
lambda0	numeric vector of values for the lambda0 parameter
epsilon	numeric vector of values for the epsilon parameter (m)
tau	numeric vector of values for the tau parameter (OU correlation)
Z	numeric vector of values for the z parameter
detectfn	vector of valid detection function codes (numeric or character)
recapfactor	numeric vector of values for recapfactor (sim.capthist)
popindex	integer vector determining which population model is used
detindex	integer vector determining which detection options are used
fitindex	integer vector determining which model is fitted
groups	character vector of group labels (optional)
crosstraps	logical; if TRUE the output includes all combinations of trapsindex, noccasions and nrepeats

Details

The index in trapsindex is used in run.scenarios to select particular detector arrays from the list of arrays provided as an argument to that function.

The function generates all combinations of the given parameter values using expand.grid. By default, it also generates all combinations of the parameters with trapsindex and the number of sampling occasions. If crosstraps is FALSE then trapsindex, noccasions, and nrepeats are merely used to fill in these columns in the output dataframe.

Use the detection parameters (g0, sigma, lambda0, epsilon, tau, z) that apply for the chosen detection function (detectfn). Others will be ignored.

Detectfn 20 (Ornstein-Uhlenbeck) is currently available in **secrdesign** but not in **secr** (see simOU.capthist). It uses epsilon, sigma and tau (= 1/beta).

Designs may use multiple detector arrays with the same internal geometry (e.g., number and spacing of traps). The number of such arrays is varied with the nrepeats argument. For example, you may compare designs with many small arrays or a few large ones. In practice, run.scenarios simulates a single layout with density D * nrepeats. This shortcut is not appropriate when animals compete for traps (detector = 'single').

fitindex allows a choice of different models when the argument fit.args of run.scenarios is a compound list.

If groups is provided each scenario is replicated to the length of groups and a column 'group' is added.

minsimRSE

Value

Dataframe with one row per scenario (or sub-scenario) and the columns

scenario a number identifying the scenario group (optional) trapsindex noccasions nrepeats D ... [parameters appropriate to detectfn] ... detectfn see detectfn; always numeric recapfactor

recapfactor popindex detindex fitindex An attribute 'inputs' is saved for possible use in make.array.

See Also

run.scenarios, scenarioSummary, sim.capthist

Examples

```
make.scenarios(trapsindex = 1, nrepeats = 1, D = c(5,10), sigma = 25, g0 = 0.2)
```

minsimRSE

Optimal Spacing by Simulation

Description

A method to obtain a unique 'optimal' spacing from previously simulated scenaios for detector spacing.

Usage

```
## S3 method for class 'optimalSpacing'
minsimRSE(object, cut = 0.2, plt = FALSE, verbose = FALSE, incr = 0.1, ...)
```

Arguments

object	optimalSpacing object
cut	numeric maximum Δ RSE to include
plt	logical; if TRUE a plot is generated
verbose	logical; if TRUE then output includes fitted model
incr	numeric spacing of computed points (R)
	other arguments passed to plot.optimalSpacing

Details

A quadratic is fitted to the simulated RSE (y) vs simulation (x), including only values of x and y for which $y \leq \min(y) \times (1 + \operatorname{cut})$. The restriction allows the user to exclude extreme x-values for which the quadratic is a poor fit.

The optimum is the minimum of the quadratic $ax^2 + bx + c$, given by -b/2a.

The quadratic is fitted with $lm (lm(RSE.mean ~ R + I(R^2))$.

Value

When verbose = FALSE, a numeric vector with optimum R (multiple of sigma) and corresponding RSE.

When verbose = TRUE, a list with components -

model	fitted model from 1m
fitted	dataframe of points on fitted curve
R	optimum R
RSE	minimum RSE

See Also

optimalSpacing

Examples

```
grid <- make.grid(8, 8, spacing = 20, detector = 'proximity')
# method = "none" uses the shortcut variance
tmp <- optimalSpacing(D = 5, traps = grid, detectfn = "HHN", detectpar =
    list(lambda0 = 1, sigma = 20), noccasions = 1, nx = 32,
    fit.function = "secr.fit", method = "none", simulationR = seq(1.2,2.2,0.2))
minsimRSE(tmp, plt = TRUE)</pre>
```

Description

Estimate the detector spacing that yields the greatest precision (lowest RSE D-hat) for a given detector geometry, number of sampling occasions, density and detection parameters. By default this uses only the approximate RSE of Efford and Boulanger (2019), but simulations may also be performed and the optimum found later with minsimRSE.

Usage

```
optimalSpacing (D, traps, detectpar, noccasions, nrepeats = 1,
    detectfn = c('HHN', 'HHR', 'HEX','HAN','HCG', 'HN', 'HR', 'EX'),
    fittedmodel = NULL, xsigma = 4, R = seq(0.2, 4, 0.2), CF = 1.0,
    distribution = c("poisson", "binomial"),
    fit.function = c("none", "secr.fit"),
    simulationR = seq(0.4, 4, 0.4), nrepl = 10,
    plt = FALSE, ...)
```

Arguments

D	population density animals / hectare (constant)
traps	traps object
detectpar	named list giving a value for each parameter of detection function (sigma not needed)
noccasions	integer number of sampling occasions
nrepeats	integer number of replicate arrays (not yet used)
detectfn	integer code or character string for shape of detection function - see detectfn
fittedmodel	secr fitted model (instead of preceding arguments)
xsigma	numeric buffer width as multiple of sigma
R	numeric vector of relative spacings at which to plot rule-of-thumb RSE(D-hat)
CF	numeric correction factor for rule-of-thumb RSE
distribution	character distribution of number of individuals detected
fit.function	character function to use for model fitting
simulationR	numeric vector of relative spacings at which to simulate
nrepl	integer number of replicate simulations
plt	logical; if TRUE then results are plotted
	other arguments passed to various functions (see Details)

Details

A numerical search over possible spacings uses the rule-of-thumb RSE(D-hat) given by minnrRSE as the objective function.

traps provides the geometry of the detector layout and the initial spacing s. Function optimize is used to search for a solution (minimum RSE) in the range of R x s.

The computation emulates variation in detector spacing by inverse variation in sigma (sigma' = sigma / R) with compensating variation in density. Mask buffer width and spacing are also scaled by R.

If fit.function is "secr.fit" then simulations are also performed for the relative spacings in simulationR. Density, sigma and mask attributes are scaled as for the rule-of-thumb calculations. Using 'method = "none" 'gives fast prediction of RSE (from the Hessian evaluated at the known parameter values), but does not estimate bias.

Simulation results are not summarised as a unique 'optimal' spacing. For this apply the method minsimRSE to the resulting object.

