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Abstract

This introduction to the object-oriented implementation of clustered covariances in the
R package sandwich is a (slightly) modified version of Zeileis, Köll, and Graham (2020),
published in the Journal of Statistical Software.

Clustered covariances or clustered standard errors are very widely used to account for
correlated or clustered data, especially in economics, political sciences, and other social
sciences. They are employed to adjust the inference following estimation of a standard
least-squares regression or generalized linear model estimated by maximum likelihood.
Although many publications just refer to “the” clustered standard errors, there is a sur-
prisingly wide variety of clustered covariances, particularly due to different flavors of bias
corrections. Furthermore, while the linear regression model is certainly the most impor-
tant application case, the same strategies can be employed in more general models (e.g.,
for zero-inflated, censored, or limited responses).

In R, functions for covariances in clustered or panel models have been somewhat scat-
tered or available only for certain modeling functions, notably the (generalized) linear
regression model. In contrast, an object-oriented approach to “robust” covariance matrix
estimation – applicable beyond lm() and glm() – is available in the sandwich package
but has been limited to the case of cross-section or time series data. Starting with sand-

wich 2.4.0, this shortcoming has been corrected: Based on methods for two generic func-
tions (estfun() and bread()), clustered and panel covariances are provided in vcovCL(),
vcovPL(), and vcovPC(). Moreover, clustered bootstrap covariances are provided in
vcovBS(), using model update() on bootstrap samples. These are directly applicable to
models from packages including MASS, pscl, countreg, and betareg, among many others.
Some empirical illustrations are provided as well as an assessment of the methods’ per-
formance in a simulation study.

Keywords: clustered data, covariance matrix estimator, object orientation, simulation, R.

1. Introduction

Observations with correlations between objects of the same group/cluster are often referred to
as “cluster-correlated” observations. Each cluster comprises multiple objects that are corre-
lated within, but not across, clusters, leading to a nested or hierarchical structure (Galbraith,
Daniel, and Vissel 2010). Ignoring this dependency and pretending observations are indepen-
dent not only across but also within the clusters, still leads to parameter estimates that are
consistent (albeit not efficient) in many situations. However, the observations’ information
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will typically be overestimated and hence lead to overstated precision of the parameter esti-
mates and inflated type I errors in the corresponding tests (Moulton 1986, 1990). Therefore,
clustered covariances are widely used to account for clustered correlations in the data.

Such clustering effects can emerge both in cross-section and in panel (or longitudinal) data.
Typical examples for clustered cross-section data include firms within the same industry or
students within the same school or class. In panel data, a common source of clustering is
that observations for the same individual at different time points are correlated while the
individuals may be independent (Cameron and Miller 2015).

This paper contributes to the literature particularly in two respects: (1) Most importantly,
we discuss a set of computational tools for the R system for statistical computing (R Core
Team 2018), providing an object-oriented implementation of clustered covariances/standard
errors in the R package sandwich (Zeileis 2004, 2006b). Using this infrastructure, sandwich
covariances for cross-section or time series data have been available for models beyond lm() or
glm(), e.g., for packages MASS (Venables and Ripley 2002), pscl/countreg (Zeileis, Kleiber,
and Jackman 2008), and betareg (Cribari-Neto and Zeileis 2010; Grün, Kosmidis, and Zeileis
2012), among many others. However, corresponding functions for clustered or panel data had
not been available in sandwich but have been somewhat scattered or available only for certain
modeling functions.

(2) Moreover, we perform a Monte Carlo simulation study for various response distributions
with the aim to assess the performance of clustered standard errors beyond lm() and glm().
This also includes special cases for which such a finite-sample assessment has not yet been
carried out in the literature (to the best of our knowledge).

The rest of this manuscript is structured as follows: Section 2 discusses the idea of clustered
covariances and reviews existing R packages for sandwich as well as clustered covariances.
Section 3 deals with the theory behind sandwich covariances, especially with respect to clus-
tered covariances for cross-sectional and longitudinal data, clustered data, as well as panel
data. Section 4 then takes a look behind the scenes of the new object-oriented R implementa-
tion for clustered covariances, Section 5 gives an empirical illustration based on data provided
from Petersen (2009) and Aghion, Van Reenen, and Zingales (2013). The simulation setup
and results are discussed in Section 6.

2. Overview

In the statistics as well as in the econometrics literature a variety of strategies are popular
for dealing with clustered dependencies in regression models. Here we give a a brief overview
of clustered covariances methods, some background information, as well as a discussion of
corresponding software implementations in R and Stata (StataCorp 2019).

2.1. Clustered dependencies in regression models

In the statistics literature, random effects (especially random intercepts) are often introduced
to capture unobserved cluster correlations (e.g., using the lme4 package in R, Bates, Mächler,
Bolker, and Walker 2015). Alternatively, generalized estimating equations (GEE) can account
for such correlations by adjusting the model’s scores in the estimation (Liang and Zeger 1986),
also leading naturally to a clustered covariance (e.g., available in the geepack package for R,
Halekoh, Højsgaard, and Yan 2005). Feasible generalized least squares can be applied in
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a similar way and is frequently used in panel data econometrics (e.g., available in the plm

package, Croissant and Millo 2008).

Another approach, widely used in econometrics and the social sciences, is to assume that
the model’s score function was correctly specified but that only the remaining likelihood
was potentially misspecified, e.g., due to a lack of independence as in the case of clustered
correlations (see White 1994, for a classic textbook, and Freedman 2006, for a criticial review).
This approach leaves the parameter estimator unchanged and is known by different labels in
different parts of the literature, e.g., quasi-maximum likelihood (QML), independence working
model, or pooling model in ML, GEE, or panel econometrics jargon, respectively. In all of
these approaches, only the covariance matrix is adjusted in the subsequent inference by using
a sandwich estimator, especially in Wald tests and corresponding confidence intervals.

Important special cases of this QML approach combined with sandwich covariances include:
(1) independent but heteroscedastic observations necessitating heteroscedasticity-consistent
(HC) covariances (see e.g., Long and Ervin 2000), (2) autocorrelated time series of observa-
tions requiring heteroscedasticity- and autocorrelation-consistent (HAC) covariances (such as
Newey and West 1987; Andrews 1991), and (3) clustered sandwich covariances for clustered
or panel data (see e.g., Cameron and Miller 2015).

2.2. Clustered covariance methods

In the statistics literature, the basic sandwich estimator has been introduced first for cross-
section data with independent but heteroscedastic observations by Eicker (1963) and Huber
(1967) and was later popularized in the econometrics literature by White (1980). Early ref-
erences for sandwich estimators accounting for correlated but homoscedastic observations are
Kloek (1981) and Moulton (1990), assuming a correlation structure equivalent to exchange-
able working correlation introduced by Liang and Zeger (1986) in the more general framework
of generalized estimating equations. Kiefer (1980) has implemented yet another clustered co-
variance estimator for panel data, which is robust to clustering but assumes homoscedasticity
(see also Baum, Nichols, and Schaffer 2011). A further generalization allowing for cluster
correlations and heteroscedasticity is provided by the independence working model in GEE
(Liang and Zeger 1986), naturally leading to clustered covariances. In econometrics, Arellano
(1987) first proposed clustered covariances for the fixed effects estimator in panel models.

Inference with clustered covariances with one or more cluster dimension(s) is examined in
Cameron, Gelbach, and Miller (2011). In a wider context, Cameron and Miller (2015) include
methods in the discussion where not only inference is adjusted but also estimation altered.
This discussion focuses on the “large G” framework where not only the number of observa-
tions n but also the number of clusters G is assumed to approach infinity. An alternative
but less frequently-used asymptotic framework is the “fixed G” setup, where the number of
clusters is assumed to be fixed (see Bester, Conley, and Hansen 2011; Hansen and Lee 2017).
However, as this also requires non-standard (non-normal) inference it cannot be combined
with standard tests in the same modular way as implemented in sandwich and is not pursued
further here.

In a recent paper, Abadie, Athey, Imbens, and Wooldridge (2022) survey state-of-the-art
methods for clustered covariances with special focus on treatment effects in economic exper-
iments with possibly multiple cluster dimensions. They emphasize that, in terms of effect
on the covariance estimation, clustering in the treatment assignment is more important than
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merely clustering in the sampling. However, if a fixed cluster effect is included in the model,
treatment heterogeneity across clusters is a requirement for clustered covariances to be nec-
essary.

2.3. R packages for sandwich covariances

Various kinds of sandwich covariances have already been implemented in several R packages,
with the linear regression case receiving most attention. But some packages also cover more
general models.

