Package 'scutr'

November 18, 2023

Title Balancing Multiclass Datasets for Classification Tasks

Version 0.2.0

Maintainer Keenan Ganz <ganzkeenan1@gmail.com>

Description

Imbalanced training datasets impede many popular classifiers. To balance training data, a combination of oversampling minority classes and undersampling majority classes is useful. This package implements the SCUT (SMOTE and Cluster-based Undersampling Technique) algorithm as described in Agrawal et. al. (2015) <doi:10.5220/0005595502260234>. Their paper uses model-based clustering and synthetic oversampling to balance multiclass training datasets, although other resampling methods are provided in this package.

License MIT + file LICENSE

Encoding UTF-8

LazyData true

RoxygenNote 7.2.3

Imports smotefamily, parallel, mclust

Depends R (>= 2.10)

URL https://github.com/s-kganz/scutr

BugReports https://github.com/s-kganz/scutr/issues

Suggests testthat (>= 2.0.0)

Config/testthat/edition 2

NeedsCompilation no

Author Keenan Ganz [aut, cre]

Repository CRAN

Date/Publication 2023-11-17 23:10:02 UTC

R topics documented:

bullseye .	•	•	•	•	•						•	•			•	•	•	•			•			•			•	1	2
imbalance	•	•	•	•	•	•	•	•			•	•		•	•	•	•	•	•	•	•	 •		•		•	•	1	2

imbalance

versample_smote	3
sample_random	4
mple_classes	4
СИТ	5
ndersample_hclust	7
ndersample_kmeans	7
ndersample_mclust	8
ndersample_mindist	9
ndersample_tomek	9
ılidate_dataset	0
ine	1
1	2

Index

bullseye

An imbalanced dataset with a minor class centered around the origin with a majority class surrounding the center.

Description

An imbalanced dataset with a minor class centered around the origin with a majority class surrounding the center.

Usage

bullseye

Format

a data.frame with 1000 rows and 3 columns.

Source

https://gist.github.com/s-kganz/c2534666e369f8e19491bb29d53c619d

imbalance	An imbalanced dataset with randomly placed normal distributions
	around the origin. The n th class has $n * 10$ observations.

Description

An imbalanced dataset with randomly placed normal distributions around the origin. The nth class has n * 10 observations.

Usage

imbalance

oversample_smote

Format

a data.frame with 2100 rows and 11 columns

Source

https://gist.github.com/s-kganz/d08473f9492d48ea0e56c3c8a3fe1a74

oversample_smote Oversample a dataset by SMOTE.

Description

Oversample a dataset by SMOTE.

Usage

oversample_smote(data, cls, cls_col, m, k = NA)

Arguments

data	Dataset to be oversampled.
cls	Class to be oversampled.
cls_col	Column containing class information.
m	Desired number of samples in the oversampled data.
k	Number of neighbors used in SMOTE() to generate synthetic minority instances. This value must be smaller than the number of minority instances already present for a given class. If NA, min(5, n-1) is chosen, where n is the number of instances of the minority class.

Value

The oversampled dataset.

Examples

```
table(iris$Species)
smoted <- oversample_smote(iris, "setosa", "Species", 100)
nrow(smoted)</pre>
```

resample_random

Description

This function is used to resample a dataset by randomly removing or duplicating rows. It is usable for both oversampling and undersampling.

Usage

resample_random(data, cls, cls_col, m)

Arguments

data	Dataframe to be resampled.
cls	Class that should be randomly resampled.
cls_col	Column containing class information.
m	Desired number of samples.

Value

Resampled dataframe containing only cls.

Examples

set.seed(1234)
only2 <- resample_random(wine, 2, "type", 15)</pre>

sample_classes Stratified index sample of different values in a vector.

Description

Stratified index sample of different values in a vector.

Usage

sample_classes(vec, tot_sample)

Arguments

vec	Vector of values to sample from.
tot_sample	Total number of samples.

SCUT

Value

A vector of indices that can be used to select a balanced population of values from vec.

Examples

```
vec <- sample(1:5, 30, replace = TRUE)
table(vec)
sample_ind <- sample_classes(vec, 15)
table(vec[sample_ind])</pre>
```

SCUT

SMOTE and cluster-based undersampling technique.

Description

This function balances multiclass training datasets. In a dataframe with n classes and m rows, the resulting dataframe will have m / n rows per class. SCUT_parallel() distributes each over/undersampling task across multiple cores. Speedup usually occurs only if there are many classes using one of the slower resampling techniques (e.g. undersample_mclust()). Note that SCUT_parallel() will always run on one core on Windows.

Usage

```
SCUT(
  data,
  cls_col,
  oversample = oversample_smote,
  undersample = undersample_mclust,
  osamp_opts = list(),
  usamp_opts = list()
)
SCUT_parallel(
  data,
  cls_col,
  ncores = detectCores()%/%2,
  oversample = oversample_smote,
  undersample = undersample_mclust,
  osamp_opts = list(),
  usamp_opts = list()
)
```

Arguments

data	Numeric data frame.
cls_col	The column in data with class membership.

oversample	Oversampling method. Must be a function with the signature foo(data, cls, cls_col, m,) that returns a data frame, one of the oversample_* functions, or resample_random().
undersample	Undersampling method. Must be a function with the signature foo(data, cls, cls_col, m,) that returns a data frame, one of the undersample_* functions, or resample_random().
osamp_opts	List of options passed to the oversampling function.
usamp_opts	List of options passed to the undersampling function.
ncores	Number of cores to use with SCUT_parallel().

Details

Custom functions can be used to perform under/oversampling (see the required signature below). Parameters represented by ... should be passed via osamp_opts or usamp_opts as a list.