The ... argument may be used to set the values of these arguments:

Function	Arguments
make.mask	'nx', 'type', 'poly', 'poly.habitat'
run.scenarios	'seed', 'ncores', 'method'
plot.optimalSpacing	'add',

The argument CF may be set to NA to suppress rule-of-thumb RSE, including optimisation. range(R) specifies the search interval for optimisation.

A plot method is provided, with options for plotting different components.

Value

List of two components, one for the rule-of-thumb optimisation (rotRSE) and the other for simulation results, if requested (simRSE).

The optimisation results are

values	dataframe with $E(n)$, $E(r)$ and the rule-of-thumb RSE for each requested R
optimum.spacing	
	the absolute spacing that yields maximum precision (minimum rule-of-thumb RSE(D-hat))
optimum.R	spacing relative to sigma
minimum.RSE	final value of the objective function (minimum rule-of-thumb RSE(D-hat))

The simulation results in the dataframe simRSE are the mean and SE of the simulated RSE(D-hat) for each level of simulationR, with added columns for the relative bias (RB) and relative root-mean-square-error (rRMSE) of D-hat.

Results are returned invisibly if plt = TRUE.

26

optimalSpacing

Warnings

For single-catch traps, use of a maximum likelihood estimate of lambda0 from a fitted multi-catch model results in negative bias.

Only hazard-based detection functions are supported. The meaning of the 'sigma' parameter depends on the function, and so will the optimal spacing in sigma units.

Note

fit.function = 'openCR.fit' was deprecated from 2.5.8 and has been removed as an option

References

Efford, M. G., and Boulanger, J. (2019) Fast evaluation of study designs for spatially explicit capture–recapture. *Methods in Ecology and Evolution*, **10**, 1529–1535. doi:10.1111/2041210X.13239

See Also

minnrRSE, minsimRSE plot.optimalSpacing,

Examples

```
grid <- make.grid(7, 7) # default multi-catch detector
optimalSpacing(D = 5, traps = grid, detectpar = list(lambda0 = 0.2, sigma = 20),
noccasions = 5, plt = TRUE)</pre>
```

Not run:

with simulations

```
grid <- make.grid(8, 8, spacing = 20, detector = 'proximity')
optimalSpacing(D = 5, traps = grid, detectfn = "HHN", detectpar =
    list(lambda0 = 0.2, sigma = 20), noccasions = 5, nrepl = 20, nx = 32,
    fit.function = "secr.fit", ncores = 4, plt = TRUE, col = "blue")</pre>
```

```
## manual check
grid <- make.grid(8, 8, spacing = 60, detector = 'proximity')
scen <- make.scenarios(D = 5, detectfn = 14, lambda0 = 0.2, sigma = 20,
noccasions = 5)
sim1 <- run.scenarios(nrepl = 20, scen, trapset = list(grid), fit = TRUE,
fit.args = list(detectfn = 14), ncores = 4, byscenario = FALSE)
summary(sim1)</pre>
```

End(Not run)

plot.optimalSpacing Plot and print methods for optimalSpacing object

Description

Plotsor print results from optimalSpacing.

Usage

```
## S3 method for class 'optimalSpacing'
plot(x, add = FALSE, plottype = c("both", "RSE", "nrm"), ...)
## S3 method for class 'optimalSpacing'
print(x, ...)
```

Arguments

х	object from optimalSpacing
add	logical; if TRUE will add to existing plot
plottype	character code
	other arguments for plot, lines or points

Details

If plottype = "RSE" then RSE(D-hat) is plotted against R (relative detector spacing). If plottype = "nrm" then the expected numbers of individuals, recaptures and movements are plotted against R.

The ... argument may be used to pass other plotting arguments to override defaults:

Function	Arguments	Note
plot	'xlab', 'ylab', 'xlim', 'ylim', 'las', 'xaxs', 'yaxs'	add = FALSE
points	'col', 'cex', 'pch'	optimum and simulated RSE
lines	'col', 'lwd', 'lty'	rule-of-thumb RSE

The print method removes attributes before printing.

Value

None

See Also

optimalSpacing

predict.fittedmodels Extract Estimates From Fitted Models

Description

If simulations have been saved from run.scenarios as fitted secr models it is necessary to use one of these functions to extract estimates for later summarization.

Usage

```
## S3 method for class 'fittedmodels'
predict(object, ...)
## S3 method for class 'fittedmodels'
coef(object, ...)
## S3 method for class 'fittedmodels'
derived(object, ...)
## S3 method for class 'fittedmodels'
region.N(object, ...)
```

Arguments

object	fitted model simulation output from run.scenarios
	other arguments passed to predict, coef, derived or region.N

Details

These functions are used when output from run.scenarios has been saved as fitted models. derived and region.N require a full fit (including the mask and design0 objects) whereas a trimmed model is sufficient for predict and coef.

derived is used to compute the Horvitz-Thompson-like estimate of density when secr.fit has been used with CL = TRUE; it is roughly equivalent to predict.

region.N predicts the realised number (R.N) or expected number (E.N) in a masked area. When detector layouts and/or sigma vary, the masked area will also vary (arbitrarily, depending on the buffer argument 'xsigma') unless a mask is provided by the user; this may be done either in run.scenarios or in region.N.

Value

An object with class ('estimatetables', 'secrdesign', 'list') with appropriate outputtype ('predicted', 'coef', 'derived', 'regionN'; see also run.scenarios).

From **secrdesign** 2.5.3 the methods described here replace the functions derived.SL and regionN.SL. This is for compatibility with **secr**.

See Also

run.scenarios coef.secr predict.secr derived.secr region.N.secr

Examples

```
## Not run:
scen1 <- make.scenarios(D = c(3,6), sigma = 25, g0 = 0.2)</pre>
traps1 <- make.grid() ## default 6 x 6 grid of multi-catch traps</pre>
tmp1 <- run.scenarios(nrepl = 10, trapset = traps1, scenarios = scen1,</pre>
    fit = TRUE, extractfn = trim)
tmp2 <- predict(tmp1)</pre>
tmp3 <- select.stats(tmp2, 'D', c('estimate', 'RB', 'RSE'))</pre>
summary(tmp3)
## for derived and region.N need more than just 'trimmed' secr object
## use argument 'keep' to save mask and design0 usually discarded by trim
tmp4 <- run.scenarios(nrepl = 10, trapset = traps1, scenarios = scen1,</pre>
    fit = TRUE, extractfn = trim, keep = c('mask', 'design0'))
summary(derived(tmp4))
## for region.N we must specify the parameter for which we want statistics
## (default 'D' not relevant)
tmp5 <- select.stats(region.N(tmp4), parameter = 'E.N')</pre>
summary(tmp5)
## End(Not run)
```

rbind.estimatetables Combine Simulation Output

Description

Methods to combine output from separate executions of run.scenarios.