The standard R package for sandwich covariance estimators is the sandwich package (Zeileis
2004, 2006b), which provides an object-oriented implementation for the building blocks of
the sandwich that rely only on a small set of extractor functions (estfun() and bread())
for fitted model objects. The function sandwich() computes a plain sandwich estimate
(Eicker 1963; Huber 1967; White 1980) from a fitted model object, defaulting to what is
known as HC0 or HC1 in linear regression models. vcovHC() is a wrapper to sandwich()

combined with meatHC() and bread() to compute general HC covariances ranging from HC0
to HC5 (see Zeileis 2004, and the references therein). vcovHAC(), based on sandwich() with
meatHAC() and bread(), computes HAC covariance matrix estimates. Further convenience
interfaces kernHAC() for Andrews’ kernel HAC (Andrews 1991) and NeweyWest() for Newey-
West-style HAC (Newey and West 1987, 1994) are available. However, in versions prior to
2.4.0 of sandwich no similarly object-oriented approach to clustered sandwich covariances was
available.

Another R package that includes heteroscedasticity-consistent covariance estimators (HC0–
HC4), for models produced by lm() only, is the car package (Fox and Weisberg 2019) in
function hccm(). Like vcovHC() from sandwich this is limited to the cross-section case without
clustering, though.

Covariance estimators in car as well as in sandwich are constructed to insert the resulting
covariance matrix estimate in different Wald-type inference functions, as confint() from
stats (R Core Team 2018), coeftest() and waldtest() from lmtest (Zeileis and Hothorn
2002), Anova(), Confint(), S(), linearHypothesis(), and deltaMethod() from car (Fox
and Weisberg 2019).

2.4. R packages for clustered covariances

The lack of support for clustered sandwich covariances in standard packages like sandwich or
car has led to a number of different implementations scattered over various packages. Typ-
ically, these are tied to either objects from lm() or dedicated model objects fitting certain
(generalized) linear models for clustered or panel data. The list of packages includes: mul-

tiwayvcov (Graham, Arai, and Hagströmer 2016), plm (Croissant and Millo 2008), geepack

(Halekoh et al. 2005), lfe (Gaure 2013), clubSandwich (Pustejovsky and Tipton 2017), and
clusterSEs (Esarey and Menger 2019), among others.

In multiwayvcov, the implementation was object-oriented, in many aspects building on sand-

wich infrastructure. However, certain details assumed ‘lm’ or ‘glm’-like objects. In plm and
lfe several types of sandwich covariances are available for the packages’ plm (panel linear mod-
els) and felm (fixed-effect linear models), respectively. The geepack package can estimate
independence working models for ‘glm’-type models, also supporting clustered covariances for
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the resulting ‘geeglm’ objects. Finally, clusterSEs and clubSandwich focus on the case of
ordinary or weighted least squares regression models.

In a nutshell, there is good coverage of clustered covariances for (generalized) linear regression
objects albeit potentially necessitating reestimating a certain model using a different model-
fitting function/packages. However, there was no object-oriented implementation for clustered
covariances in R, that enabled plugging in different model objects from in principle any class.
Therefore, starting from the implementation in multiwayvcov, a new and object-oriented
implementation was established and integrated in sandwich, allowing application to more
general models, including zero-inflated, censored, or limited responses.

2.5. Stata software for clustered covariances

Base Stata as well as contributed extension modules provide implementations for several types
of clustered covariances. One-way clustered covariances are available in base Stata for a wide
range of estimators (e.g., reg, ivreg2, xtreg, among others) by adding the cluster option.
Furthermore, suest provides clustered covariances for seemingly unrelated regression models,
xtpcse supports linear regression with panel-corrected standard errors, and the svy suite of
commands can be employed in the presence of nested multi-level clustering (Nichols and
Schaffer 2007).

The contributed Stata module avar (Baum and Schaffer 2013) allows to construct the “meat”
matrix of various sandwich covariance estimators, including HAC, one- and two-way clustered,
and panel covariances (à la Kiefer 1980 or Driscoll and Kraay 1998). An alternative imple-
mentation for the latter is available in the contributed Stata module xtscc (Hoechle 2007).
While there is a wide variety of clustered covariances for many regression models in Stata,
it is not always possible to fine-tune the flavor of covariance, e.g., with respect to the finite
sample adjustment (a common source of confusion and differences across implementations,
see e.g., Stack Overflow 2014).

3. Methods

To establish the theoretical background of sandwich covariances for clustered as well as panel
data the notation of Zeileis (2006b) is adopted. Here, the conceptual building blocks from
Zeileis (2006b) are briefly repeated and then carried further for clustered covariances.

3.1. Sandwich covariances

Let (yi, xi) for i = 1, . . . , n be data with some distribution controlled by a parameter vector
θ with k dimensions. For a wide range of models the (quasi-)maximum likelihood estimator
θ̂ is governed by a central limit theorem (White 1994) so that θ̂ is approximately normally
distributed with N (θ, n−1S(θ)). Moreover, the covariance matrix is of sandwich type with a
meat matrix M(θ) between two slices of bread B(θ):

S(θ) = B(θ) ·M(θ) ·B(θ) (1)

B(θ) =

(

E

[

−
∂ψ(y, x, θ)

∂θ

])−1

(2)

M(θ) = VAR[ψ(y, x, θ)]. (3)
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An estimating function

ψ(y, x, θ) =
∂Ψ(y, x, θ)

∂θ
(4)

is defined as the derivative of an objective function Ψ(y, x, θ), typically the log-likelihood,
with respect to the parameter vector θ. Thus, an empirical estimating (or score) function
evaluates an estimating function at the observed data and the estimated parameters such
that an n× k matrix is obtained (Zeileis 2006b):









ψ(y1, x1, θ̂)
⊤

...

ψ(yn, xn, θ̂)
⊤









. (5)

The estimate B̂ for the bread is based on second derivatives, i.e., the empirical version of the
inverse Hessian

B̂ =

(

1

n

n
∑

i=1

−
∂ψ(yi, xi, θ)

∂θ

∣

∣

∣

∣

θ=θ̂

)−1

, (6)

whereas M̂, M̂HAC, M̂HC compute outer product, HAC and HC estimators for the meat, re-
spectively,

M̂ =
1

n

n
∑

i=1

ψ(yi, xi, θ̂)ψ(yi, xi, θ̂)
⊤ (7)

M̂HAC =
1

n

n
∑

i,j=1

w|i−j| ψ(yi, xi, θ̂)ψ(yj , xj , θ̂)
⊤ (8)

M̂HC =
1

n
X⊤









ω(r(y1, x
⊤
1 θ̂)) · · · 0

...
. . .

...

0 · · · ω(r(yn, x
⊤
n θ̂))









X. (9)

The outer product estimator in Equation 7 corresponds to the basic sandwich estimator
(Eicker 1963; Huber 1967; White 1980). w|i−j| in Equation 8 is a vector of weights (Zeileis
2004). In Equation 9, functions ω(·) derive estimates of the variance of the empirical working
residuals r(y1, x

⊤
1 θ̂), . . . , r(yn, x

⊤
n θ̂) and may also depend on hat values as well as degrees of

freedom (Zeileis 2006b). To obtain the HC type estimator in Equation 9 it is necessary that
the score can be factorized into empirical working residuals times the regressor vector.

ψ(yi, xi, θ̂) = r(yi, x
⊤
i θ̂) · xi (10)

This is, however, only possible in situations where the parameter of the response distribution
depends on a single linear predictor (possibly through a link function).

The building blocks for the calculation of the sandwich are provided by the sandwich package,
where the sandwich() function calculates an estimator of the sandwich S(θ) (see Equation 1)
by multiplying estimators for the meat (from Equation 3) between two slices of bread (from
Equation 2). A natural idea for an object-oriented implementation of these estimators is to
provide common building blocks, namely a simple bread() extractor that computes B̂ from
Equation 6 and an estfun() extractor that returns the empirical estimating functions from
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Equation 5. On top of these extractors a number of meat estimators can be defined: meat()

for M̂ from Equation 7, meatHAC() for M̂HAC from Equation 8, and meatHC() for M̂HC from
Equation 9, respectively. In addition to the estfun() method a model.matrix() method is
needed in meatHC() for the decomposition of the scores into empirical working residuals and
regressor matrix.

3.2. Clustered covariances

For clustered observations, similar ideas as above can be employed but the data has more
structure that needs to be incorporated into the meat estimators. Specifically, for one-way
clustering there is not simply an observation i from 1, . . . , n observations but an observation
(i, g) from 1, . . . , ng observations within cluster/group g (with g = 1, . . . , G and n = n1 + · · ·+
nG). As only the G groups can be assumed to be independent while there might be correlation
withing the cluster/group, the empirical estimation function is summed up within each group
prior to computing meat estimators. Thus, the core idea of many clustered covariances is
to replace Equation 5 with the following equation and then proceeding “as usual” in the
computation of meat estimators afterwards:



















n1
∑

i=1

ψ(yi,1, xi,1, θ̂)
⊤

...
nG
∑

i=1

ψ(yi,G, xi,G, θ̂)
⊤



















=



















ψ(y1,1, x1,1, θ̂)
⊤ + · · · + ψ(yn1,1, xn1,1, θ̂)

⊤

...