Value

A dataframe with equal class distribution.

References

Agrawal A, Viktor HL, Paquet E (2015). 'SCUT: Multi-class imbalanced data classification using SMOTE and cluster-based undersampling.' In 2015 7th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management (IC3K), volume 01, 226-234.

Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP (2002). 'SMOTE: Synthetic Minority Oversampling Technique.' *Journal of Artificial Intelligence Research*, 16, 321-357. ISSN 1076-9757, doi:10.1613/jair.953, https://www.jair.org/index.php/jair/article/view/10302.

Examples

undersample_hclust Undersample a dataset by hierarchical clustering.

Description

Undersample a dataset by hierarchical clustering.

Usage

```
undersample_hclust(data, cls, cls_col, m, k = 5, h = NA, ...)
```

Arguments

data	Dataset to be undersampled.
cls	Majority class that will be undersampled.
cls_col	Column in data containing class memberships.
m	Number of samples in undersampled dataset.
k	Number of clusters to derive from clustering.
h	Height at which to cut the clustering tree. k must be NA for this to be used.
	Additional arguments passed to dist().

Value

Undersampled dataframe containing only cls.

Examples

```
table(iris$Species)
undersamp <- undersample_hclust(iris, "setosa", "Species", 15)
nrow(undersamp)</pre>
```

undersample_kmeans Undersample a dataset by kmeans clustering.

Description

Undersample a dataset by kmeans clustering.

Usage

```
undersample_kmeans(data, cls, cls_col, m, k = 5, ...)
```

Arguments

data	Dataset to be undersampled.
cls	Class to be undersampled.
cls_col	Column containing class information.
m	Number of samples in undersampled dataset.
k	Number of centers in clustering.
	Additional arguments passed to kmeans()

Value

The undersampled dataframe containing only instances of cls.

Examples

```
table(iris$Species)
undersamp <- undersample_kmeans(iris, "setosa", "Species", 15)
nrow(undersamp)</pre>
```

undersample_mclust Undersample a dataset by expectation-maximization clustering

Description

Undersample a dataset by expectation-maximization clustering

Usage

```
undersample_mclust(data, cls, cls_col, m, ...)
```

Arguments

data	Data to be undersampled.
cls	Class to be undersampled.
cls_col	Class column.
m	Number of samples in undersampled dataset.
	Additional arguments passed to Mclust()

Value

The undersampled dataframe containing only instance of cls.

Examples

```
setosa <- iris[iris$Species == "setosa", ]
nrow(setosa)
undersamp <- undersample_mclust(setosa, "setosa", "Species", 15)
nrow(undersamp)</pre>
```

undersample_mindist Undersample a dataset by iteratively removing the observation with the lowest total distance to its neighbors of the same class.

Description

Undersample a dataset by iteratively removing the observation with the lowest total distance to its neighbors of the same class.

Usage

```
undersample_mindist(data, cls, cls_col, m, ...)
```

Arguments

data	Dataset to undersample. Aside from cls_col, must be numeric.
cls	Class to be undersampled.
cls_col	Column containing class information.
m	Desired number of observations after undersampling.
	Additional arguments passed to dist().

Value

An undersampled dataframe.

Examples

```
setosa <- iris[iris$Species == "setosa", ]
nrow(setosa)
undersamp <- undersample_mindist(setosa, "setosa", "Species", 50)
nrow(undersamp)</pre>
```

undersample_tomek Undersample a dataset by removing Tomek links.

Description

A Tomek link is a minority instance and majority instance that are each other's nearest neighbor. This function removes sufficient Tomek links that are an instance of cls to yield m instances of cls. If desired, samples are randomly discarded to yield m rows if insufficient Tomek links are in the data.

Usage

```
undersample_tomek(data, cls, cls_col, m, tomek = "minor", force_m = TRUE, ...)
```

Arguments

data	Dataset to be undersampled.
cls	Majority class to be undersampled.
cls_col	Column in data containing class memberships.
m	Desired number of samples in undersampled dataset.
tomek	Definition used to determine if a point is considered a minority in the Tomek link definition.
	minor: Minor classes are all those with fewer than m instances.diff: Minor classes are all those that aren't cls.
force_m	If TRUE, uses random undersampling to discard samples if insufficient Tomek links are present to yield m rows of data.
	Additional arguments passed to dist().

Value

Undersampled dataframe containing only cls.

Examples

```
table(iris$Species)
undersamp <- undersample_tomek(iris, "setosa", "Species", 15, tomek = "diff", force_m = TRUE)
nrow(undersamp)
undersamp2 <- undersample_tomek(iris, "setosa", "Species", 15, tomek = "diff", force_m = FALSE)
nrow(undersamp2)</pre>
```

validate_dataset Validate a dataset for resampling.

Description

This functions checks that the given column is present in the data and that all columns besides the class column are numeric.

Usage

```
validate_dataset(data, cls_col)
```

Arguments

data	Dataframe to validate.
cls_col	Column with class information.

Value

NA

10

wine

Description

Type and chemical analysis of three different kinds of wine.

Usage

wine

Format

a data.frame with 178 rows and 14 columns

Source

https://archive.ics.uci.edu/ml/datasets/Wine

Index

* datasets bullseye, 2 imbalance, 2wine, 11 bullseye, 2 dist, 7, 9, 10 imbalance, 2 kmeans, 8Mclust, 8 oversample_smote, 3 resample_random, 4, 6 sample_classes, 4 SCUT, 5 SCUT_parallel, 5, 6 SCUT_parallel (SCUT), 5 SMOTE, 3 undersample_hclust,7 undersample_kmeans,7 undersample_mclust, 5, 8 undersample_mindist,9 undersample_tomek, 9 validate_dataset, 10 wine, 11