Usage

```
## S3 method for class 'estimatetables'
rbind(..., deparse.level = 1)
## S3 method for class 'selectedstatistics'
rbind(..., deparse.level = 1)
```

S3 method for class 'estimatetables'
c(...)
S3 method for class 'selectedstatistics'
c(...)

Arguments

... estimatetables or selectedstatistics output from run.scenarios deparse.level not used (required by generic method rbind)

Details

rbind assumes all inputs used exactly the same scenarios. Replicate estimate tables are combined across executions for each scenario in turn. This is useful to increase the number of replicates by combining two batches of simulations with different random seeds. The 'scenarios' component remains unchanged.

c combines outputs from run.scenarios that may differ in their scenarios. The 'output' component of the result is a concatenation of the output lists in the input. The 'scenarios' component of the result comprises the input scenarios stacked with rbind.data.frame.

The compatibility of the inputs is checked, but the checks are not exhaustive. Users should be wary.

Value

'estimatetables' or 'selectedstatistics' object combining the inputs

See Also

make.scenarios run.scenarios

Examples

```
## Simple example: generate and summarise trapping data at two densities
## result inherits from 'selectedstatistics'
scen1 <- make.scenarios(D = c(5,10), sigma = 25, g0 = 0.2, noccasions = 5)
traps1 <- make.grid() ## default 6 x 6 trap grid
tmp1 <- run.scenarios(nrepl = 5, trapset = traps1, scenarios = scen1,
    fit = FALSE, seed = 123)
tmp2 <- run.scenarios(nrepl = 15, trapset = traps1, scenarios = scen1,
    fit = FALSE, seed = 127)
summary(rbind(tmp1,tmp2))
summary(c(tmp1,tmp2))</pre>
```

```
run.scenarios
```

Description

This function performs simulations to predict the precision of density and other estimates from simple 1-session SECR designs. Scenarios are specified via an input dataframe that will usually be constructed with make.scenarios. Each scenario comprises an index to a detector layout, the number of sampling occasions, and specified density (D) and detection parameters (usually g_0 and σ).

Detector layouts are provided in a separate list trapset. This may comprise an actual field design input with read.traps or 'traps' objects constructed with make.grid etc., as in the Examples. Even a single layout must be presented as a component of a list (e.g., list(make.grid())).

Alternative approaches are offered for predicting precision. Both start by generating a pseudorandom dataset under the design using the parameter values for a particular scenario. The first estimates the parameter values and their standard errors from each dataset by maximizing the full likelihood, as usual in secr.fit. The second takes the short cut of computing variances and SE from the Hessian estimated numerically at the known expected values of the parameters, without maximizing the likelihood. Set method = "none" in fit.args for this shortcut.

Usage

```
run.scenarios(nrepl, scenarios, trapset, maskset, xsigma = 4, nx = 32,
pop.args, CH.function = c("sim.capthist", "simOU.capthist", "simCH"), det.args,
fit = FALSE, fit.function = c("secr.fit", "ipsecr.fit"),
fit.args, chatnsim, extractfn = NULL, multisession = FALSE,
joinsessions = FALSE, ncores = NULL, byscenario = FALSE, seed = 123,
trap.args, prefix = NULL, ...)
```

fit.models(rawdata, fit = FALSE, fit.function = c("secr.fit", "ipsecr.fit"),
 fit.args, chatnsim, extractfn = NULL, ncores = NULL, byscenario = FALSE,
 scen, repl, ...)

Arguments

nrepl	integer number of replicate simulations
scenarios	dataframe of simulation scenarios
trapset	secr traps object or a list of traps objects or functions
maskset	secr mask object or a list of mask objects (optional)
xsigma	numeric buffer width as multiple of sigma (alternative to maskset)
nx	integer number of cells in mask in x direction (alternative to maskset)
pop.args	list of named arguments to sim.popn (optional)
CH.function	character name of function to simulate capthist

det.args	list of named arguments to sim.capthist (optional)
fit	logical or character; if TRUE a model is fitted with fit.function, otherwise data are generated but no model is fitted (see also Multi-model fit and Design-only statistics in Details)
fit.function	character name of function to use for model fitting
fit.args	list of named arguments to secr.fit or ipsecr.fit (optional)
chatnsim	integer number of simulations for overdispersion of mark-resight models
extractfn	function to extract a vector of statistics from secr model
multisession	logical; if TRUE groups are treated as additional sessions
joinsessions	logical; if TRUE function join is applied to multisession capthist
ncores	integer number of cores for parallel processing or NULL
byscenario	logical; if TRUE then each scenario is sent to a different core
seed	integer pseudorandom number seed
trap.args	list of arguments for trapset components if using function option
prefix	character to name files saving output of each scenario
	other arguments passed to extractfn
rawdata	'rawdata' object from previous call to run.scenarios
scen	integer vector of scenario subscripts
repl	integer vector of subscripts in range 1:nrepl

Details

Designs are constructed from the trap layouts in trapset, the numbers of grids in ngrid, and the numbers of sampling occasions (secondary sessions) in noccasions. These are *not* crossed: the number of designs is the maximum length of any of these arguments. Any of these arguments whose length is less than the maximum will be replicated to match.

pop.args is used to customize the simulated population distribution. It will usually comprise a single list, but may be a list of lists (one per popindex value in scenarios).

det.args may be used to customize some aspects of the detection modelling in sim.capthist, but not traps, popn, detectpar, detectfn, and noccasions, which are controlled directly by the scenarios. It will usually comprise a single list, but may be a list of lists (one per detindex value in scenarios).

fit.args is used to customize the fitted model; it will usually comprise a single list. If you are interested in precision alone, use fit.args=list(method = 'none') to obtain variance estimates from the hessian evaluated at the parameter estimates. This is much faster than a complete model fit, and usually accurate enough.

If no extractfn is supplied then a default is used - see Examples. Replacement functions should follow this pattern i.e. test for whether the single argument is an secr object, and if not supply a named vector of NA values of the correct length.

Using extractfn = summary has the advantage of allowing both model fits and raw statistics to be extracted from one set of simulations. However, this approach requires an additional step to retrieve the desired numeric results from each replicate (see count.summary and predict.summary).

Parallel processing:

If byscenario = TRUE then by default each scenario will be run in a separate worker process using parLapply from **parallel** (see also Parallel). The number of scenarios should not exceed the available number of cores (set by the 'ncores' argument or a prior call to 'setNumThreads').