ψ(y1,G, x1,G, θ̂)
⊤ + · · · + ψ(ynG,G, xnG,G, θ̂)

⊤



















. (11)

The basic meat estimator based on the outer product from Equation 7 then becomes:

M̂CL =
1

n

G
∑

g=1

( ng
∑

i=1

ψ(yi,g, xi,g, θ̂)

)( ng
∑

i=1

ψ(yi,g, xi,g, θ̂)

)⊤

. (12)

In the case where observation is its own cluster, the clustered M̂CL corresponds to the basic M̂ .

The new function meatCL() in the sandwich package implements this basic trick along with
several types of bias correction and the possibility for multi-way instead of one-way clustering.

Types of bias correction

The clustered covariance estimator controls for both heteroscedasticity across as well as within
clusters, assuming that in addition to the number of observations n the number of clusters G
also approaches infinity (Cameron, Gelbach, and Miller 2008; Cameron and Miller 2015). Al-
though many publications just refer to “the” clustered standard errors, there is a surprisingly
wide variation in clustered covariances, particularly due to different flavors of bias corrections.
The bias correction factor can be split in two parts, a “cluster bias correction” and an “HC
bias correction”. The cluster bias correction captures the effect of having just a finite number
of clusters G and it is defined as

G

G− 1
. (13)

The HC bias correction can be applied additionally in a manner similar to the corresponding
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cross-section data estimators. HC0 to HC3 bias corrections for cluster g are defined as

HC0 : 1 (14)

HC1 :
n− 1

n− k
(15)

HC2 :
G− 1

G
· (Ing −Hgg)−1 (16)

HC3 :
G− 1

G
· (Ing −Hgg)−2, (17)

where n is the number of observations and k is the number of estimated parameters, Ing is an
identity matrix of size ng, Hgg is the block from the hat matrix H that pertains to cluster g.
In case of a linear model, the hat (or projection) matrix is defined as H = X(X⊤X)−1X⊤,
with model matrix X. A generalized hat matrix is available for generalized linear models
(GLMs, see Equation 12.3 in McCullagh and Nelder 1989). To apply these factors to M̂CL

(Equation 12), their square root has to be applied to each of the ψ factors in the outer product
(see Cameron and Miller 2015, Section VI.B for the linear regression case).

Thus, it is completely straightforward to incorporate the scalar factors for HC0 and HC1.
However, the cluster generalizations of HC2 and HC3 (due to Kauermann and Carroll 2001;
Bell and McCaffrey 2002) require some more work. More precisely, the square root of the
correction factors from Equations 16 and 17 has to be applied to the (working) residuals prior
to computing the clustered meat matrix. Thus, the empirical working residuals r(yg, x

⊤
g θ̂) in

group g are adjusted via

r̃(yg, x
⊤
g θ̂) =

√

G− 1

G
· (Ing −Hgg)−α/2 · r(yg, x

⊤
g θ̂) (18)

with α = 1 for HC2 and α = 2 for HC3, before obtaining the adjusted empirical estimating
functions based on Equation 10 as

ψ̃(yi, xi, θ̂) = r̃(yi, x
⊤
i θ̂) · xi. (19)

Then these adjusted estimating functions can be employed “as usual” to obtain the M̂CL.
Note that, by default, adding the cluster adjustment factor G/(G − 1) from Equation 13
simply cancels out the factor (G − 1)/G from the HC2/HC3 adjustment factor. Originally,
Bell and McCaffrey (2002) recommended to use the factor (G− 1)/G for HC3 (i.e., without
cluster adjustment) but not for HC2 (i.e., with cluster adjustment). Here, we handle both
cases in the same way so that both collapse to the traditional HC2/HC3 estimators when
G = n (i.e., where every observation is its own cluster).

Note that in terms of methods in R, it is not sufficient for the cluster HC2/HC3 estimators to
have just estfun() and model.matrix() extractors but an extractor for (blocks of) the full
hat matrix are required as well. Currently, no such extractor method is available in base R (as
hatvalues() just extracts diagH) and hence HC2 and HC3 in meatCL() are just available
for ‘lm’ and ‘glm’ objects.

Two-way and multi-way clustered covariances

Certainly, there can be more than one cluster dimension, as for example observations that are
characterized by housholds within states or companies within industries. Therefore, it can
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sometimes be helpful that one-way clustered covariances can be extended to so-called multi-
way clustering as shown by Miglioretti and Heagerty (2007), Thompson (2011) and Cameron
et al. (2011).

Multi-way clustered covariances comprise clustering on 2D − 1 dimensional combinations.
Clustering in two dimensions, for example in id and time, gives D = 2, such that the clustered
covariance matrix is composed of 22 − 1 = 3 one-way clustered covariance matrices that
have to be added or subtracted, respectively. For two-way clustered covariances with cluster
dimensions id and time, the one-way clustered covariance matrices on id and on time are
added, and the two-way clustered covariance matrix with clusters formed by the intersection
of id and time is subtracted. Additionally, a cluster bias correction G(·)

G(·)−1 is added, where

G(id) is the number of clusters in cluster dimension id, G(time) is the number of clusters in
cluster dimension time, and G(id∩ time) is the number of clusters formed by the intersection
of id and time.

M̂CL =
G(id)

G(id) − 1
M̂id +

G(time)

G(time) − 1
M̂time −

G(id ∩ time)

G(id ∩ time) − 1
M̂id∩time. (20)

The same idea is used for obtaining clustered covariances with more than two clustering di-
mensions: Meat parts with an odd number of cluster dimensions are added, whereas those
with an even number are subtracted. Particularly when there is only one observation in each
intersection of id and time, Petersen (2009), Thompson (2011) and Ma (2014) suggest to sub-

tract the standard sandwich estimator M̂ from Equation (7) instead of G(id∩time)
G(id∩time)−1M̂(id∩time)

in Equation (20).

3.3. Clustered covariances for panel data

The information in panel data sets is often overstated, as cross-sectional as well as temporal
dependencies may occur (Hoechle 2007). Cameron and Trivedi (2005, p. 702) noticed that
“NT correlated observations have less information than NT independent observations”. For
panel data, the source of dependence in the data is crucial to find out what kind of covariance
is optimal (Petersen 2009). In the following, panel Newey-West standard errors as well as
Driscoll and Kraay standard errors are examined (see also Millo 2017, for a unifying view).

To reflect that the data are now panel data with a natural time ordering within each group g
(as opposed to variables without a natural ordering, such as individuals, countries, or firms,
Millo 2017), we change our notation to an index (g, t) for g = 1, . . . , G groups sampled at
t = 1, . . . , ng points in time (with n = n1 + · · · + nG).

Clustered covariances account for the average within-cluster covariance, where a cluster or
group is any set of observations which can be identified by a variable to “cluster on”. In the
case of panel data, observations are frequently grouped by time and by one or more cross-
sectional variables such as individuals or countries that have been observed repeatedly over
time.

Panel Newey-West

Newey and West (1987) proposed a heteroscedasticity and autocorrelation consistent standard
error estimator that is traditionally used for time-series data, but can be modified for use in
panel data (see for example Petersen 2009). A panel Newey-West estimator can be obtained by
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setting the cross-sectional as well as the cross-serial correlation to zero (Millo 2017), effectively
assuming that each cross-sectional group is a separate, autocorrelated time-series. The meat
is composed of

M̂NW
PL =

1

n

L
∑

ℓ=0

wℓ

[ nmax
∑

t=1

G
∑

g=1

ψ(yg,t, xg,t, θ̂)ψ(yg,t−ℓ, xg,t−ℓ, θ̂)
⊤
]

. (21)

Newey and West (1987) employ a Bartlett kernel for obtaining the weights as wℓ = 1− ℓ
L+1 at

lag ℓ up to lag L. As Petersen (2009) noticed, the maximal lag length L in a panel data set is
nmax − 1, i.e., one less than the maximum number of time periods per group nmax = maxg ng.

Driscoll and Kraay

Driscoll and Kraay (1998) have adapted the Newey-West approach by using the aggregated
estimating functions at each time point. This can be shown to be robust to spatial and
temporal dependence of general form, but with the caveat that a long enough time dimension
must be available.

Thus, the idea is again to replace Equation 5 by Equation 11 before computing M̂HAC from
Equation 8. Note, however, that the aggregation is now done across groups g within each
time period t. This yields a panel sandwich estimator where the meat is computed as

M̂PL =
1

n

L
∑

ℓ=0

wℓ

[ nmax
∑

t=1

( G
∑

g=1

ψ(yg,t, xg,t, θ̂)

)( G
∑

g=1

ψ(yg,t−ℓ, xg,t−ℓ, θ̂)

)⊤]

, (22)

The weights wℓ are usually again the Bartlett weights up to lag L. Note that for L = 0, M̂PL

reduced to M̂CL(time), i.e., the one-way covariance clustered by time. Also, for the special case
that there is just one observation at each time point t, this panel covariance by Driscoll and
Kraay (1998) simply yields the panel Newey-West covariance.

