Basic direct and indirect estimators in sae package

Isabel Molina^{*}, Yolanda Marhuenda

March, 2015

This document presents design unbiased direct estimators and simple indirect estimators of domain means \bar{Y}_d , $d = 1, \ldots, D$. For a general random sampling without replacement within each domain U_d . We denote by π_{dj} the inclusion probability of *j*-th unit from *d*-th domain in the corresponding domain sample s_d and $w_{dj} = \pi_{dj}^{-1}$ is the corresponding sampling weight. A designunbiased direct estimator of \bar{Y}_d is the Horvitz-Thompson (HT) estimator, given by

$$\hat{\bar{Y}}_{d}^{DIR} = N_{d}^{-1} \sum_{j \in s_{d}} w_{dj} Y_{dj}.$$
 (1)

Unbiased estimation of the sampling variance of the HT estimator requires availability of the second order inclusion probabilities $\pi_{d,jk}$ of each pair of units j and k in s_d . A simple approximation that avoids the use of second order inclusion probabilities is obtained by considering $\pi_{d,jk} \approx \pi_{dj}\pi_{dk}$ and is given by

$$\hat{V}_{\pi}(\hat{\bar{Y}}_{d}^{DIR}) = \frac{1}{N_{d}^{2}} \sum_{j \in s_{d}} w_{dj}(w_{dj} - 1)Y_{dj}^{2}.$$
(2)

Under Poisson sampling, $\pi_{d,jk} = \pi_{dj}\pi_{dk}$ and in that case the estimator in (2) is exactly unbiased. Under simple random sampling (SRS) without replacement within each area U_d , d = 1, ..., D, the HT estimator of the mean \bar{Y}_d is the usual sample mean $\hat{Y}_d = \bar{y}_d = n_d^{-1} \sum_{j \in s_d} Y_{dj}$, and the (exactly) unbiased estimator of the sampling variance is $\hat{V}_{\pi}(\hat{Y}_d^{DIR}) = (1 - f_d)S_d^2/n_d$, for $S_d^2 = \sum_{j \in s_d} (Y_{dj} - \bar{y}_d)^2/(n_d - 1)$.

When the sampling is with replacement within each domain U_d , and units are selected with probabilities P_{dj} , $j = 1, \ldots, N_d$, proportional to some size measure, if we define new weights $w_{dj} = (n_d P_{dj})^{-1}$, the estimator defined in (1) remains unbiased and the unbiased estimator of the sampling variance is given by

$$\hat{V}_{\pi}(\hat{Y}_{d}^{DIR}) = \frac{1}{n_d} \sum_{j \in s_d} \left(f_d w_{dj} Y_{dj} - \hat{Y}_d \right)^2,$$

^{*}Department of Statistics, Universidad Carlos III de Madrid. Address: C/Madrid 126, 28903 Getafe (Madrid), Spain, Tf: +34 916249887, Fax: +34 916249849, E-mail: isabel.molina@uc3m.es

which becomes S_d^2/n_d under SRS with replacement.

The post-stratified synthetic estimator assumes that data are distributed into K (large) groups called post-strata that cut across the domains, and such that the within group mean is constant across domains, that is, if \bar{Y}_{dk} denotes the mean in the crossing of post-stratum k and domain d and \bar{Y}_{+k} is the mean of post-stratum k, it holds that $\bar{Y}_{dk} = \bar{Y}_{+k}$, $k = 1, \ldots, K$. The groups are assumed to have large enough sample sizes to allow direct estimation with high efficiency. Since the mean of domain d is given by $\bar{Y}_d = N_d^{-1} \sum_{k=1}^K N_{dk} \bar{Y}_{dk}$, replacing $\bar{Y}_{dk} = \bar{Y}_{+k}$ by the ratio HT estimator $\hat{Y}_{+k}^R = \hat{Y}_{+k}^{DIR} / \hat{N}_{+k}^{DIR}$, where \hat{Y}_{+k}^{DIR} is the direct estimator of the total in post-stratum k and \hat{N}_{+k} is the direct estimator of the population size N_{+k} in the same post-stratum, we obtain the post-stratified synthetic estimator

$$\hat{\bar{Y}}_{d}^{SYN} = \frac{1}{N_d} \sum_{k=1}^{K} N_{dk} \hat{\bar{Y}}_{+k}^{R}.$$

Note that this estimator requires the population sizes of the crossings between each post-stratum k and domain d, N_{dk} for all k and d.