If byscenario = FALSE then from **secrdesign** 2.6.0 onwards the usual multithreading of **secr** 4.5 is applied. The number of cores should usually be preset with 'setNumThreads'. If ncores is provided then the environment variable RCPP_PARALLEL_NUM_THREADS is reset. The default behaviour of the fitting functions (secr.fit, ipsecr.fit) is to use this value (unless specified in fit.args).

When 'byscenario = TRUE' the L'Ecuyer pseudorandom generator is used with a separate random number stream for each core (see clusterSetRNGStream).

For ncores > 1 it pays to keep an eye on the processes from the Performance page of Windows Task Manager (<ctrl><alt>), or 'top' in linux OS. If you interrupt run.scenarios (<Esc> from Windows) you may occasionally find some processes do not terminate and have to be manually terminated from the Task Manager - they appear as Rscript.exe on the Processes page.

Alternate functions for simulation and fitting:

The default is to use functions sim.capthist and secr.fit from secr. Either may be substituted by the corresponding function (simCH or ipsecr.fit) from package **ipsecr** if that has been installed.

Multi-model fit:

Multiple models may be fitted to the same simulated data for multi-model inference. This requires both (i) 'fit = "multifit"', and (ii) 'fit.args' should be a nested list (fit arguments within models within fit.index) with a separate specification for each model fit. See the vignette for examples.

Design-only statistics:

Designs for distance sampling were evaluated by Fewster and Buckland (2004) by computing statistics from simulated detections without fitting a model to estimate the detection parameters. An analogous procedure for SECR is implemented by setting fit = 'design'. A new default extractfn (designextractfn) computes the effective sampling area with the **secr** function pdot and returns a vector of values -

n	number of individuals detected
r	number of recaptures
esa	effective sampling area, given the known detection parameters
D	D = n/esa

The resulting simulation object is of type 'selected statistics' for which the summary method works as usual.

A similar effect may be achieved by providing a custom extractfn and passing arguments to it via the dots argument of run.scenarios.

Miscellaneous:

From 2.2.0, two or more rows in scenarios may share the same scenario number. This is used to generate multiple population subclasses (e.g. sexes) differing in density and/or detection parameters. If multisession = TRUE the subclasses become separate sessions in a multi-session capthist

object (this may require a custom extractfn). multisession is ignored with a warning if each scenario row has a unique number.

From 2.7.0, each component of 'trapset' may be a function that constructs a detector layout. This allows layouts to be constructed dynamically at the time each capthist is generated; arguments of each function are provided in the 'trap.args' list which should be of the same length as 'trapset' The primary purpose is to allow systematic grids, laceworks etc. to be constructed with a unique random origin for each replicate. The 'maskset' argument must be provided - it should cover all potential layouts, regardless of origins.

In fit.models the arguments scen and repl may be used to select a subset of datasets for model fitting.

Mark-resight: chatnsim controls an additional quasi-likelihood model step to adjust for overdispersion of sighting counts. No adjustment happens when chatnsim = 0; otherwise abs(chatnsim) gives the number of simulations to perform to estimate overdispersion. If chatnsim < 0 then the quasilikelihood is used only to re-estimate the variance at the previous MLE (method = "none").

Intermediate output: If 'prefix' is provided than results will be saved for each scenario separately. The filename of scenario 1 is of the form 'prefix1.RDS'. The prefix may include a file path.

Further processing: A summary method is provided (see summary.secrdesign). It is usually necessary to process the simulation results further with predict.fittedmodels and/or select.stats before summarization.

Value

An object of class (x, 'secrdesign', 'list'), where x is one of 'fittedmodels', 'estimatetables', 'selectedstatistics' or 'rawdata', with components

call	function call
version	character string including the software version number
starttime	character string for date and time of run
proctime	processor time for simulations, in seconds
scenarios	dataframe as input
trapset	list of trap layouts as input
maskset	list of habitat masks (input or generated)
xsigma	from input
nx	from input
pop.args	from input
CH.function	from input
det.args	from input
fit	from input
fit.function	from input
fit.args	from input
extractfn	function used to extract statistics from each simulation

seed	from input
nrepl	from input
output	list with one component per scenario
outputtype	character code - see vignette

If fit = FALSE and extractfn = identity the result is of class ('rawdata', 'secrdesign', 'list'). This may be used as input to fit.models, which interprets each model specification in fit.args as a new 'sub-scenario' of each input scenario (i.e. all models are fitted to every dataset). The output possibilities are the same as for run.scenarios.

If subclasses have been defined (i.e. scenarios has multiple rows with the same scenario ID), each simulated capthist object has covariates with a character-valued column named "group" ("1", "2" etc.) (there is also a column "sex" generated automatically by sim.popn).

Note

 $100 \text{ ha} = 1 \text{ km}^2$.

fit.function = 'openCR.fit' was deprecated from 2.5.8 and has been removed.

Author(s)

Murray Efford

References

Fewster, R. M. and Buckland, S. T. 2004. Assessment of distance sampling estimators. In: S. T. Buckland, D. R. Anderson, K. P. Burnham, J. L. Laake, D. L. Borchers and L. Thomas (eds) *Advanced distance sampling*. Oxford University Press, Oxford, U. K. Pp. 281–306.

See Also

expand.arg, select.stats, summary.secrdesign, summary.estimatetables, summary.selectedstatistics, estimateSummary, countSummary, Miscellaneous predict.fittedmodels, scenarioSummary, count.summary, predict.summary secr functions used internally sim.popn,
run.scenarios

sim.capthist, secr.fit To combine output rbind.estimatetables, rbind.selectedstatistics, c.estimatetables, c.selectedstatistics

Examples

```
## Simple example: generate and summarise trapping data
## at two densities and for two levels of sampling frequency
scen1 <- make.scenarios(D = c(5,10), sigma = 25, g0 = 0.2, noccasions =</pre>
   c(5,10))
traps1 <- make.grid() ## default 6 x 6 trap grid</pre>
tmp1 <- run.scenarios(nrepl = 20, trapset = traps1, scenarios = scen1,</pre>
   fit = FALSE)
summary(tmp1)
## Not run:
setNumThreads(7)
*****
# new summary method (secreding >= 2.8.1)
# assumes fit = TRUE, extractfn = predict
tmp2 <- run.scenarios(nrepl = 10, trapset = traps1, scenarios = scen1,</pre>
   fit = TRUE, extractfn = predict)
estimateSummary(tmp2, format = "data.frame",
   cols = c('scenario', 'noccasions'))
## 2-phase example
## first make and save rawdata
scen1 <- make.scenarios(D = c(5,10), sigma = 25, g0 = 0.2)</pre>
traps1 <- make.grid() ## default 6 x 6 trap grid</pre>
tmp1 <- run.scenarios(nrepl = 20, trapset = traps1, scenarios = scen1,</pre>
   fit = FALSE, extractfn = identity)
## review rawdata
summary(tmp1)
## then fit and summarise models
tmp2 <- fit.models(tmp1, fit.args = list(list(model = g0~1),</pre>
   list(model = g0~T)), fit = TRUE)
summary(tmp2)
## Construct a list of detector arrays
```