The new function meatPL() in the sandwich package implements this approach analogously
to meatCL(). For the computation of the weights wℓ the same function is employed that
meatHAC() uses.

3.4. Panel-corrected standard errors

Beck and Katz (1995) proposed another form or panel-corrected covariances – typically re-
ferred to as panel-corrected standard errors (PCSE). They are intended for panel data (also
called time-series-cross-section data in this literature) with moderate dimensions of time and
cross-section (Millo 2017). They are robust against panel heteroscedasticity and contem-
poraneous correlation, with the crucial assumption that contemporaneous correlation across
clusters follows a fixed pattern (Millo 2017; Johnson 2004). Autocorrelation within a cluster
is assumed to be absent.

Hoechle (2007) argues that for the PCSE estimator the finite sample properties are rather poor
if the cross-sectional dimension is large compared to the time dimension. This is in contrast
to the panel covariance by Driscoll and Kraay (1998) which relies on large-t asymptotics and
is robust to quite general forms of cross-sectional and temporal dependence and is consistent
independently of the cross-sectional dimension.
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To emphasize again that both cross section and and time ordering are considered, index (g, t)
is employed for the observation from group g = 1, . . . , G at time t = 1, . . . , ng. Here, ng

denotes the last time period observed in cluster g, thus allowing for unbalanced data. In the
balanced case (that we focus on below) ng = T for all groups g so that there are n = G · T
observations overall.

The basic idea for PCSE is to employ the outer product of (working) residuals within each clus-
ter g. Thus, the working residuals are split into T×1 vectors for each cluster g: r(y1, x

⊤
1 θ̂), . . . ,

r(yG, x
⊤
Gθ̂). For balanced data these can be arranged in a T ×G matrix,

R = [r(y1, x
⊤
1 θ̂) r(y2, x

⊤
2 θ̂) . . . r(yG, x

⊤
Gθ̂)], (23)

and the meat of the panel-corrected covariance matrix can be computed using the Kronecker
product as

M̂PC =
1

n
X⊤

[

(R⊤R)

T
⊗ IT

]

X. (24)

The details for the unbalanced case are omitted here for brevity but are discussed in detail
in Bailey and Katz (2011).

The new function meatPC() in the sandwich package implements both the balanced and
unbalanced case. As for meatHC() it is necessary to have a model.matrix() extractor in
addition to the estfun() extractor for splitting up the empirical estimating functions into
residuals and regressor matrix.

4. Software

As conveyed already in Section 3, the sandwich package has been extended along the same
lines it was originally established in Zeileis (2006b). The new clustered and panel covariances
require a new meat*() function that ideally only extracts the estfun() from a fitted model
object. For the full sandwich covariance an accompanying vcov*() function is provided that
couples the meat*() with the bread() estimate extracted from the model object.

The new sandwich covariances vcovCL() for clustered data and vcovPL() for panel data, as
well as vcovPC() for panel-corrected covariances all follow this structure and are introduced
in more detail below.

Model classes which provide the necessary building blocks include ‘lm’, ‘glm’, ‘mlm’, and
‘nls’ from stats (R Core Team 2018), ‘betareg’ from betareg (Cribari-Neto and Zeileis 2010;
Grün et al. 2012), ‘clm’ from ordinal (Christensen 2019), ‘coxph’ and ‘survreg’ from survival

(Therneau 2020), ‘crch’ from crch (Messner, Mayr, and Zeileis 2016), ‘hurdle’ and ‘zeroinfl’
from pscl/countreg (Zeileis et al. 2008), ‘mlogit’ from mlogit (Croissant 2020), and ‘polr’
and ‘rlm’ from MASS (Venables and Ripley 2002). For all of these an estfun() method is
available along with a bread() method (or the default method works). In case the models
are based on a single linear predictor only, they also provide model.matrix() extractors so
that the factorization from Equation 10 into working residuals and regressor matrix can be
easily computed.

4.1. Clustered covariances

One-, two-, and multi-way clustered covariances with HC0–HC3 bias correction are imple-
mented in
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vcovCL(x, cluster = NULL, type = NULL, sandwich = TRUE, fix = FALSE, ...)

for a fitted-model object x with the underlying meat estimator in

meatCL(x, cluster = NULL, type = NULL, cadjust = TRUE, multi0 = FALSE, ...)

The essential idea is to aggregate the empirical estimating functions within each cluster and
then compute a HC covariance analogous to vcovHC().

The cluster argument allows to supply either one cluster vector or a list (or data frame) of
several cluster variables. If no cluster variable is supplied, each observation is its own cluster
per default. Thus, by default, the clustered covariance estimator collapses to the basic sand-
wich estimator. The cluster specification may also be a formula if expand.model.frame(x,

cluster) works for the model object x.

The bias correction is composed of two parts that can be switched on and off separately:
First, the cluster bias correction from Equation 13 is controlled by cadjust. Second, the HC
bias correction from Equations 14–17 is specified via type with the default to use "HC1" for
‘lm’ objects and "HC0" otherwise. Moreover, type = "HC2" and "HC3" are only available for
‘lm’ and ‘glm’ objects as they require computation of full blocks of the hat matrix (rather
than just the diagonal elements as in hatvalues()). Hence, the hat matrices of (generalized)
linear models are provided directly in meatCL() and are not object-oriented in the current
implementation.

The multi0 argument is relevant only for multi-way clustered covariances with more than one
clustering dimension. It specifies whether to subtract the basic cross-section HC0 covariance
matrix as the last subtracted matrix in Equation 20 instead of the covariance matrix formed
by the intersection of groups (Petersen 2009; Thompson 2011; Ma 2014).

For consistency with Zeileis (2004), the sandwich argument specifies whether the full sandwich
estimator is computed (default) or only the meat.

Finally, the fix argument specifies whether the covariance matrix should be fixed to be
positive semi-definite in case it is not. This is achieved by converting any negative eigenvalues
from the eigendecomposition to zero. Cameron et al. (2011) observe that this is most likely
to be necessary in applications with fixed effects, especially when clustering is done over the
same groups as the fixed effects.

4.2. Clustered covariances for panel data

For panel data,

vcovPL(x, cluster = NULL, order.by = NULL, kernel = "Bartlett",

sandwich = TRUE, fix = FALSE, ...)

based on

meatPL(x, cluster = NULL, order.by = NULL, kernel = "Bartlett",

lag = "NW1987", bw = NULL, adjust = TRUE, ...)

computes sandwich covariances for panel data, specificially including panel Newey and West
(1987) and Driscoll and Kraay (1998). The essential idea is to aggregate the empirical esti-
mating functions within each time period and then compute a HAC covariance analogous to
vcovHAC().
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Again, vcovPL() returns the full sandwich if the argument sandwich = TRUE, and fix =

TRUE forces a positive semi-definite result if necessary.

The cluster argument allows the variable indicating the cluster/group/id variable to be
specified, while order.by specifies the time variable. If only one of the two variables is
provided, then it is assumed that observations are ordered within the other variable. And
if neither is provided, only one cluster is used for all observations resulting in the standard
(Newey and West 1987) estimator. Finally, cluster can also be a list or formula with both
variables: the cluster/group/id and the time/ordering variable, respectively. (The formula
specification requires again that expand.model.frame(x, cluster) works for the model
object x.)

The weights in the panel sandwich covariance are set up by means of a kernel function along
with a bandwidth bw or the corresponding lag. All kernels described in Andrews (1991)
and implemented in vcovHAC() by Zeileis (2006a) are available, namely truncated, Bartlett,
Parzen, Tukey-Hanning, and quadratic spectral. For the default case of the Bartlett kernel,
the bandwidth bw corresponds to lag + 1 and only one of the two arguments should be
specified. The lag argument can either be an integer or one of three character specifications:
"max", "NW1987", or "NW1994". "max" (or equivalently, "P2009" for Petersen 2009) indicates
the maximum lag length T − 1, i.e., the number of time periods minus one. "NW1987"

corresponds to Newey and West (1987), who have shown that their estimator is consistent
if the number of lags increases with time periods T , but with speed less than T 1/4 (see also
Hoechle 2007). "NW1994" sets the lag length to floor[4 · ( T

100)2/9] (Newey and West 1994).

The adjust argument allows to make a finite sample adjustment, which amounts to multipli-
cation by n/(n−k), where n is the number of observations, and k is the number of estimated
parameters.

4.3. Panel-corrected covariance

Panel-corrected covariances and panel-corrected standard errors (PCSE) a la Beck and Katz
(1995) are implemented in

vcovPC(x, cluster = NULL, order.by = NULL, pairwise = FALSE,

sandwich = TRUE, fix = FALSE, ...)

based on

meatPC(x, cluster = NULL, order.by = NULL, pairwise = FALSE,

kronecker = FALSE, ...)