The direct estimator is inefficient for a domain with small sample size. On the other hand, the post-stratified synthetic estimator is biased when the assumption of constant means across domains within a stratum does not hold. To balance the bias of a synthetic estimator and the instability of the direct estimator, [1] proposed the sample-size dependent (SSD) estimator defined as a composition of the two mentioned estimators, that is,

$$\hat{\bar{Y}}_d^{SSD} = \phi_d \hat{\bar{Y}}_d^{DIR} + (1 - \phi_d) \hat{\bar{Y}}_d^{SYN},$$

where the composition weight ϕ_d depends on the sample size of the domain as

$$\phi_d = \begin{cases} 1, & \hat{N}_d^{DIR} \ge \delta N_d; \\ \hat{N}_d^{DIR} / (\delta N_d), & \hat{N}_d^{DIR} < \delta N_d, \end{cases}$$

for a given constant $\delta > 0$ that controls how much weight is attached to the synthetic estimator, with larger value of δ meaning that more strength is borrowed from other domains. However, if the expected sample size is small, then the SSD estimator is not borrowing strength in domains d with $\hat{N}_d^{DIR} \geq \delta N_d$ even if they have small sample sizes.

Functions direct(), pssynt() and ssd() give respectively direct, poststratified synthetic and sample size dependent estimates. The calls to these functions are:

```
direct(y, dom, sweight, domsize, data, replace = FALSE)
pssynt(y, sweight, ps, domsizebyps, data)
ssd(dom, sweight, domsize, direct, synthetic, delta = 1, data)
```

Function direct() returns unbiased direct estimates of the area means, where the result depends on the sampling design specified through the sampling

weight vector sweight and the argument replace for with or without replacement sampling. We must provide the area population sizes in the data frame domsize, whose first column must contain the area codes.

In pssynt(), we must specify our selected post-stratifying variable in argument ps. The population sizes of each crossing between domain and post-strata must be specified in the data frame domsizebyps, whose first column must be again the area codes.

Function ssd() gives SSD estimators obtained by composition of direct and synthetic estimators. We need to introduce the direct estimators (direct) and the synthetic estimators (synthetic) to compose, together with the constant δ (delta) involved in the SSD estimator. Domain codes (dom) and domain population sizes (domsize) are also required arguments.

The vector of sampling weights (sweight) must be included in the three functions. The variables specified in y, dom, sweight and ps can be selected from the data set specified in argument data.

Example. Poverty mapping

In this example, we calculate several simple estimates of poverty incidences in Spanish provinces, namely direct estimates, post-stratified synthetic estimates with education levels as post-strata and SSD estimates obtained from the composition of direct and post-stratified synthetic estimates.

The poverty incidence for a province is the province mean of a binary variable taking value 1 when person's income is below a given poverty line and 0 otherwise. Direct estimates can be obtained easily applying the usual theory for means to this binary variable. First, we load the data set **incomedata** containing the input data for each individual and the data sets **sizeprov** and **sizeprovedu** containing the population sizes and the population sizes by education level, respectively.

> library("sae")
> data("incomedata")
> data("sizeprov")
> data("sizeprovedu")

Next, we define the poverty line z, calculate the binary variable poor, with value 1 if the corresponding income value is below the poverty line and 0 otherwise, and calculate province poverty incidences as province means of this variable.

> z <- 6557.143
> poor <- as.integer(incomedata\$income < z)</pre>

We use the province name provlab as the domain code (dom) and calculate direct estimates DIR.

Next, we calculate post-stratified synthetic estimates with education levels as post-strata. For the function pssynt(), we construct the data frame domsizebyps, containing the domain codes provlab in the first column and, in the remaining columns, the province sizes by education level. The names of the columns (except for the first one) in this data frame must be the education levels, namely 0 (age<16), 1 (primary education), 2 (secondary education) and 3 (post-secondary education):

We calculate SSD estimates by composition of the previous direct and poststratified estimates, and taking the default value delta=1 in function ssd(). Again, the first columns of domsize, direct and synthetic must be the province names.

> SSD <- ssd	(dom = provlab, sweight = weight, domsize = Popn,
+	<pre>direct = DIR[, c("Domain", "Direct")],</pre>
+	<pre>synthetic = PSYN.educ, data = incomedata)</pre>

We collect the province names, sample sizes and the three sets of percent poverty incidence estimates in the data frame results:

```
> results <- data.frame(Province = DIR$Domain,</pre>
                        SampleSize = DIR$SampSize,
+
                        DIR = DIR$Direct * 100,
+
+
                        PSYN.educ = PSYN.educ$PsSynthetic * 100,
                        SSD = SSD$ssd * 100)
 print(results, row.names = FALSE)
>
   Province SampleSize
                              DIR PSYN.educ
                                                 SSD
      Alava
                    96 25.503732 20.77880 24.08931
   Albacete
                   173 14.059242 22.67562 14.30411
                   539 20.785096 21.26954 20.78510
    Alicante
    Almeria
                   198 26.763976 23.02936 26.76398
      Avila
                    58 5.512200 22.89330 10.28835
                   494 21.553890 22.35924 21.55389
    Badajoz
   Baleares
                   634 9.999792 21.71882 10.40240
  Barcelona
                   1420 29.812535 21.59556 29.81253
     Burgos
                   168 21.413150 22.35331 21.41315
```