saturation

```
## Each is a set of 5 parallel lines with variable between-line spacing;
## the argument that we want to vary (spacey) follows nx, ny and spacex
## in the argument list of make.grid().
spacey <- seq(2000,5000,500)</pre>
names(spacey) <- paste('line', spacey, sep = '.')</pre>
trapset <- lapply(spacey, make.grid, nx = 101, ny = 5, spacex = 1000,</pre>
    detector = 'proximity')
## Make corresponding set of masks with constant spacing (1 km)
maskset <- lapply(trapset, make.mask, buffer = 8000, spacing = 1000,</pre>
    type = 'trapbuffer')
## Generate scenarios
scen <- make.scenarios (trapsindex = 1:length(spacey), nrepeats = 8,</pre>
    noccasions = 2, D = 0.0002, g0 = c(0.05, 0.1), sigma = 1600, cross = TRUE)
## RSE without fitting model
sim <- run.scenarios (50, scenarios = scen, trapset = trapset, maskset = maskset,</pre>
    fit = TRUE, fit.args = list(method = 'none'), seed = 123)
## Extract statistics for predicted density
sim <- select.stats(sim, parameter = 'D')</pre>
## Plot to compare line spacing
summ <- summary (sim, type='array', fields = c('mean','lcl','ucl'))$OUTPUT</pre>
plot(0,0,type='n', xlim=c(1.500,5.500), ylim = c(0,0.36), yaxs = 'i',
    xaxs = 'i', xlab = 'Line spacing km', ylab = 'RSE (D)')
xv <- seq(2,5,0.5)
points(xv, summ$mean[,1,'RSE'], type='b', pch=1)
points(xv, summ$mean[,2,'RSE'], type='b', pch=16)
segments(xv, summ$lcl[,1,'RSE'], xv, summ$ucl[,1,'RSE'])
segments(xv, summ$lcl[,2,'RSE'], xv, summ$ucl[,2,'RSE'])
legend(4,0.345, pch=c(1,16), title = 'Baseline detection',
    legend = c('g0 = 0.05', 'g0 = 0.1'))
## End(Not run)
```

saturation

Detector saturation

Description

Computes the expected proportion of successful detectors (i.e., 'trap success'). The calculation does not allow for local variation in realised density (number of animals centred near each detector) and the predictions are therefore slightly higher than simulations with Poisson local density. The discrepancy is typically less than 1%.

saturation

Usage

```
saturation(traps, mask, detectpar, detectfn =
    c("HHN", "HHR", "HEX", "HAN", "HCG", 'HN', 'HR', 'EX'),
    D, plt = FALSE, add = FALSE, ...)
```

Arguments

traps	secr traps object
mask	secr mask object
detectpar	a named list giving a value for each parameter of detection function
detectfn	integer code or character string for shape of detection function - see detectfn
D	population density animals / hectare; may be scalar or vector of length nrow(mask)
plt	logical; if TRUE then a colour plot is produced
add	logical; if TRUE any plot is added to the existing plot
	other arguments passed to plot.mask when plt = TRUE

Details

The calculation is based on an additive hazard model. If detectfn is not a hazard function ('HHN', 'HEX', 'HHR', 'HAN' and 'HCG') then an attempt is made to approximate one of the hazard functions (HN -> HHN, HR -> HHR, EX -> HEX). The default is 'HHN'.

Computation is not possible for single-catch traps.

An empirical estimate of saturation is the total number of detectors visited divided by the total number of detectors used. These are outputs from the summary method for capthist objects. See Examples.

Value

A list with components

bydetector	expected saturation for each detector
mean	average over detectors

The list is returned invisibly if plt = TRUE.

See Also

Enrm

Examples

```
plotMaskEdge(as.mask(tr), add = TRUE) ## boundary line
# empirical - useful for extractfn argument of secrdesign::run.scenarios
satfn <- function(CH) {
    sumCH <- summary(CH)$counts
    sumCH['detectors visited', 'Total'] / sumCH['detectors used', 'Total']
}
satfn(captdata)
```

scenariosFromStatistics

Make Scenarios to Match Capture Statistics

Description

The make.scenarios function requires prior knowledge of population density and the intercept of the detection function (g0). This function provides an alternative mechanism for generating scenarios from a value of sigma and target values for the numbers of individuals n and recaptures r. Only a halfnormal detection function is supported (probability, not hazard), and many options in make.scenarios have yet to be implemented. Only a single detector layout and single mask may be specified.

Usage

```
scenariosFromStatistics(sigma, noccasions, traps, mask, nval, rval,
g0.int = c(0.001, 0.999))
```

Arguments

sigma	numeric vector of one or more values for sigma
noccasions	integer vector of number of sampling occasions
traps	traps object
mask	mask object
nval	integer vector of values of n
rval	integer vector of values of r
g0.int	numeric vector defining the interval to be searched for $\mathbf{g}0$

Details

The algorithm is based on R code in Appendix B of Efford, Dawson and Borchers (2009).

Value

A scenario dataframe with one row for each combination of sigma, noccasions, nval and rval.

scenarioSummary

References

Efford, M. G., Dawson, D. K. and Borchers, D. L. (2009) Population density estimated from locations of individuals on a passive detector array. *Ecology* **90**, 2676–2682.

See Also

make.scenarios

Examples

```
grid36 <- make.grid(nx = 6, ny = 6, spacing = 200)
mask <- make.mask(grid36, buffer = 2000)
scen <- scenariosFromStatistics (sigma = c(200,400), noccasions = 44,
    traps = grid36, mask = mask, nval = 14, rval = 34)
sim <- run.scenarios(scen, nrepl = 5, traps = grid36, mask = mask)
summary(sim)</pre>
```

scenarioSummary Summary of Scenarios

Description

Compute various deterministic summaries for scenarios generated by make.scenarios

Usage

Arguments

scenarios	dataframe of simulation scenarios
trapset	secr traps object or a list of traps objects
maskset	secr mask object or a list of mask objects (optional)
xsigma	numeric buffer width as multiple of sigma (alternative to maskset)
nx	integer number of cells in mask in x direction (alternative to maskset)
CF	numeric correction factor for rule-of-thumb RSE (see minnrRSE)
costing	logical; if TRUE then costings will be appended
	arguments passed to costing
ncores	integer number of cores for parallel processing

Details

Not all scenarios from make.scenarios() are suitable. Grouped (multi-line) scenarios are excluded. Hazard detection functions are preferred ('HHN', 'HHR', 'HEX', 'HAN', 'HCG'). 'HN', 'HR' and 'EX' are converted approximately to 'HHN', 'HHR' and 'HEX' respectively, with a warning; other functions are rejected.