They are usually used for panel data or time-series-cross-section (TSCS) data with a large-
enough time dimension. The arguments sandwich, fix, cluster, and order.by have the
same meaning as in vcovCL() and vcovPL().

While estimation in balanced panels is straightforward, there are two alternatives to estimate
the meat for unbalanced panels (Bailey and Katz 2011). For pairwise = TRUE, a pairwise
balanced sample is employed, whereas for pairwise = FALSE, the largest balanced subset of
the panel is used. For details, see Bailey and Katz (2011).

The argument kronecker relates to estimation of the meat and determines whether calcu-
lations are executed with the Kronecker product or element-wise. The former is typically
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computationally faster in moderately large data sets while the latter is less memory-intensive
so that it can be applied to larger numbers of observations.

4.4. Further functionality: Bootstrap covariances

As an alternative to the asymptotic approaches to clustered covariances in vcovCL(), vcovPL(),
and vcovPC(), the function vcovBS() provides a bootstrap solution. Currently, a default
method is available as well as a dedicated method for ‘lm’ objects with more refined boot-
strapping options. Both methods take the arguments

vcovBS(x, cluster = NULL, R = 250, ..., fix = FALSE,

use = "pairwise.complete.obs", applyfun = NULL, cores = NULL)

where cluster and fix work the same as in vcovCL(). R is the number of bootstrap repli-
cations and use is passed on to the base cov() function. The applyfun is an optional
lapply()-style function with arguments function(X, FUN, ...). It is used for refitting the
model to the bootstrap samples. The default is to use the basic lapply() function unless the
cores argument is specified so that parLapply() (on Windows) or mclapply() (otherwise)
from the basic parallel package are used with the desired number of cores.

The default method samples clusters (where each observation is its own cluster by default),
i.e., case-based “xy” (or “pairs”) resampling (see e.g., Davison and Hinkley 1997). For ob-
taining a covariance matrix estimate it is assumed that an update(x, subset = ...) of
the model with the resampled subset can be obtained, the coef() extracted, and finally the
covariance computed with cov(). In addition to the arguments listed above, it sends ...

to update(), and it provides an argument start = FALSE. If set to TRUE, the latter leads
essentially to update(x, start = coef(x), subset = ...), i.e., necessitates support for
a start argument in the model’s fitting function in addition to the subset argument. If
available, this may reduce the computational burden of refitting the model.

The glm method essentially proceeds in the same way but instead of using update() for
estimating the coefficients on the “xy” bootstrap sample, glm.fit() is used which speeds up
computations somewhat.

Because the “xy” method makes the same assumptions as the asymptotic approach above, its
results approach the asymptotic results as the number of bootstrap replications R becomes
large, assuming the same bias adjustments and small sample corrections are applied – see e.g.,
Efron (1979) or Mammen (1992) for a discussion of asymptotic convergence in bootstraps.
Bootstrapping will often converge to slightly different estimates when the sample size is small
due to a limited number of distinct iterations – for example, there are 126 distinct ways to
resample 5 groups with replacement, but many of them occur only rarely (such as drawing
group 1 five times); see Webb (2014) for more details.

This makes “xy” bootstraps unnecessary if the desired asymptotic estimator is available and
performs well (vcovCL may not be available if a software package has not implemented the
estfun() function, for example). Bootstrapping also often improves inference when nonlinear
models are applied to smaller samples. However, the “xy” bootstrap is not the only technique
available, and the literature has found a number of alternative bootstrapping approaches
– which make somewhat different assumptions – to be useful in practice, even for linear
models applied to large samples. Hence, the vcovBS() method for ‘lm’ objects provides
several additional bootstrapping types and computes the bootstrapped coefficient estimates
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somewhat more efficiently using lm.fit() or qr.coef() rather than update(). The default
type, however, is also pair resampling (type = "xy") as in the default method. Alternative
type specifications are

• "residual". The residual cluster bootstrap resamples the residuals (as above, by clus-
ter) which are subsequently added to the fitted values to obtain the bootstrapped re-
sponse variable. Coefficients can then be estimated using qr.coef(), reusing the QR
decomposition from the original fit. As Cameron et al. (2008) point out, the residual
cluster bootstrap is not well-defined when the clusters are unbalanced as residuals from
one cluster cannot be easily assigned to another cluster with different size. Hence a
warning is issued in that case.

• "wild" (or equivalently "wild-rademacher" or "rademacher"). The wild cluster boot-
strap does not actually resample the residuals but instead reforms the dependent vari-
able by multiplying the residual by a randomly drawn value and adding the result to
the fitted value (see Cameron et al. 2008). By default, the factors are drawn from
Rademacher distribution, i.e., selecting either −1 or 1 with probability 0.5.

• "mammen" (or "wild-mammen"). This draws the wild bootstrap factors as suggested by
Mammen (1993).

• "webb" (or "wild-webb"). This implements the six-point distribution suggested by
Webb (2014), which may improve inference when the number of clusters is small.

• "norm" (or "wild-norm"). The standard normal/Gaussian distribution is used for draw-
ing the wild bootstrap factors.

• User-defined function. This should take a single argument n, the number of random
values to produce, and return a vector of random factors of corresponding length.

5. Illustrations

The main motivation for the new object-oriented implementation of clustered covariances in
sandwich was the applicability to models beyond lm() or glm(). Specifically when working on
Berger, Stocker, and Zeileis (2017) – an extended replication of Aghion et al. (2013) – clustered
covariances for negative binomial hurdle models were needed to confirm reproducibility. After
doing this “by hand” in Berger et al. (2017), we show in Section 5.1 how the same results can
now be conveniently obtained with the new general vcovCL() framework.

Furthermore, to show that the new sandwich package can also replicate the classic linear
regression results that are currently scattered over various packages, the benchmark data
from Petersen (2009) is considered in Section 5.2. This focuses on linear regression with
model errors that are correlated within clusters. Section 5.2 replicates a variety of clustered
covariances from the R packages multiwayvcov, plm, geepack, and pcse. More specifically,
one- and two-way clustered standard errors from multiwayvcov are replicated with vcovCL().
Furthermore, one-way clustered standard errors from plm and geepack can also be obtained
by vcovCL(). The Driscoll and Kraay standard errors from plm’s vcovSCC() can also be com-
puted with the new vcovPL(). Finally, panel-corrected standard errors can be estimated by
function vcovPC() from pcse and are benchmarked against the new vcovPC() from sandwich.
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5.1. Aghion et al. (2013) and Berger et al. (2017)

Aghion et al. (2013) investigate the effect of institutional owners (these are, for example,
pension funds, insurance companies, etc.) on innovation. The authors use firm-level panel
data on innovation and institutional ownership from 1991 to 1999 over 803 firms, with the
data clustered at company as well as industry level. To capture the differing value of patents,
citation-weighted patent counts are used as a proxy for innovation, whereby the authors
weight the patents by the number of future citations. This motivates the use of count data
models.

Aghion et al. (2013) mostly employ Poisson and negative binomial models in a quasi-maximum
likelihood approach and cluster standard errors by either companies or industries. Berger
et al. (2017) argue that zero responses should be treated separately both for statistical and
economic reasons, as there is a difference in determinants of “first innovation” and “continuing
innovation”. Therefore, they employ two-part hurdle models with a binary part that models
the decision to innovate at all, and a count part that models ongoing innovation, respectively.

A basic negative binomial hurdle model is fitted with the hurdle function from the pscl

package (Zeileis et al. 2008) using the Aghion et al. (2013) data provided in the sandwich

package.

R> library("pscl")

R> data("InstInnovation", package = "sandwich")

R> h_innov <- hurdle(

+ cites ~ institutions + log(capital/employment) + log(sales),

+ data = InstInnovation, dist = "negbin")

The partial Wald tests for all coefficients based on clustered standard errors can be obtained
by using coeftest() from lmtest (Zeileis and Hothorn 2002) and setting vcov = vcovCL

and providing the company-level clustering (with a total of 803 clusters) via cluster = ~

company.

R> library("sandwich")

R> library("lmtest")

R> coeftest(h_innov, vcov = vcovCL, cluster = ~ company)

t test of coefficients:

Estimate Std. Error t value Pr(>|t|)

count_(Intercept) 0.49025 0.89445 0.55 0.5836

count_institutions 0.00397 0.00430 0.92 0.3567

count_log(capital/employment) 0.30431 0.15214 2.00 0.0455 *

count_log(sales) 0.38434 0.04999 7.69 1.7e-14 ***

zero_(Intercept) -0.01007 0.26908 -0.04 0.9701

zero_institutions 0.00658 0.00209 3.15 0.0016 **

zero_log(capital/employment) -0.17431 0.06481 -2.69 0.0072 **

zero_log(sales) 0.17601 0.02776 6.34 2.5e-10 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
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This shows that institutional owners are have a small but positive impact in both submodels
but that only the coefficient in the zero hurdle is significant.