Casaraa	000	27.031324	00 02040	26.44514
Caceres Cadiz	398	14.887351	22.23249	14.88735
Castellon	118	17.598199	22.51440	14.00735
Casterion Ceuta	235	19.724796	22.81006	19.72480
CiudadReal	255	20.921534		20.92153
Ciudadkeai Cordoba	250	20.921534		20.92153
CorunaLa	495	25.347550		25.23624
Cuenca		26.334059		26.13496
Gerona	142	18.337421	21.59600	18.85399
Granada		31.727340		30.97619
Guadalajara	89	17.908182		18.78456
Guipuzcoa		23.690549		23.66709
Huelva	122	12.583449	22.35069	13.44200
Huesca	115	24.107606		23.98812
Jaen		31.294198	22.93972	
Leon	218	18.801572	22.93115	19.22223
Lerida	130	15.559590		15.55959
Lugo		37.718722	23.94922	
Madrid	944	18.218209		18.25089
Malaga		22.918462	22.51928	
Melilla	180	19.109119	22.00697	19.43014
Murcia	885	17.703167	22.50054	17.72239
Navarra	564	16.190765		16.22866
Orense	129	22.799612	23.58691	
Oviedo		26.064010	22.00916	
Palencia		30.166074	23.63212	
PalmasLas	472	16.651843	21.80900	16.65184
Pontevedra	448	18.549072	21.86237	18.54907
RiojaLa	510	25.811811	22.40296	25.78924
Salamanca	164	16.104513	21.93240	16.76284
Santander		34.244429		34.07708
Segovia		22.262002	22.67927	
Sevilla	482	20.503036	21.74189	20.58245
Soria	20	2.541207	23.10395	13.14019
Tarragona	134	32.035438	22.51761	29.51279
Tenerife	381	18.429619	21.96155	19.17768
Teruel	72	27.364239	22.89205	26.70145
Toledo	275	12.553377	23.14442	12.57643
Valencia	714	21.360678	21.32963	21.36054
Valladolid	299	19.292332	20.98068	19.29233
Vizcaya	524	21.694466	20.44194	21.69447
Zamora	104	30.027442	26.17055	30.02744
Zaragoza	564	10.034577	21.17064	10.03458

These estimates are plotted in the Figure for each province (area), with provinces sorted by decreasing sample size. This Figure shows that direct esti-

mates and SSD estimates are very similar, with direct estimates slightly more unstable. However, the post-stratified synthetic estimates appear to be too stable, giving practically the same values for all provinces. This estimator is based on the unrealistic assumption of constant poverty incidence for all the population with the same education level and therefore might be seriously biased.

```
> # Sorted results by decreasing sample size
 results <- results[order(results$SampleSize,</pre>
>
                            decreasing = TRUE), ]
+
 plot(results$DIR, type = "n",
>
       xlab = "area (sorted by decreasing sample size)",
       ylab = "Estimate", cex.axis = 1.5, cex.lab = 1.5)
> points(results$DIR, type = "b", col = 3, lwd = 2, pch = 1)
> points(results$PSYN.educ, type= "b", col = 5, lwd = 2, pch = 2)
 points(results$SSD, type = "b", col = 2, lwd = 2, pch = 5)
>
  legend("bottom", legend = c("Direct", "Post-strat educ", "SSD"),
>
+
         ncol = 1, col = c(3, 5, 2), lwd = rep(2, 3),
         pch = c(1, 2, 5), cex = 1.3)
```


Comparing direct estimates with the EB estimates of poverty incidences obtained in the data frame results.EB of Example 5 in [2], we can see that estimates differ significantly for the 5 selected provinces and the CVs show great gains in efficiency of EB estimates as compared with direct estimates.

> DIR[c("42","5","34","44","40"), -4]

	Domain	SampSize	Direct	CV
42	Soria	20	0.02541207	99.97815
5	Avila	58	0.05512200	46.35946
34	Palencia	72	0.30166074	23.80085
44	Teruel	72	0.27364239	24.57017
40	Segovia	58	0.22262002	25.33449

References

- DREW, D., SINGH, M.P. & CHOUDHRY, G.H. (1982). Evaluation of small area estimation techniques for the Canadian Labour Force Survey. *Survey Methodology* 8, 17–47.
- [2] MOLINA, I. & MARHUENDA, Y. (1982). sae: An R package for Small Area Estimation. R Journal, Under revision.