CF may be a vector of values that is recycled across the components of trapset. The correction factor is a multiplier applied after all other calculations.

The approximate RSE(D-hat) is rotRSE = CF/ sqrt(min(E(n), E(r))). This assumes n is Poissondistributed. For binomial n an ad hoc adjustment is rotRSEB = sqrt(rotRSE^2 - 1 / (D x A)) where A is the mask area.

The default ncores = 1 (new in 2.7.0) is usually faster than setting ncores>1 because of the overheads in setting up a parallel cluster.

The ... argument is for inputs to costing, including unitcost (required) and routelength (optional).

Value

A dataframe including the first 8 columns from scenarios and the computed columns -

En	expected number of individuals
Er	expected number of recaptures
Em	expected number of movement recaptures
En2	expected number of individuals detected at two or more sites
esa	effective sampling area (ha)
CF	rule-of-thumb correction factor
rotRSE	rule-of-thumb relative standard error of density estimate
rotRSEB	rotRSE with adjustment for fixed N in region defined by mask (i.e. Binomial n rather than Poisson n)
arrayN	number of detectors in each array
arrayspace	array spacing in sigma units
arrayspan	largest dimension of array in sigma units
saturation	expected proportion of detectors at which detection occurs (trap success)
travel	travel cost
arrays	cost of each repeated array
detectors	fixed cost per detector
visits	cost per detector per visit
detections	cost per detection
totalcost	summed costs
detperHR	median number of detectors per 95% home range
k	overlap index $k = \sigma \sqrt{D}/100$ from secr kfn

Costings (the last 6 columns) are omitted if costing = FALSE.

select.stats

See Also

make.scenarios, Enrm, costing, minnrRSE

Examples

```
scen <- make.scenarios(D = c(5,10), sigma = 25, lambda0 = 0.2, detectfn = 'HHN')
grid <- make.grid(6,6, detector = 'multi')
scenarioSummary(scen, list(grid), costing = TRUE, unitcost = list(perkm = 10))</pre>
```

select.stats Select Statistics to Summarize

Description

When the results of each simulation with run.scenarios are saved as a dataframe (e.g. from predict()) it is necessary to select estimates of just one parameter for numerical summarization. This does the job. find.param is a helper function to quickly display the parameters available for summarisation.

Usage

```
select.stats(object, parameter = "D", statistics, true)
find.param(object)
find.stats(object)
```

Arguments

object	'estimatetables' object from run.scenarios
parameter	character name of parameter to extract
statistics	character vector of statistic names
true	numeric vector of ''true' values of parameter, one per scenario

Details

select.stats is used to select a particular vector of numeric values for summarization. The 'parameter' argument indexes a row in the data.frame for one replicate (i.e., one 'real' parameter). Each 'statistic' is either a column in that data.frame or a statistic derived from a column.

If statistics is not specified, the default is to use all numeric columns in the input (i.e., c('estimate', 'SE.estimate', 'lcl', 'ucl') for predict and c('beta', 'SE.beta', 'lcl', 'ucl') for coef).

statistics may include any of 'estimate', 'SE.estimate', 'Icl', 'ucl', 'true', 'RB', 'RSE', 'COV' and 'ERR' (for outputtype 'coef' use 'beta' and 'SE.beta' instead of 'estimate and 'SE.estimate'). 'true' refers to the known parameter value used to generate the data.

The computed statistics are:

Statistic	Name	Value
RB	Relative bias	(estimate - true) / true
RSE	Relative SE	SE.estimate / estimate
ERR	Absolute deviation	abs(estimate - true)
COV	Coverage	(estimate > lcl) & (estimate < ucl)

'RB', 'COV' and 'ERR' relate an estimate to the known (true) value of the parameter in object\$scenarios. They are computed only when a model has been fitted without method = 'none'.

'COV' remains binary (0/1) in the output from select.stats; the result of interest is the mean of this statistic across replicates (see summary.secrdesign). Similarly, 'ERR' is used with field 'rms' in summary.secrdesign to compute the root-mean-squared-error RMSE.

find.param and find.stats may be used to 'peek' at objects of class 'estimatetables' and 'selectedstatistics' respectively to recall the available parameter estimates or 'statistics'.

An attempt is made to extract true automatically if it is not provided. This does not always work (e.g. with extractfn region.N, region differing from the mask, and a heterogeneous density model). Check this by including "true" as a statistic to summarise (see Examples).

Value

For select.stats, an object with class c('selectedstatistics', 'secredsign', 'list') suitable for numerical summarization with summary.selectedstatistics. The value of 'parameter' is stored as an attribute.

For find.param, a character vector of the names of parameters with estimates in object.

See Also

run.scenarios, validate

Examples

```
## using nrepl = 2 just for checking
scen1 <- make.scenarios(D = c(5,10), sigma = 25, g0 = 0.2)
traps1 <- make.grid()
tmp1 <- run.scenarios(nrepl = 2, trapset = traps1, scenarios = scen1,
    fit = TRUE, extractfn = secr::trim)
tmp2 <- predict(tmp1)
tmp3 <- select.stats(tmp2, 'D', c('estimate','true','RB','RSE','COV'))
summary(tmp3)</pre>
```

simOU.capthist

Simulate Detections For Ornstein-Uhlenbeck Movement

simOU.capthist

Description

The usual SECR model ignores the sequential locations of an individual within its home range. Movement models predict serial correlation of detections in space. The Ornstein-Uhlenbeck (OU) model is a convenient example that over long durations leads to a bivariate normal distribution of locations.

Movements of a single animal according to the OU model are simulated in discrete time with simOU.

Detections of a population of individuals with pre-defined activity centres are simulated with simOU.capthist. Detection happens when the location of an individual at time t (occasion t) is within distance epsilon ϵ of a detector.