Below, the need for clustering is brought out through a comparison of clustered standard errors
with “standard” standard errors and basic (cross-section) sandwich standard errors. As an
additional reference, a simple clustered bootstrap covariance can be computed by vcovBS()

(by default with R = 250 bootstrap samples).

R> suppressWarnings(RNGversion("3.5.0"))

R> set.seed(0)

R> vc <- list(

+ "standard" = vcov(h_innov),

+ "basic" = sandwich(h_innov),

+ "CL-1" = vcovCL(h_innov, cluster = ~ company),

+ "boot" = vcovBS(h_innov, cluster = ~ company)

+ )

R> se <- function(vcov) sapply(vcov, function(x) sqrt(diag(x)))

R> se(vc)

standard basic CL-1 boot

count_(Intercept) 0.2249894 0.6034277 0.8944541 0.8667209

count_institutions 0.0016022 0.0024664 0.0043029 0.0041135

count_log(capital/employment) 0.0546614 0.0817540 0.1521416 0.1494889

count_log(sales) 0.0126165 0.0322071 0.0499917 0.0612687

zero_(Intercept) 0.1460246 0.1530406 0.2690844 0.2791141

zero_institutions 0.0013508 0.0013473 0.0020870 0.0020777

zero_log(capital/employment) 0.0333649 0.0358768 0.0648053 0.0666365

zero_log(sales) 0.0164233 0.0165897 0.0277648 0.0295080

This clearly shows that the usual standard errors greatly overstate the precision of the es-
timators and the basic sandwich covariances are able to improve but not fully remedy the
situation. The clustered standard errors are scaled up by factors between about 1.5 and 2,
even compared to the basic sandwich standard errors. Moreover, the clustered and bootstrap
covariances agree very well – thus highlighting the need for clustering – with vcovBS() being
computationally much more demanding than vcovCL() due to the resampling.

5.2. Petersen (2009)

Petersen (2009) provides simulated benchmark data (http://www.kellogg.northwestern.

edu/faculty/petersen/htm/papers/se/test_data.txt) for assessing clustered standard
error estimates in the linear regression model. This data set contains a dependent vari-
able y and regressor x for 500 firms over 10 years. It is frequently used in illustrations of
clustered covariances (e.g., in multiwayvcov, see Graham et al. 2016) and is also available in
sandwich. The corresponding linear model is fitted with lm().

R> data("PetersenCL", package = "sandwich")

R> p_lm <- lm(y ~ x, data = PetersenCL)

http://www.kellogg.northwestern.edu/faculty/petersen/htm/papers/se/test_data.txt
http://www.kellogg.northwestern.edu/faculty/petersen/htm/papers/se/test_data.txt
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One-way clustered standard errors

One-way clustered covariances for linear regression models are available in a number of dif-
ferent R packages. The implementations differ mainly in two aspects: (1) Whether a simple
‘lm’ object can be supplied or (re-)estimation of a dedicated model object is necessary. (2)
Which kind of bias adjustment is done by default (HC type and/or cluster adjustment).

The function cluster.vcov() from multiwayvcov (whose implementation strategy vcovCL()

follows) can use ‘lm’ objects directly and then applies both the HC1 and cluster adjustment
by default. In contrast, plm and geepack both require re-estimation of the model and then
employ HC0 without cluster adjustment by default. In plm, a pooling model needs to be
estimated with plm() and in geepack an independence working model needs to be fitted with
geeglm().

The multiwayvcov results can be replicated as follows.

R> library("multiwayvcov")

R> se(list(

+ "sandwich" = vcovCL(p_lm, cluster = ~ firm),

+ "multiwayvcov" = cluster.vcov(p_lm, cluster = ~ firm)

+ ))

sandwich multiwayvcov

(Intercept) 0.067013 0.067013

x 0.050596 0.050596

And the plm and geepack results can be replicated with the following code. (Note that
geepack does not provide a vcov() method for ‘geeglm’ objects, hence the necessary code is
included below.)

R> library("plm")

R> library("geepack")

R> p_plm <- plm(y ~ x, data = PetersenCL, model = "pooling",

+ index = c("firm", "year"))

R> vcov.geeglm <- function(object) {

+ vc <- object$geese$vbeta

+ rownames(vc) <- colnames(vc) <- names(coef(object))

+ return(vc)

+ }

R> p_gee <- geeglm(y ~ x, data = PetersenCL, id = PetersenCL$firm,

+ corstr = "independence", family = gaussian)

R> se(list(

+ "sandwich" = vcovCL(p_lm, cluster = ~ firm,

+ cadjust = FALSE, type = "HC0"),

+ "plm" = vcovHC(p_plm, cluster = "group"),

+ "geepack" = vcov(p_gee)

+ ))
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sandwich plm geepack

(Intercept) 0.066939 0.066939 0.066939

x 0.050540 0.050540 0.050540

Two-way clustered standard errors

It would also be feasible to cluster the covariances with respect to both dimensions, firm and
year, yielding similar but slightly larger standard errors. Again, vcovCL() from sandwich

can replicate the results of cluster.vcov() from multiwayvcov. Only the default for the
correction proposed by Ma (2014) is different.

R> se(list(

+ "sandwich" = vcovCL(p_lm, cluster = ~ firm + year, multi0 = TRUE),

+ "multiwayvcov" = cluster.vcov(p_lm, cluster = ~ firm + year)

+ ))

sandwich multiwayvcov

(Intercept) 0.065066 0.065066

x 0.053561 0.053561

However, note that the results should be regarded with caution as cluster dimension year has
a total of only 10 clusters. Theory requires that each cluster dimension has many clusters
(Petersen 2009; Cameron et al. 2011; Cameron and Miller 2015).

Driscoll and Kraay standard errors

The Driscoll and Kraay standard errors for panel data are available in vcovSCC() from plm,
defaulting to a HC0-type adjustment. In sandwich the vcovPL() function can be used for
replication, setting adjust = FALSE to match the HC0 (rather than HC1) adjustment.

R> se(list(

+ "sandwich" = vcovPL(p_lm, cluster = ~ firm + year, adjust = FALSE),

+ "plm" = vcovSCC(p_plm)

+ ))

sandwich plm

(Intercept) 0.024357 0.024357

x 0.028163 0.028163

Panel-corrected standard errors

Panel-corrected covariances a la Beck and Katz are implemented in the package pcse – pro-
viding the function that is also named vcovPC() – which can handle both balanced and
unbalanced panels. For the balanced Petersen data the two vcovPC() functions from sand-

wich and pcse agree.
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R> library("pcse")

R> se(list(

+ "sandwich" = sandwich::vcovPC(p_lm, cluster = ~ firm + year),

+ "pcse" = pcse::vcovPC(p_lm, groupN = PetersenCL$firm,

+ groupT = PetersenCL$year)

+ ))

sandwich pcse

(Intercept) 0.022201 0.022201

x 0.025276 0.025276

And also when omitting the last year for the first firm to obtain an unbalanced panel, the
pcse results can be replicated. Both strategies for balancing the panel internally (pairwise vs.
casewise) are illustrated in the following.

R> PU <- subset(PetersenCL, !(firm == 1 & year == 10))

R> pu_lm <- lm(y ~ x, data = PU)

and again, panel-corrected standard errors from sandwich are equivalent to those from pcse.

R> se(list(

+ "sandwichT" = sandwich::vcovPC(pu_lm, cluster = ~ firm + year,

+ pairwise = TRUE),

+ "pcseT" = pcse::vcovPC(pu_lm, PU$firm, PU$year, pairwise = TRUE),

+ "sandwichF" = sandwich::vcovPC(pu_lm, cluster = ~ firm + year,

+ pairwise = FALSE),

+ "pcseF" = pcse::vcovPC(pu_lm, PU$firm, PU$year, pairwise = FALSE)

+ ))

sandwichT pcseT sandwichF pcseF

(Intercept) 0.022070 0.022070 0.022603 0.022603

x 0.025338 0.025338 0.025241 0.025241

6. Simulation

For a more systematic analysis, a Monte Carlo simulation is carried out to assess the perfor-
mance of clustered covariances beyond linear and generalized linear models. For the linear
model, there are a number of simulation studies in the literature (including Cameron et al.

2008; Arceneaux and Nickerson 2009; Petersen 2009; Cameron et al. 2011; Harden 2011;
Thompson 2011; Cameron and Miller 2015; Jin 2015), far fewer for generalized linear models
(see for example Miglioretti and Heagerty 2007) and, to our knowledge, no larger systematic
comparisons for models beyond. Therefore, we try to fill this gap by starting out with simu-
lations of (generalized) linear models similar to the ones mentioned above and then moving
on to other types of maximum likelihood regression models.
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6.1. Simulation design

The main focus of the simulation is to assess the performance of clustered covariances (and
related methods) at varying degrees of correlation within the clusters. The two most impor-
tant parameters to control for this are the cluster correlation ρ, obviously, and the number
of clusters G as bias decreases with increasing number of clusters (Green and Vavreck 2008;
Arceneaux and Nickerson 2009; Harden 2011). More specifically, the cluster correlation varies
from 0 to 0.9 and the number of clusters G ranges from 10 to 250.

In a first step, only balanced clusters with a low number of observations per cluster (5) are
considered. All models are specified through linear predictors (with up to three regressors)
but with different response distributions. A Gaussian copula is employed to introduce the
cluster correlation ρ for the different response distributions. The methods considered are
the different clustered covariances implemented in sandwich as well as competing methods
such as basic sandwich covariances (without clustering), mixed-effects models with a random
intercept, or generalized estimating equations with an exchangeable correlation structure.

Linear predictor

Following Harden (2011) the linear predictor considered for the simulation is composed of
three regressors that are either correlated with the clustering, clustered, or uncorrelated. The
correlation of the first type of regressor is controlled by separate parameter ρx. Thus, in
the terminology of Abadie et al. (2022), the parameter ρ above controls the correlation in
the sampling process while the parameter ρx controls the extent of the clustering in the
“treatment” assignment.

More formally, the model equation is given by

h(µi,g) = β0 + β1 · x1,i,g + β2 · x2,g + β3 · x3,i,g, (25)

where µi,g is the expectation of the response for observation i within cluster g and the link
function h(·) depends on the model type. The regressor variables are all drawn from standard
normal distributions but at different levels (cluster vs. individual observation).

x1,i,g ∼ ρx · Ng(0, 1) + (1 − ρx) · Ni,g(0, 1) (26)

x2,g ∼ Ng(0, 1) (27)

x3,i,g ∼ Ni,g(0, 1) (28)

Regressor x1,i,g is composed of a linear combination of a random draw at cluster level (Ng)
and a random draw at individual level (Ni,g) while regressors x2,g and x3,i,g are drawn only at
cluster and individual level, respectively. Emphasis is given to the investigation of regressor
x1,i,g with correlation (default: ρx = 0.25) which is probably the most common in practice.
Furthermore, by considering the extremes ρx = 1 and ρx = 0 the properties of x1,i,g coincide
with those of x2,g and x3,i,g, respectively.

The vector of coefficients β = (β0, β1, β2, β3)⊤ is fixed to either one of

β = (0, 0.85, 0.5, 0.7)⊤ (29)

β = (0, 0.85, 0, 0)⊤ (30)

which have been selected based on Harden (2011).
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Label Model Object Variance-covariance matrix

CL-0 (g)lm m vcovCL(m, cluster = id, type = "HC0")

CL-1 (g)lm m vcovCL(m, cluster = id, type = "HC1")

CL-2 (g)lm m vcovCL(m, cluster = id, type = "HC2")

CL-3 (g)lm m vcovCL(m, cluster = id, type = "HC3")

PL (g)lm m vcovPL(m, cluster = id, adjust = FALSE)

PC (g)lm m vcovPC(m, cluster = id, order.by = round)

standard (g)lm m vcov(m)

basic (g)lm m sandwich(m)

random (g)lmer m_re vcov(m_re)

gee geeglm m_gee m_gee$geese$vbeta

Table 1: Covariance matrices for responses from the exponential family in ‘sim-CL.R’.

Response distributions

The response distributions encompass Gaussian (gaussian, with identity link) as the standard
classical scenario as well as binary (binomial, with a size of one and a logit link) and Poisson
(poisson, with log link) from the GLM exponential family. To move beyond the GLM, we
also consider the beta (betareg, with logit link and fixed precision parameter ϕ = 10), zero-
truncated Poisson(zerotrunc, with log link), and zero-inflated Poisson (zeroinfl, with log
link and fixed inflation probability π = 0.3) distributions.

Sandwich covariances

The types of covariances being compared include “standard” covariances (standard, with-
out considering any heteroscedasticity or clustering/correlations), basic sandwich covariances
(basic, without clustering), Driscoll and Kraay panel covariances (PL), Beck and Katz panel-
corrected covariances (PC ), and clustered covariances with HC0–HC3 adjustment (CL-0–
CL-3 ). As further references, covariances from a clustered bootstrap (BS), a mixed-effects
model with random intercept (random), and a GEE with exchangeable correlation structure
(gee) are assessed.

Outcome measure

In order to assess the validity of statistical inference based on clustered covariances, the
empirical coverage rate of the 95% Wald confidence intervals (from 10,000 replications) is
the outcome measure of interest. If standard errors are estimated accurately, the empirical
coverage should match the nominal rate of 0.95. And empirical coverages falling short of 0.95
are typically due to underestimated standard errors and would lead to inflated type I errors
in partial Wald tests of the coefficients.

Simulation code

The supplementary R script ‘sim-CL.R’ comprises the simulation code for the data generat-
ing process described above and includes functions dgp(), fit(), and sim(). While dgp()

specifies the data generating process and generates a data frame with (up to) three regressors
x1, x2, x3 as well as cluster dimensions id and round, fit() is responsible for the model
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estimation as well as computation of the covariance matrix estimate and the empirical cov-
erage. The function sim() sets up all factorial combinations of the specified scenarios and
loops over the fits for each scenario (using multiple cores for parallelization).

Table 1 shows how the different types of covariances are calculated for responses from the
exponential family. A pooled or marginal model (m), a random effects model (m_re, using
lme4, Bates et al. 2015), and a GEE with an exchangeable correlation structure (m_gee,
using geepack, Halekoh et al. 2005) are fitted. For the other (non-GLM) responses, the func-
tions betareg() (from betareg, Cribari-Neto and Zeileis 2010), zerotrunc() (from countreg,
Zeileis and Kleiber 2020), and zeroinfl() (from pscl/countreg, Zeileis et al. 2008) are used.

6.2. Results

Based on the design discussed above, the simulation study investigates the performance of
clustered covariances for the following settings.

• Experiment I: Different types of regressors for a Gaussian response distribution.

• Experiment II: Different GLM response distributions.

• Experiment III: Response distributions beyond the GLM.

• Experiment IV: GLMs with HC0–HC3 bias corrections.

Experiment I

Figure 1 shows the results from Experiment I and plots the empirical coverage probabilities
(from 10,000 replications) on the y-axis for the coefficients of the correlated regressor x1, the
clustered regressor x2, and the uncorrelated regressor x3 against the cluster correlation ρ on
the y-axis.

While for the uncorrelated regressor x3 all methods – except the Driscoll and Kraay PL
estimator – perform well and yield satisfactory coverage rates, the picture is different for
the correlated and clustered regressors x1 and x2. With increasing cluster correlation ρ the
performance deteriorates for those methods that either do not account for the clustering at
all (i.e., “standard” covariance and basic sandwich covariance) or that treat the data as panel
data (i.e., PL and PC).

The reason for the poor performance of the panel data covariances is the low number of
5 observations per cluster. This has already been documented in the literature: In a Monte-
Carlo study, Driscoll and Kraay (1998) use a minimum of 20–25 observations per cluster
and Hoechle (2007) notes that the PC estimator can be quite imprecise if the crosss-sectional
dimension is large compared to the time dimension. As shown in Appendix A, the performance
improves if an exponentially decaying AR(1) correlation structure is employed instead of the
exchangeable structure and if the number of observations per cluster increases.

As the effects of regressor x1 are in between the effects of the clustered regressor x2 and the
uncorrelated regressor x3, the following simulation experiments focus on the situation with a
single correlated regressor x1.

Experiment II
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Figure 1: Experiment I. Gaussian response with G = 100 (balanced) clusters of 5 observations
each. Regressor x1 is correlated (ρx = 0.25), x2 clustered, and x3 uncorrelated. The coverage
(from 10,000 replications) is plotted on the y-axis against the cluster correlation ρ of the
response distribution (from a Gaussian copula) on the x-axis. The horizontal reference line
indicates the nominal coverage of 0.95.
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Figure 2: Experiment II. Exponential family response distributions with G = 100 (balanced)
clusters of 5 observations each. The only regressor x1 is correlated (ρx = 0.25). The coverage
(from 10,000 replications) is plotted on the y-axis against the cluster correlation ρ of the
response distribution (from a Gaussian copula) on the x-axis. The horizontal reference line
indicates the nominal coverage of 0.95.
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Figure 3: Experiment III. Response distributions beyond the GLM (beta regression, zero-
truncated Poisson, and zero-inflated Poisson) with G = 100 (balanced) clusters of 5 obser-
vations each. The only regressor x1 is correlated (ρx = 0.25). The coverage (from 10,000
replications for basic/standard/CL-0 and 1,000 replications for BS) is plotted on the y-axis
against the cluster correlation ρ of the response distribution (from a Gaussian copula) on the
x-axis. The horizontal reference line indicates the nominal coverage of 0.95.

Figure 2 illustrates the results from Experiment II. The settings are mostly analogous to
Experiment I with two important differences: (1) GLMs with Gaussian/binomial/Poisson
response distribution are used. (2) There is only one regressor (x1, correlated with ρx = 0.25).