Usage

```
simOU(xy, tau, sigma, noccasions, start = NULL)
simOU.capthist(traps, popn, detectpar, noccasions, seed = NULL,
```

```
savepopn = FALSE, savepath = FALSE, ...)
```

Arguments

ху	numeric vector of x,y coordinates for one animal
tau	numeric parameter of serial correlation = $1/\beta$
sigma	numeric spatial scale parameter
noccasions	integer number of time steps
start	numeric vector of x,y coordinates for initial location (optional)
traps	secr traps object
popn	secr popn object or a 2-column matrix of x-y coordinates of activity centres
detectpar	list with values of detection parameters epsilon, sigma, and tau
seed	either NULL or an integer that will be used in a call to set.seed
savepopn	logical; if TRUE the population is saved as an attribute
savepath	logical; if TRUE the movement paths are saved as an attribute
	other arguments passed to reduce.capthist

Details

The first location for simOU by default is drawn at random from the asymptotic distribution. The detection parameters are:

epsilon	radius within which individual detected with certainty
sigma	spatial scale of asymptotic bivariate normal
tau	serial correlation parameter 1/beta

In a final step, 'simOU.capthist' uses the reduce method for capthist objects to coerce the simulated capthist object to the detector type of the traps argument.

The ... argument may be used to pass the 'by' argument to reduce.capthist. For example, 'by = "ALL"' collapses the initially binary data for a single detector on noccasions to a single integer. Alternatively, 'by = 10' collapses the original occasions in groups of 10. Data will be lost unless the input traps object has detector type 'count'.

The x- and y-dimensions are simulated separately, assuming circularity. The distribution of location on the x axis at time t + 1 conditional on the location at time t is then

$$x_{t+1}|x_t \sim N(\mu_x + e^{\frac{-1}{\tau}(x_t - \mu_x)}, \sigma^2(1 - e^{\frac{-2}{\tau}})),$$

where $\mu = (\mu_x, \mu_y)$ is the long-term activity centre and τ (tau) is a parameter for the strength of serial correlation ($\tau = 1/\beta$ in other formulations). The scale of the long-term (asymptotic) bivariate normal home range is governed by σ as usual. Steps are implicitly of length 1 occasion so Δt is omitted.

Value

simOU - matrix of locations dim = c(noccasions, 2)

simOU.capthist - single-session capthist object for secr

See Also

sim.capthist

Examples

```
# one animal
locs <- simOU(c(0,0), 20, 1, 100)
par(pty = 's')
plot(locs, type = 'o', xlim = c(-2.5,2.5), ylim = c(-2.5,2.5))
points(0,0, pch = 16, col = 'red')</pre>
```

```
# simulate some capture data
set.seed(123)
grid <- make.grid(8, 8, spacing = 2)
pop <- sim.popn(D = 1000, core = grid, buffer = 4)
ch <- simOU.capthist(grid, pop, detectpar=list(tau = 50, sigma = 1, epsilon = 0.25),
noccasions = 100, savepath = TRUE)
# plot simulated capthist with overlay of movements and AC
plot(ch, rad = 0.1, tracks = TRUE, varycol = FALSE, border = 4)
sapply(attr(ch, 'path'), lines, col = 'grey')
plot(pop, add = TRUE, pch = 16, cex = 0.6)
# fit a model
fit <- secr.fit(capthist = ch, buffer = 8, detectfn = 14, trace = FALSE)
predict(fit)</pre>
```

summary.secrdesign Generic Methods for secrdesign Objects

Description

Methods to summarize simulated datasets.

Usage

```
## S3 method for class 'secrdesign'
summary(object, ...)
## S3 method for class 'rawdata'
summary(object, ...)
## S3 method for class 'estimatetables'
summary(object, ...)
## S3 method for class 'selectedstatistics'
summary(object, fields = c('n', 'mean',
'se'), dec = 5, alpha = 0.05, type = c('list','dataframe','array'), ...)
## S3 method for class 'selectedstatistics'
plot(x, scenarios, statistic, type =
c('hist', 'CI'), refline, xlab = NULL, ...)
```

header(object)

Arguments

object	object of class simulations from run.scenarios
dec	number of decimal places in output
fields	character vector; names of required summary statistics (see Details)
alpha	alpha level for confidence intervals and quantiles
type	character code for type of output (see Details)
	other arguments – not currently used by summary but passed to hist by the plot method
х	object of class 'selected statistics' from run.scenarios
scenarios	integer indices of scenarios to plot (all plotted if not specified)
statistic	integer or character indices of the statistics in x for which histograms are re- quested
refline	logical; if TRUE a reference line is plotted at the true value of a parameter
xlab	character; optional label for x-axis

Details

If object inherits from 'selectedstatistics' then the numeric results from replicate simulations are summarized using the chosen 'fields' (by default, the number of non-missing values, mean and standard error), along with header information describing the simulations. Otherwise the header alone is returned.

fields is a vector of any selection from c('n', 'mean', 'sd', 'se', 'min', 'max', 'lcl', 'ucl', 'median', 'q', 'rms', 'var'), or the character value 'all'.

Field 'q' provides 1000 alpha/2 and 1000[1 - alpha/2] quantiles qxxx and qyyy.

'lcl' and 'ucl' refer to the upper and lower limits of a 100(1 - alpha)% confidence interval for the statistic, across replicates.

'rms' gives the root-mean-square of the statistic - most useful for the statistic 'ERR' (see select.stats) when it represents the overall accuracy or RMSE.

The plot method plots either (i) histograms of the selected statistics (type = 'hist') or (ii) the estimate and confidence interval for each replicate (type = 'CI'). The default for type = 'hist' is to plot the first statistic - this is usually 'n' (number of detected animals) when fit = FALSE, and 'estimate' (parameter estimate) when fit = TRUE. If length(statistic) > 1 then more than one plot will be produced, so a multi-column or multi-row layout should be prepared with par arguments 'mfcol' or 'mfrow'.

For type = 'CI' the statistics must include 'estimate', 'lcl' and 'ucl' (or 'beta', 'lcl' and 'ucl' if outputtype = 'coef').

estimateSummary is a simpler approach that provides full output for models with groups or multiple sessions simulated in run.scenarios with extractfn predict or coef).

Value

List with components 'header'

call	original function call
starttime	from object
proctime	from object
constants	small dataframe with values of non-varying inputs
varying	small dataframe with values of varying inputs
fit.args	small dataframe with values arguments for secr.fit, if specified

and 'OUTPUT', a list with one component for each field. Each component may be a list or an array.

See Also

run.scenarios, make.array, select.stats validate estimateSummary

transformOutput

Examples

```
## collect raw counts
scen1 <- make.scenarios(D = c(5,10), sigma = 25, g0 = 0.2)
traps1 <- make.grid()
tmp1 <- run.scenarios(nrepl = 50, trapset = traps1, scenarios = scen1,
    fit = FALSE)
opar <- par(mfrow=c(2,3))
plot(tmp1, statistic = 1:3)
par(opar)
summary(tmp1)
summary(tmp1, field=c('q025', 'median', 'q975'))</pre>
```

transformOutput Transform Simulation Output

Description

Transform output component of simulation output from run.scenarios. Typically this replaces an entire saved model fit with a table of estimates from that fit.