Overall, the results for binomial and Poisson response are very similar to the Gaussian case
in Experiment I. Thus, this confirms that clustered covariances also work well with GLMs.

The only major difference between the linear Gaussian and nonlinear binomial/Poisson cases
is the performance of the mixed-effects models with random intercept. While in linear models
the marginal (or “population-averaged”) approach employed with clustered covariances leads
to analogous models compared to mixed-effects models, this is not the case in nonlinear
models. With nonlinear links, mixed-effects models correspond to “conditional” rather than
“marginal” models and for obtaining marginal expectations the random effects have to be
integrated out (see Molenberghs, Kenward, Verbeke, Iddi, and Efendi 2013; Fitzmaurice 2014).
Consequently, fixed effects have to be interpreted differently and their confidence intervals do
not contain the population-averaged effects, thus leading to the results in Experiment II.

Experiment III

Figure 3 shows the outcome of Experiment III whose settings are similar to the previous Ex-
periment I. But now more general response distributions beyond the classic GLM framework
are employed, revealing that the clustered covariances from vcovCL() indeed also work well
in this setup. Again, the performance of the non-clustered covariances deteriorates with in-
creasing cluster correlation. For the zero-truncated and zero-inflated Poisson distribution the
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Figure 4: Experiment IV. Exponential family response distributions with cluster correlation
ρ = 0.25 (from a Gaussian copula). The only regressor x1 is correlated (ρx = 0.25). The
coverage (from 10,000 replications) on the y-axis for different types of bias adjustment (HC0–
HC3 and bootstrap) is plotted against the number of clusters G on the x-axis. The number
of clusters increases with G = 10, 50, . . . , 250 while the number of observations per cluster is
fixed at 5. The horizontal reference line indicates the nominal coverage of 0.95.

empirical coverage rate is slightly lower than 0.95. However, given that this does not depend
on the extent of the correlation ρ this is more likely due to the quality of the normal approx-
imation in the Wald confidence interval. The clustered bootstrap covariance (BS) performs
similarly to the clustered HC0 covariance but is computationally much more demanding due
to the need for resampling and refitting the model (here with R = 250 bootstrap samples).

Experiment IV

Figure 4 depicts the findings of Experiment IV. The y-axis represents again the empirical
coverage from 10,000 replications, but in contrast to the other simulation experiments, the
number of clusters G is plotted on the x-axis, ranging from 10 to 250 clusters. Gaussian,
binomial and Poisson responses are compared with each other, with the focus on clustered
standard errors with HC0–HC3 types of bias correction. (Recall that HC2 and HC3 require
block-wise components of the full hat matrix and hence are at the moment only available for
lm() and glm() fits, see Section 4.1.) Furthermore, clustered bootstrap standard errors are
included for comparison (using R = 250 bootstrap samples).

In most cases, all of the standard errors are underestimated for G = 10 clusters (except
clustered standard errors with HC3 bias correction for the binomial and Poisson response). As
found in previous studies for clustered HC0/HC1 covariances (Arceneaux and Nickerson 2009;
Petersen 2009; Harden 2011; Cameron and Miller 2015; Pustejovsky and Tipton 2018, among
others), the larger the number of clusters G, the better the coverage and the less standard
errors are underestimated. In our study about 50–100 clusters are enough for sufficiently
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accurate coverage rates using clustered standard errors without a bias correction (CL-0 in the
figure), which is consistent with other authors’ findings.

Additionally, it can be observed that the higher the number of clusters, the less the different
types of HC bias correction differ. However, for a small number of clusters, the HC3 correction
works best, followed by HC2, HC1 and HC0. This is also consistent with the findings for
cross-sectional data, e.g., Long and Ervin (2000) suggest to use HC3 in the linear model for
small samples with fewer than 250 observations. Moreover, bootstrap covariances perform
somewhat better than HC0/HC1 for a small number of clusters. However, Pustejovsky and
Tipton (2018) have argued that HC3 bias corrections for clustered covariances (CL-3 in the
figure, sometimes referred to “CR3” or “CR3VE”) tend to over-correct for small G, and
recommend HC2 bias corrections (“CR2”, CL-2 in the figure) and t tests using degrees of
freedom calculated similar to Satterthwaite (1946). While Experiment IV finds that HC3
adjustments slightly over-correct for G = 10 in binomial models, overall, our findings are not
consistent with the suggestion that HC3 is overly aggressive in correcting small G bias in
clustered standard errors.

7. Summary

While previous versions of the sandwich package already provided a flexible object-oriented
implementation of covariances for cross-section and time series data, the corresponding func-
tions for clustered and panel data have only been added recently (in version 2.4-0 of the
package). Compared to previous implementations in R that were somewhat scattered over
several packages, the implementation in sandwich offers a wide range of “flavors” of clustered
covariances and, most importantly, is applicable to any model object that provides methods
to extract the estfun() (estimating functions; observed score matrix) and bread() (inverse
Hessian). Therefore, it is possible to apply the new functions vcovCL(), vcovPL(), and
vcovPC() to models beyond linear regression. A thorough Monte Carlo study assesses the
performance of these functions in regressions beyond the standard linear Gaussian scenario,
e.g., for exponential family distributions and beyond and for the less frequently used HC2
and HC3 adjustments. This shows that clustered covariances work reasonably well in the
models investigated but some care is needed when applying panel estimators (vcovPL() and
vcovPC()) in panel data with “short” panels and/or non-decaying autocorrelations.

Computational details

The packages sandwich, boot, countreg, geepack, lattice, lme4, lmtest, multiwayvcov, plm

and pscl are required for the applications in this paper. For replication of the simulation
study, the supplementary R script sim-CL.R is provided along with the corresponding results
sim-CL.rda.

R version 4.4.1 has been used for computations. Package versions that have been employed
are sandwich 3.1–1, countreg 0.2-0, geepack 1.3.11.1, lattice 0.22–6, lme4 1.1–35.5, lmtest

0.9–40, multiwayvcov 1.2.3, plm 2.6–4, and pscl 1.5.9.

R itself and all packages (except countreg) used are available from CRAN at https://CRAN.

R-project.org/. countreg is available from https://R-Forge.R-project.org/projects/

countreg/.

https://CRAN.R-project.org/
https://CRAN.R-project.org/
https://R-Forge.R-project.org/projects/countreg/
https://R-Forge.R-project.org/projects/countreg/
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A. Simulation results for panel data with AR(1) correlations

As observed in Figures 1–2, the estimators for panel covariances (PL and PC) have problems
with the “short” panels of only 5 observations per cluster. To assess whether the estima-
tors perform correctly in those situations they were designed for, we take a closer look at
(a) “longer” panels (with up to 50 observations per cluster), and (b) an exponentially decay-
ing autoregressive (AR) correlation structure of order 1 instead of an exchangeable correlation
structure.

Figure 5 shows the results from a supplementary simulation experiment that is analogous to
Experiment I. The two differences are: (1) The number of observations per cluster is increased
from 5 up to 50 and the cluster correlation is fixed at ρ = 0.25 (with higher values leading
to qualitatively the same results). (2) Additionally, an AR(1) correlation structure is consid-
ered. Somewhat surprisingly, the standard clustered HC0 covariance performs satisfactorily
in all scenarios and better than the panel estimators (PL and PC). The latter approach the
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Figure 5: Supplementary simulation experiment. Gaussian response with G = 100 (balanced)
clusters of 5, 10, 20, or 50 observations each. Regressor x1 is correlated (ρx = 0.25), x2

clustered, and x3 uncorrelated. Either an exchangeable cluster correlation of ρ = 0.25 or an
exponentially decaying AR(1) correlation structure with autoregressive coefficient ρ = 0.25
is used. The coverage (from 10,000 replications) is plotted on the y-axis against the number
of observations per cluster on the x-axis. The horizontal reference line indicates the nominal
coverage of 0.95.
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Figure 6: Supplementary simulation experiment. Poisson and binomial response withG = 100
(balanced) clusters of 5, 10, 20, or 50 observations each. Regressor x1 is correlated (ρx = 0.25),
x2 clustered, and x3 uncorrelated. An exponentially decaying AR(1) correlation structure
with autoregressive coefficient ρ = 0.25 is used. The coverage (from 10,000 replications)
is plotted on the y-axis against the number of observations per cluster on the x-axis. The
horizontal reference line indicates the nominal coverage of 0.95.

desired coverage of 0.95 when the panels become longer (i.e., the number of observations per
cluster increases) and the correlation structure is AR(1). However, in case of an exchange-
able correlation structure and correlated/clustered regressors, the coverage even decreases for
longer panels. The reason for this is that the panel covariance estimators are based on the
assumption that correlations are dying out, which is the case for an AR(1) structure, but not
for an exchangeable correlation structure.

Additionally, Figure 6 brings out that the AR(1) findings are not limited to the Gaussian case
but can be confirmed for binomial and Poisson GLMs as well.
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