Usage

```
transformOutput(object, extractfn, outputtype = "predicted", ...)
```

Arguments

object	output from run.scenarios
extractfn	function such as the 'extractfn' argument of run.scenarios
outputtype	character (see Details)
	other arguments passed to extractfn

Details

Each replicate of each scenario is transformed using 'extractfn', which should accept as input the object returned by the extractfn of the original call to run.scenarios. As a typical example, sims <- run.scenarios(..., fit = TRUE, extractfn = identity) returns outputs of class 'secr' and could be followed by sims2 <- transformOutput(sims, predict); sims2 may be used as input to estimateSummary and other summary functions.

Value

An object resembling the output from run.scenarios but with transformed output. The outputtype and class of the object are changed to match 'outputtype'.

validate

See Also

run.scenarios, estimateSummary, outputtype<-

validate

Reject Implausible Statistics

Description

Simulation output may contain rogue values due to idiosyncracies of model fitting. For example, nonidentifiability due to inadequate data can result in spurious extreme 'estimates' of the sampling variance. Undue influence of rogue replicates can be reduced by using the median as a summary field rather than the mean. This function is another way to deal with the problem, by setting to NA selected statistics from replicates for which some 'test' statistic is out-of-range.

Usage

validate(x, test, validrange = c(0, Inf), targets = test, quietly = FALSE)

Arguments

х	object that inherits from 'selectedstatistics'
test	character; name of statistic to check
validrange	numeric vector comprising the minimum and maximum permitted values of 'test', or a matrix (see details)
targets	character vector with names of one or more statistics to set to missing (NA) when test is out-of-range
quietly	logical; if TRUE messages are suppressed

Details

Values of 'test' and 'targets' should be columns in each component 'replicate x statistic' matrix (i.e., scenario) of x\$output. You can check for these with find.stats.

If validrange is a matrix its first and second columns are interpreted as scenario-specific bounds (minima and maxima), and the number of rows must match the number of scenarios.

If all non-missing values of 'test' are in the valid range, the effect is to force the target statistics to NA wherever 'test' is NA.

The default is to change only the test field itself. If the value of 'test' does not appear in 'targets' then the test field is unchanged.

If targets = "all" then all columns are set to NA when the test fails.

Value

An object of class c('selectedstatistics', secredsign', 'list') with the same structure and header information as the input, but possibly with some values in the 'output' component converted to NA.

validate

See Also

select.stats, find.stats

Examples

```
## Not run:
## generate some data
scen1 <- make.scenarios(D = c(5,10), sigma = 25, g0 = 0.2)</pre>
traps1 <- make.grid()</pre>
tmp1 <- run.scenarios(nrepl = 5, trapset = traps1, scenarios = scen1,</pre>
    fit = TRUE, extractfn = trim)
tmp2 <- predict(tmp1)</pre>
tmp3 <- select.stats(tmp2, 'D', c('estimate','RB','RSE','COV'))</pre>
## just for demonstration --
## apply scenario-specific +/- 20% bounds for estimated density
## set RB, RSE and COV to NA when estimate is outside this range
permitted <- outer(tmp3$scenarios$D, c(0.8,1.2))</pre>
permitted ## a 2 x 2 matrix
tmp4 <- validate(tmp3, 'estimate', permitted, c('RB', 'RSE','COV'))</pre>
## what have we done?!
tmp4$output
summary(tmp4)
```

End(Not run)

Index

* Datagen run.scenarios, 32 * Generic summary.secrdesign, 47 * datagen count, 6 getdetectpar, 16 scenariosFromStatistics, 40 * design optimalSpacing, 25 * hplot plot.optimalSpacing, 28 * manip Lambda, 18 make.array, 20 make.scenarios, 21 predict.fittedmodels, 29 saturation, 38 select.stats, 43 validate, 50 * package secrdesign-package, 2 c.estimatetables.37 c.estimatetables (rbind.estimatetables), 30 c.selectedstatistics, 37 c.selectedstatistics (rbind.estimatetables), 30 clusterSetRNGStream, 34 coef (predict.fittedmodels), 29 coef.secr, 7, 30 coef.summary(count), 6 compactSample, 14, 15 compactSample (Internal), 17 costing, *3*, *4*, *41–43* count, 6 count.summary, 33, 36 countSummary, 36 countSummary (estimateSummary), 7

derived(predict.fittedmodels), 29
derived.secr, 30
detectfn, 13, 19, 22, 23, 25, 39

```
En2, 3, 14, 15
En2 (Lambda), 18
Enrm, 3, 5, 14–16, 39, 43
Enrm (Lambda), 18
estimateArray (estimateSummary), 7
estimateSummary, 7, 36, 48–50
expand.arg, 11, 36
expand.grid, 22
```

find.param(select.stats), 43
find.stats, 50, 51
find.stats(select.stats), 43
fit.models, 3
fit.models(run.scenarios), 32

GAoptim, *3*, 12, *17–20* GApenfn, *14*, *15* GApenfn (Internal), 17 getdetectpar, 16, *20*

header, 9 header (summary.secrdesign), 47 hist, 47

Internal, 17 ipsecr.fit, *33*, *34*

join, <u>33</u>

kfn, <u>42</u> kofnGA, <u>13</u>

Lambda, *16*, 18 1m, *24*

make.array, 20, 23, 48 make.grid, 4, 32

INDEX

make.scenarios, 2, 21, 31, 32, 40, 41, 43
mask, 19, 20
minnrRSE, 3, 15, 26, 27, 41, 43
minnrRSE (Lambda), 18
minsimRSE, 23, 26, 27

optimalSpacing, 4, 20, 24, 25, 28 optimize, 26 outputtype (Internal), 17 outputtype<- (Internal), 17

```
Parallel, 34
pdot, 34
plot.optimalSpacing, 27, 28
plot.selectedstatistics, 3
plot.selectedstatistics
        (summary.secrdesign), 47
predict (predict.fittedmodels), 29
predict.fittedmodels, 3, 29, 35, 36
predict.summary, 33, 36
predict.summary (count), 6
print.optimalSpacing
        (plot.optimalSpacing), 28
```

Qpm (Lambda), 18

saturation, *3*, 38 scenariosFromStatistics, 40 scenarioSummary, *3*, *5*, 20, 23, 36, 41 secr.fit, *4*, 29, 33, 34, 37 secrdesign (secrdesign-package), 2 secrdesign-package, 2 select.stats, *3*, *6*, 21, 35, 36, 43, 48, 51 sim.capthist, *4*, 22, 23, 33, 34, 37, 46 transformOutput, 49 traps, *19*, *25*

validate, 44, 48, 50